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ABSTRACT 

Studies of Zugunruhe—the “migratory restlessness” behaviour of captive birds—have been 

integral to our understanding of animal migration, revealing an inherited propensity to migrate 

and an endogenous timing and navigation system. However, differences between Zugunruhe 

in captivity and migration in the wild call for more data, in particular on variation within and 

among taxa with diverse migration strategies. Here, we characterise Zugunruhe in a long-term 

dataset of activity profiles from stonechats (genus Saxicola) with diverse migratory 

phenotypes (976 migration periods from 414 birds), using a flexible and consistent 

quantitative approach based on changepoint analysis. For East African, Austrian, Irish, and 

Siberian stonechats and hybrids, we report key inter-population differences in the occurrence, 

timing, and intensity of Zugunruhe. In line with expectations, we found the highest 

Zugunruhe intensity in the longest-distance migrants, more variable patterns in short-distance 

migrants, and intermediate characteristics of hybrids relative to their parental groups. Inter-

population differences imply high evolutionary lability of Zugunruhe timing within a robustly 

structured annual cycle. However, counter to theory, Irish partial migrants showed no 

segregation between migrant and resident individuals, and previously reported nocturnal 

restlessness was confirmed for resident African stonechats. Further features of nocturnal 

restlessness that did not align with migratory behaviour of stonechats were juvenile nocturnal 

restlessness even prior to postjuvenile moult, and protandry in spring, although stonechats 

winter in heterosexual pairs. Importantly, Zugunruhe of all populations declined with age, and 
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the intensity of an individual bird’s Zugunruhe was correlated with activity levels during other 

parts of the annual cycle. Our results confirm endogenous, population-specific migration 

programmes, but also reveal apparent discrepancies between Zugunruhe and migration in the 

wild. We thus highlight both the continued potential of Zugunruhe study and the need for 

circumspect interpretation when using migratory restlessness to make inferences about 

migration in the wild. 

 

Keywords: migration, Zugunruhe, changepoint analysis, age, activity, annual cycle, stonechat 

 

Main Text 

 

Introduction 

 

The phenomenon of bird migration, particularly regular biannual movements, has captured 

human interest throughout recorded history (Alerstam 1990, 2011). How do birds know when 

to depart, which direction to fly, when to stop, and when to return? Given that migration takes 

place in mid-air and often spans continents, answering these questions based solely on 

observations of free-living birds has been intrinsically difficult (Birkhead 2008). Although 

new tracking technologies are beginning to overcome this challenge, they are limited in their 

potential to answer fundamental questions because each bird’s journey is a unique experience 

under a particular suite of environmental conditions (e.g. Delmore and Irwin 2014, Bäckman 

et al. 2016). Much of our understanding of the regulation of migration therefore continues to 

be based on studies of songbirds in captivity. These studies leverage the fact that many 

nocturnally migrating species spontaneously modify their activity patterns during the 

migration seasons of wild conspecifics, even when kept under constant conditions in 

captivity. Instead of their usual rest at night, captive migratory birds extend their activities 

after sunset, flying, hopping and whirring their wings often until the morning (e.g. Berthold 

2001, Birkhead 2008). This behaviour, called migratory restlessness, or Zugunruhe, has been 

extensively used as a proxy for studying migration. In general, intensity and/or duration of 

Zugunruhe increases with the “migratoriness” of a population, measured for example by the 

distance covered by wild migrants or by the proportion of individuals that migrate. The 

behavioural phenomenon of migratory restlessness is not restricted to birds and has also been 

characterised in, for example, fish and insects (e.g., Leverton 1997, Mouritsen and Frost 2002, 

Sudo and Tsukamoto 2015). 
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However, the comparability between Zugunruhe and actual migration in the wild is 

not always clear (Farner 1955, Helms 1963, Berthold 1988ab, Newton 2008). For example, 

resident populations of otherwise migratory species can show apparent Zugunruhe (Chan 

2005, Helm and Gwinner 2006), and juvenile birds of some migratory species display 

nocturnal restlessness well in advance of actual migration (Mukhin 1999). Migratory 

songbirds in captivity often extend Zugunruhe far beyond the seasonally appropriate 

migration time window (e.g. summer restlessness, Gwinner and Czeschlik 1978) and are often 

restless every night, whereas wild birds typically migrate for single nights and then refuel at 

stopover sites (Bäckman et al. 2016 compared to Gwinner and Biebach 1977). In light of 

these discrepancies, there is a need for more information on the relationship between 

Zugunruhe and diverse migratory phenotypes in the wild, and on the factors associated with 

variation in Zugunruhe within and between populations. Here, we investigate a long-term 

nocturnal activity dataset from several taxa of the stonechat complex (genus Saxicola), 

providing new insight into the variation and regulation of this migratory trait. Furthermore, 

comparison of Zugunruhe across studies and taxa has been hampered by heterogeneous and 

sometimes subjective quantifications. To address this issue, we propose a single quantitative 

approach to analyse nocturnal activity data in the phenotypically diverse stonechat system. 

 

Stonechats are a well-studied taxon in avian biology (e.g., Gwinner et al. 1983, Wikelski et al. 

2003, Illera et al. 2008, Helm 2009, Zink et al. 2009, Versteegh et al. 2014). These 

widespread palearctic songbirds breed across an unusually extensive latitudinal range, from c. 

70º N in Siberia to 30º S in South Africa (Figure 1A, Urquhart 2002). Within this range, they 

show large variation in morphology, physiology, and life history, including a broad spectrum 

of migratory behaviours from resident to long-distance migrant. Therefore, studies on 

stonechats offer opportunities to examine variation in these traits within a single species 

complex, with the benefit of reduced cross-species comparative noise. Extensive studies in the 

field and laboratory have compared stonechats from various environments with different 

migratory phenotypes. The least migratory population in our dataset comprises residents from 

East Africa (Kenya), followed by partial migrants from the British Isles (Ireland), obligate 

short-distance migrants from Central Europe (Austria), and the most migratory population, 

long-distance migrants from West Siberia (Kazakhstan) (Helm 2009). 

Stonechats included in this study were raised under common garden conditions in 

decades-long captive breeding studies, which collected data on a broad range of traits. To 

examine patterns of inheritance, birds were selectively bred within and crossbred between 
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populations (Helm et al. 2005, Helm 2009). Key findings demonstrated a high degree of 

inheritance of annual cycle organization and physiological traits (e.g., Wikelski et al. 2003, 

Helm 2009, Tieleman et al. 2009, Versteegh et al. 2014). Stonechats generally displayed 

distinct population-specific phenotypes, even under common-garden conditions, and F1 

hybrids mostly exhibited intermediate trait values (Gwinner 1996, Helm et al. 2009, Tieleman 

et al. 2009, Versteegh et al. 2014). Variation in many traits was associated with migratoriness, 

including dimensions of wing (Baldwin et al. 2010) and brain (Fuchs et al. 2014).  

Nonetheless, the strengths of the stonechat system for advancing migration research 

have hardly been fully played out (Zink 2011, Ketterson et al. 2015), and analyses of 

nocturnal activity profiles collected within the experimental breeding scheme have only been 

touched upon (Helm and Gwinner 2005, 2006, Helm et al. 2005, Helm 2006). One striking 

finding was that resident Kenyan stonechats display Zugunruhe: lower in intensity compared 

to short-distant migrants from Austria, but with similar timing characteristics (Figure 1B, 

Helm and Gwinner 2006). Here, we present a more complete analysis of Zugunruhe in 

stonechats. Our long-term data, which for many birds started soon after fledging, enable us to 

compare population-specific programmes and address open questions in Zugunruhe research: 

Do Zugunruhe patterns remain consistent as birds age? Are differences between spring and 

autumn migration seasons consistent among migratory species (e.g., Zugunruhe timing and 

intensity, and effects of age and sex)? Are birds that display high Zugunruhe generally more 

active birds, or is migratory activity a completely independent activity trait? 

 

In our efforts to answer these questions, our first objective is to develop robust 

analysis methods for Zugunruhe data. When looking at nocturnal activity data, researchers are 

often faced with noisy time series that contain putative migration-related signals whose clarity 

varies among species and individuals. In particular, it has been challenging for existing 

methods to simultaneously:  

a) Determine the presence or absence of Zugunruhe in the nocturnal activity profile of a bird. 

In many studies, some proportion of birds may show very little or inconsistent bouts of 

nocturnal activity. Depending on study-specific criteria, records of these birds could get 

dropped completely from the study, remain included in population measures of 

“migratoriness” (e.g., for average Zugunruhe profiles; Berthold 1988a), or be assigned the 

status of “non-migrants” (e.g., in studies of partial migrant populations). 

b) Define the onset, completion and duration of the Zugunruhe period. Nocturnal activity 

frequently occurs outside of the migration period of wild conspecifics. Zugunruhe has 
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often been distinguished from other nocturnal activity by thresholds and cut-off practices 

based on informed guesses or varying subsidiary criteria (e.g., occurrence of moult) that 

are not always comprehensively reported. 

c) Assess the consistency of Zugunruhe estimates when measured over more than one 

migration period. Data from individuals are often presented for a single migration period, 

leaving open whether the behaviour is a stable, age-independent trait—expected, for 

example, for some genetic studies (Berthold 1988a). 

d) Distinguish inter-individual differences in Zugunruhe from differences in activity that 

may be unrelated to migration. Many studies have quantified activity only for seasonal 

time windows designated as migration periods, and during the night but not the day. 

While it is likely that inter-individual variation in nocturnal activity during the migration 

season correlates with variation in migratory disposition, alternative explanations are 

possible and should be accounted for. For example, such variation may be explained by 

individual differences in overall activity levels, which have been reported across animal 

species (e.g. van Oers and Naguib 2013). 

Although most studies address a subset of these issues in some manner, analytic 

processes have often lacked robust, objectively defined, and thus transferrable criteria (Pulido 

et al. 1996; Helm and Gwinner 2006). Considerations of how to process the data substantially 

influence the outcome of a study. For example, the results of studies using Zugunruhe to 

classify captive birds as putative migrants or residents will vary depending on the choice of 

time windows, threshold levels, and processing of noisy Zugunruhe profiles. 

 

We address these analytical issues by presenting an automated procedure based on 

changepoint analysis. Using a single algorithm for birds of all migratory phenotypes, we 

determine presence, timing and intensity of Zugunruhe on an individual level. Specifically, 

we assign presence or absence of Zugunruhe to all individuals, thereby deriving proportions 

of putative migrants based on Zugunruhe for all populations, and we use activity data from 

the full annual cycle of individuals to obtain robust estimates of the timing of Zugunruhe. 
 

Using these quantifications, we then analyse activity data of the stonechat populations and 

their hybrids with the following objectives: 

1. Examine population-level variation in the occurrence, timing and intensity of 

Zugunruhe. Based on field-derived differences in migratoriness, we test the prediction that 

birds originating from resident and partially migratory populations (Kenyan and Irish) are 

more likely to refrain from engaging in Zugunruhe; if they do show Zugunruhe, we expect 
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intensities to be lower than in obligate short- and long-distance migrants (Austrian and 

Siberian). We therefore anticipate that intensity and duration will increase in the following 

sequence: Kenyan < Irish < Austrian < Siberian. We expect this pattern to hold for both 

spring and autumn seasons. Likewise, we test the prediction that timing of Zugunruhe relates 

to reported population differences in annual cycles, phenology, and migratory strategy (Helm 

2009). In spring, we expect partially migratory populations to engage in Zugunruhe earlier 

than obligate short- and long-distance migrants. Conversely, for autumn we expect that long 

distance migrants will be the first, and partial migrants the last, to leave the breeding grounds. 

2. Examine hybrid phenotypes. We investigate whether timing, prevalence, and 

intensity of Zugunruhe in hybrids are intermediate relative to parental phenotypes. 

3. Identify differences between autumn and spring migration periods. Based on field 

evidence that migration is often more compressed and intense in spring than autumn 

(Alerstam 2011), we predict that Zugunruhe profiles are also more intense in spring than in 

autumn. We expect this pattern to be consistent among the three migratory populations, and 

possibly also in residents. 

4. Examine the consistency of activity with age. Based on the premise that Zugunruhe 

reflects genetically programmed migratory traits, we test the prediction that Zugunruhe is 

consistently displayed over the lifetime of a bird. Because in weakly migratory species 

patterns may be flexible (Schwabl and Silverin 1990, Hegemann et al. 2015), we also test the 

prediction that Zugunruhe traits should have lower consistency in partial and short-distance 

migrants compared to the most migratory population. We first examine nocturnal restlessness 

during the postfledging phase, before the end of postjuvenile moult (referred to as “juvenile 

restlessness”). Then, we focus on Zugunruhe and test for changes in timing, intensity, and 

frequency of occurrence with age, whether such changes differ among populations, and 

whether they also apply to year-round diurnal and nocturnal activity. 

5. Compare analyses based on assignment of individuals as either migrants or 

residents to population-wide analyses. Classification of birds as either showing Zugunruhe 

(i.e., putative migrants) or not showing Zugunruhe (i.e., putative residents) filters nocturnal 

restlessness data prior to further analysis. Zugunruhe studies differ in whether or not 

individuals are divided by behaviour in this manner. To assess the effects of this classification 

on conclusions about Zugunruhe in stonechats, we compare outcomes of our analyses of birds 

identified as showing Zugunruhe to overall population-wide analyses of diurnal and nocturnal 

activity. 
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6. Examine the relationship between Zugunruhe and daytime activity. The few studies 

that have investigated how daytime activity changes during Zugunruhe suggest that birds 

compensate for sleepless nights by slight increases in daytime rest (Rattenborg et al. 2004, 

Fuchs et al. 2006). We therefore quantify the extent to which increased nocturnal activity will 

be partially compensated by reduced daytime activity. 

7. Examine whether more intense Zugunruhe is a characteristic of generally more 

active birds. We test whether activity levels of birds covaried between migratory and non-

migratory contexts. We compare nocturnal activity levels of individuals during migration 

seasons (Zugunruhe) to (a) nocturnal activity levels during “neutral”, non-migratory seasons, 

and to (b) diurnal activity levels during non-migration seasons. We posit that a positive 

correlation between activity levels of these periods will weaken the assumption that individual 

variation in Zugunruhe uniquely represents individual variation in migratory propensity. 

 

 

METHODS 

Birds and Experimental Setup 

Origin and Maintenance of Birds: We present data from 976 migration periods (minimal 

duration 90 days) from 414 stonechats of the following four population groups: S. rubicola 

rubicola from Austria (hereafter referred to as “Austrian” or by code A); S. rubicola 

hibernans from Ireland (hereafter “Irish” or I); S. torquatus axillaris from Kenya (hereafter 

“Kenyan” or K); and S. maurus from Kazakhstan (hereafter “Siberian” or S) (Figure 1A). We 

also included hybrid Austrian × Kenyan stonechats (n = 16, all A×K F1) and Austrian × 

Siberian stonechats (A×S; n = 80). Austrian × Siberian included F1 crosses (n = 56) and 

backcrosses (AxS with Austrian parent: n = 16; AxS with Siberian parent: n = 8). Hereafter, 

we refer to the four populations and the hybrid groups simply as “populations” (for details see 

Supplementary material Appendix 1, and Helm 2003, 2009). 

For the birds in this study, the sex ratio was consistently nearly balanced in all groups 

(overall: 193 females, 221 males). The vast majority (330) were offspring of captive 

stonechats from our breeding scheme (i.e. at least 2nd generation in captivity), and were born 

between 1998 and 2006. Between 1997 and 2004, 84 birds were taken from the field, usually 

as nestlings, with the exception of two Irish stonechats that were collected as wintering adults 

in January 2003. After fledging, birds were housed individually indoors in recording cages 

(60 x 40 x 40 cm) (Gwinner et al. 1995). Birds were kept under constant mild temperatures (c. 

20°C) and under light exposure of ca. 300 lx during daytime and 0.01 lx at night, simulating 
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natural photoperiodic change as described below. We assessed postjuvenile moult by 

inspection of wing and 19 defined body areas (Helm and Gwinner 1999). To focus on the 

main phase of moult, we defined its onset and end when birds crossed a threshold of at least 5 

simultaneously moulting body areas. 

Photoperiodic Conditions: A main purpose of the breeding experiments were comparisons of 

the stonechat populations under identical conditions (i.e., “common garden”, Noordwijk et al. 

2006). Birds were kept indoors under one of three photoperiods that all simulated naturally 

fluctuating photoperiods. The vast majority (n = 356) were kept under conditions that 

simulated day length experienced by Austrian stonechats around the annual cycle; two Irish 

birds experienced summer day lengths mimicking those of their native location (52.5°N). A 

further 37 birds were exposed to simulated day length experienced by Siberian stonechats 

(Siberian and Austrian stonechats and their hybrids). Finally, 8 birds were exposed to both 

European and Irish day lengths during different years, and 11 were exposed to both European 

and Siberian day lengths during different years. In our analyses, if data were used from day 

length simulations other than those of Austrian stonechats, we included photoperiod as a 

covariate. The data reported are numbers of daily or nightly 10-minute intervals during which 

activity was detected by passive infrared detectors.  

 

Data Preparation and Processing 

Data Preparation (for details, see Supplementary material Appendix 1): For our primary 

Zugunruhe analysis, we only analysed nocturnal activity data after a bird had started 

postjuvenile moult (Figure 2). Overall, missing data represented 1.0% of our dataset and were 

handled as explained in Supplementary material Appendix 1. We split the annual cycle into 

two halves to quantify spring and autumn migration periods separately. To do so, we 

determined population-specific cut-off dates as the mid-points of summer and winter periods 

when nocturnal activity was minimal.  

Changepoint Analysis for Identifying and Characterising Periods of Zugunruhe (see 

Supplementary material Appendix 1, Figure A1): We applied changepoint analysis, developed 

to identify changes in the statistical properties of time series data, in the R package 

“changepoint” (Killick and Eckley 2014). This algorithm assesses the mean and variance of 

time series data and identifies any changes in these properties (or absence thereof). 

Accordingly, we classified a migration period of a given bird as showing Zugunruhe if at least 

one changepoint was identified. A changepoint is identified if its addition to the model 

sufficiently improves the log-likelihood enough to overcome a penalty value used to prevent 
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too many changepoints from being identified. Changepoint analysis of spring and autumn data 

provided us with one or more time segments for each migration period (Supplementary 

material Appendix 1, Figure A1). When the analysis identified one or more changes, we 

classified a contiguous sequence of elevated segments as Zugunruhe. 

Defining Timing and Intensity of Zugunruhe: For each migration period, we calculated several 

Zugunruhe timing metrics. Onset and end dates were given by the starting and ending dates of 

the contiguous elevated Zugunruhe period (see Supplementary material Appendix 1, Figure 

A1); duration was inferred as the number of days between start and end dates. We defined 

“Mean day” as the average day from the elevated period, weighted by nightly activity levels. 

To derive a consistently defined measure of intensity, we first calculated the mean activity 

level during the contiguous 15-day period with highest overall activity (hereafter “uncorrected 

peak intensity”). We then calculated “corrected” peak intensity as the difference between 

uncorrected peak intensity and the mean of winter and summer baseline activity levels 

flanking the migration period. This correction accounts for consistent, year-round inter-

individual differences in activity levels. We also calculated a bird’s overall mean intensity as 

the average activity level over an entire elevated Zugunruhe period. Lastly, for comparability 

with the practice of some studies on Zugunruhe, we conducted a supplemental analysis in 

which we normalized our data according to the concurrent length of night (Owen and Moore 

2008); we illustrate some comparative findings in Supplementary material Appendix 1. 

 

Statistical Analyses 

Factors Affecting Occurrence of Zugunruhe: To identify which factors influence Zugunruhe, 

we modelled the proportion of spring and autumn migration periods with and without 

Zugunruhe by an analysis of deviance with binomial errors (“glm” function in the R base 

“stats” package). The initial model comprised the categorical predictors of population 

(including hybrid groups), sex, age (first year or older), migratory season (spring or autumn), 

and all possible interactions. See Supplementary material Appendix 1 for details. 

Consistent Individual Propensity to Engage in Zugunruhe: We additionally examined intra-

individual patterns of Zugunruhe for birds with activity data for more than two periods (spring 

or autumn). We analysed variation in the proportion of birds that always, sometimes, or never 

engaged in Zugunruhe during the periods for which they were monitored. We compared 

proportions using the pairwise.prop.test function in R and corrected for multiple comparisons 

with the Holm-Bonferroni method (Holm 1979). 
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Variation in Zugunruhe Timing and Intensity: We examined overall variation in timing and 

intensity of Zugunruhe using linear mixed models (packages lme4 and lmerTest in R; Bates et 

al. 2015; Kuznetsova et al. 2015) as detailed in Supplementary material Appendix 1.  

Population-wide Nocturnal and Diurnal Activity During the Migration Periods: In addition to 

the procedure described above, we analysed overall nocturnal and diurnal activity levels 

during the migration periods of all individuals, regardless of the Zugunruhe status assigned to 

them by changepoint analysis, for compatibility with earlier analyses (e.g., Blackcaps Sylvia 

atricapilla, Berthold 1988a). This required definitions of migration periods that were 

independent of changepoint analysis, as explained in Supplementary material Appendix 1. 

Diurnal activity of this data set was used to test for age-related changes in activity levels 

during the migration seasons. We also analysed these data by an approach that has sometimes 

been used in the literature, correcting the amount of nocturnal activity for the length of night. 

This follows the rationale that activity levels may be limited by night length, but it has the 

disadvantage of confounding activity level with time of year, which determines night length. 

Covariation of Diurnal and Nocturnal Activity Levels: To examine how daytime activity 

varied relative to Zugunruhe (defined using changepoint analysis), we tested diurnal activity 

levels before, during, and after birds engaged in Zugunruhe with linear mixed models. We 

also studied the association between nocturnal and diurnal activity levels within individuals 

during both migration seasons and the 30-day neutral summer and winter periods. See 

Supplementary material Appendix 1. 

Covariation of activity between migratory and non-migratory contexts: We used two 

approaches to test whether high nocturnal activity levels during Zugunruhe periods were 

specific to a migration context, or, alternatively, reflected generally elevated activity levels of 

populations or individuals. First, we compared nocturnal activity during and outside of 

migration periods to test whether individuals with higher Zugunruhe activity were generally 

more active at night. Secondly, we compared Zugunruhe to diurnal activity during the non-

migration seasons to test the hypothesis that individuals with high Zugunruhe were generally 

more active birds. We used linear mixed models (see Supplementary material Appendix 1).  

 

RESULTS 
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Using changepoint analyses on a total of 976 migration periods (autumn: 552; spring: 424) 

from 414 individual birds, we detected Zugunruhe in 80.9% migration periods (autumn: 396; 

spring: 394, excluding 17 periods that were ambiguous).  

Occurrence of Zugunruhe in Different Populations 

Our final model predicting the frequency with which birds engaged in Zugunruhe comprised 

population, age, season, and the population × season interaction. 

Effect of Population and Season): We found significant differences in Zugunruhe frequency 

among populations, and these varied between seasons. In autumn, Kenyan, Austrian and Irish 

populations showed a significantly lower proportion of periods with Zugunruhe than Austrian 

× Siberian and Siberian birds. In spring, the proportion of migration periods showing 

Zugunruhe was significantly elevated compared to autumn for Austrian (z = 2.66, P = 0.0078) 

and Irish (z = 3.31, P = 0.0009) stonechats. Figure 3 details these patterns. 

Effects of Age and Sex (Figure 3CD): The proportion of periods during which birds engaged 

in Zugunruhe was significantly lower for older birdsduring both spring and autumn (z = -7.43, 

P < 0.0001). This observation was consistent across all populations. There was no significant 

effect of sex on frequency of Zugunruhe. 

 

Consistency of Zugunruhe Within Individuals 

We examined whether birds monitored for two or more migration periods (counting spring or 

autumn; n = 296 birds) always, sometimes, or never engaged in Zugunruhe (Figure 4). 

Pooling all population groups, 63.9% of individuals always engaged in Zugunruhe and only 

3.0% of birds never exhibited Zugunruhe. The remaining 33.1% were mixed records, when 

birds changed between showing and not showing Zugunruhe. Among birds with mixed 

records and data from their first autumn, 62.0% (49/79) showed Zugunruhe during that first 

autumn (significantly different from 50% by Binomial test, P = 0.042). Patterns also differed 

starkly among populations, with the lowest proportions of consistent Zugunruhe in Kenyan 

(18%) and Irish (44%) stonechats and the highest in Siberian and Siberian × Austrian 

stonechats (86-88%). The proportion of birds showing mixed patterns was highest in Kenyan 

and Irish stonechats (53-55%) and lowest in Siberian and Siberian × Austrian stonechats 

(13%). The proportion of birds that never engaged in Zugunruhe was significantly greater 

than zero only in the Kenyan group (29%). 

 

Timing of Zugunruhe 
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Effect of Population: Populations varied significantly in all aspects of Zugunruhe timing 

(Figure 5AB). Among migratory populations, Siberian stonechats began autumn Zugunruhe 

earlier than all other groups; Irish birds started afterwards, followed by Austrian birds. 

Kenyan stonechats, with a small sample size (n = 8), had start dates not significantly different 

from Irish or Austrian birds. Irish and Siberian stonechats all showed mean autumn 

Zugunruhe at approximately the same time, but Austrian birds had significantly later mean 

dates; Kenyan stonechats were similar to all three. Irish stonechats ended Zugunruhe 

significantly earlier than Austrian and Siberian birds (which themselves had similar end 

dates); Kenyan stonechats showed intermediate end dates that did not significantly differ from 

those of the other populations. Irish, Kenyan, and Austrian birds all showed relatively short 

autumn Zugunruhe durations compared to Siberian stonechats.  

In spring, onset, mean, and end dates were earliest for Irish stonechats, followed by 

Austrian stonechats. Kenyan and Siberian populations showed Zugunruhe periods that were 

later than those of the other two populations but not significantly different from one another. 

The duration of the spring Zugunruhe period was longest in Irish birds, significantly shorter in 

Austrian stonechats, and significantly shorter still in Siberian stonechats. For Kenyan 

stonechats, duration did not significantly differ from Austrian or Siberian birds, possibly 

because the sample size for Kenyan stonechats was small (n ≥ 6). Within populations, the 

dates of Zugunruhe onset were generally more synchronous than the date of Zugunruhe 

completion. Compared to autumn, duration of spring Zugunruhe was significantly longer for 

Irish (effect = 51.06 days, t = 12.03, P < 0.0001) and Austrian stonechats (effect = 27.51 days, 

t = 7.66, P < 0.0001), but shorter for Siberian birds (effect = -49.62 days, t = -10.63, P < 

0.0001). Thus, in autumn, Siberian long-distance migrants started Zugunruhe earliest and 

showed the longest durations, while in spring, Siberian birds started among the latest and 

showed the shortest durations.  

Hybrids: Austrian × Siberian hybrids generally showed intermediate timing relative to 

parental birds. In autumn, onset dates, mean dates, and durations of Austrian × Siberian 

stonechats were intermediate and significantly different from parental values, but end dates 

were all similar. In spring, timing of onset and mean Zugunruhe were intermediate and 

significantly different from parental values; the end date for hybrids was not significantly 

different from Siberian birds and duration was not significantly different from Austrian birds. 

Austrian × Kenyan stonechats showed autumn timing characteristics that were similar to those 

of both parental groups; spring timing was not significantly different from Austrian birds but 
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significantly earlier than Kenyan birds. Zugunruhe profiles of hybrids are shown in Figure 

5C-F.  

Effects of Age and Sex: Young stonechats showed high levels of juvenile nocturnal 

restlessness before they finished postjuvenile moult (Figure 2). Nocturnal activity beginning 

after moult start was interpreted as Zugunruhe. In autumn (Supplementary material Appendix 

2, Figure A2), the onset, mean, and end dates of Zugunruhe of young birds occurred 2-3 

weeks later than those of older birds (onset: effect = -14.08 days, 240.72 d.f., t = -5.05, P < 

0.0001; mean: effect = -19.19 days, 195.11 d.f., t = -8.11, P < 0.0001; end: effect = -22.25 

days, 355 d.f., t = -8.35, P < 0.0001). There was no significant main effect of age on autumn 

duration (189.78 d.f., t = -0.02, P = 0.9872), but there was a significant interaction for 

Siberian birds, which showed shorter Zugunruhe periods in older birds (effect = -25.44 days, 

162.96 d.f., t = -2.6, P = 0.0101). In spring, older birds of all groups had slightly later 

Zugunruhe start dates (effect = 4.98 days, 283.8 d.f., t = 4.73, P < 0.0001), earlier end dates 

(non-significant; effect = -7.12 days, 105.9 d.f., t = -1.72, P = 0.0875), and shorter durations 

(effect = -15.29 days, 113.2 d.f., t = -3.01, P = 0.0032). Mean date did not change with age 

(effect = 0.24 days, 167.46 d.f., t = 0.19, P = 0.8477). 

In autumn, sex had no effect on timing. In spring, we found an effect of sex on onset 

date, with females showing significantly later onset (effect = 4.57 days, 171.01 d.f., t = 4.46, 

P = 0.0001) and later mean Zugunruhe dates (effect = 2.95 days, 161.28 d.f., t = 2.24, P = 

0.0265), but no difference in end dates; overall, females therefore showed shorter spring 

durations (effect = -6.64 days, 163.39 d.f., t = -2.27, P = 0.0247). We tested for an interaction 

between sex and population and found that the difference between male and female spring 

Zugunruhe onset dates in Kenyan stonechats was significantly greater than that of the other 

populations (effect = 30.3 days, 349.66 d.f., t = 4.03, P < 0.0001). There was no significant 

interaction between population and sex for mean date or duration.  

 

Intensity of Zugunruhe 

We quantified Zugunruhe intensity as both the mean level of nocturnal activity 

(Supplementary material Appendix 2, Figure A3) during a given Zugunruhe period and the 

peak nocturnal activity relative to a bird’s winter and summer levels (Figure 6). The two 

metrics yielded similar results. 

Effect of Population: Populations differed significantly in ways that generally aligned with 

their approximate degree of migratoriness (Figure 6). Surprisingly, Irish stonechats, which are 

partial migrants, showed peak Zugunruhe intensities that were greater than or similar to those 
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of obligate Austrian migrants in both autumn and spring and comparable to long-distance 

Siberian migrants in spring (Figure 6AB). For some, but not all, groups, intensity was 

significantly greater in spring compared to autumn: Irish (corrected peak: effect = 16.90, t = 

10.54, P < 0.0001; overall mean: effect = 11.7, t = 9.37, P < 0.0001), Austrian (corrected 

peak: effect = 12.49, t = 9.70, P < 0.0001; overall mean: effect = 9.32, t = 8.76, P < 0.0001), 

and Austrian × Siberian (corrected peak: effect = 9.05, t = 5.27, P < 0.0001; overall mean: 

effect = 7.91, t = 6.03, P < 0.0001). 

Hybrids: Austrian × Siberian stonechats showed corrected peak intensities that were 

significantly higher than the intensities of Austrian birds but not significantly different from 

those of Siberian stonechats (Figure 6CD). Like their Austrian parents (and unlike their 

Siberian parents), Austrian × Siberian hybrids showed a significant difference between levels 

of autumn and spring Zugunruhe. Austrian × Kenyan stonechats showed spring peak 

intensities lower than Austrian birds, and not significantly different from those of Kenyan 

birds; autumn intensities of all three groups were similar. 

Effects of Age and Sex: (Supplementary material Appendix 2, Figure A3). Average autumn 

peak Zugunruhe intensity and mean intensity were generally significantly lower after the first 

year (corrected peak: effect = -4.55, 303.58 d.f., t = -3.36, P = 0.0009; overall mean: effect = -

3.06, 262.97 d.f., t = -3.13, P = 0.002). There was no significant overall population × age 

interaction. We found no effect of age on spring intensity (corrected peak: effect = -0.80, 

260.01 d.f., t = -0.67, P = 0.5025; overall mean: effect = -0.25, 267.55 d.f., t = -0.26, P = 

0.7929), nor an effect of sex on intensity during either migration period in any population.  

 

Age Effects on Nocturnal and Diurnal Activity 

Migration Periods: Across all populations, the intensity of diurnal activity during the 

migration periods showed declines after the first year. Paralleling the patterns in nocturnal 

activity, these declines occurred both in autumn (effect = -11.00, 344.66 d.f., t = -9.41, P < 

0.0001) and spring (effect = -5.88, 158.44 d.f., t = -3.26, P = 0.0014). There were no 

significant interactions between population and age in these models. 

Winter (see Supplementary material Appendix 2, Figure A3): Nocturnal activity during winter 

was subtly but significantly lower after the first year (effect = -0.97, 268.32 d.f., t = -3.5, P = 

0.0005); diurnal winter activity showed a stronger reduction (effect = -12.02, 348.59 d.f., t = -

8.43, P < 0.0001). 
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Summer (see Supplementary material Appendix 2, Figure A3): The first summer for which we 

have sufficient data was the summer approximately one year after hatching. Comparing 

activity levels during this summer to those during subsequent years revealed no effects of age 

on nocturnal activity (effect = 0.5, 215.06 d.f., t = 1.58, P = 0.1154), but a significant drop in 

diurnal activity (effect = -10.29, 106.89 d.f., t = -4.68, P < 0.0001). 

Within-individual Effects: We examined the consistency of Zugunruhe measurements in the 

same individual in different years, although we were constrained by the small number of 

same-bird measurements in our dataset (sample size from 20-67, depending on the 

measurement). Overall, subsequent Zugunruhe patterns were correlated within individuals, 

but these patterns were largely driven by population differences (Supplementary material 

Appendix 2, Figure A4). After standardizing for population, individual consistency was much 

lower (Supplementary material Appendix 2, Figure A5). Our data suggest that spring 

Zugunruhe intensities show the highest within-individual consistency of all our timing or 

intensity metrics (Supplementary material Appendix 2, Figures A5 and A6). 

 

Population-wide Nocturnal Activity During the Migration Periods 

Comparison between Populations: Using the complete dataset of all populations, we visually 

compared activity profiles of hybrids with those of their parental populations (Figure 5C-F) 

and those of the three migratory populations (Figure 7). Although birds without assigned 

Zugunruhe were included in this data set, all main patterns persisted, including distinctly 

elevated nocturnal activity in Irish, relative to Austrian, birds. In some cases, reductions of 

activity over age were accentuated by inclusion of assigned non-migrants. In autumn, 

population-level nocturnal activity was most apparent in first-year birds (Figure 7A) but 

decreased drastically in later years in Austrian and Irish individuals (Figure 7C). In contrast, 

Siberian birds continued to show autumn nocturnal activity at levels on par with their first 

year. In spring, all migrant populations showed little appreciable change in nocturnal activity 

with age (Figure 7BD).  

Quantitative comparisons of population-wide activity levels during the most active 

two-month periods of each population yielded results that were similar to those of peak 

intensity (Supplementary material Appendix 2, Figure A6, top row). In particular, Irish partial 

migrants showed high mean and peak activities in spring that were not significantly different 

from those of Siberian long-distance migrants, and also significantly higher than those of 

Austrian short-distance migrants. In autumn, however, Irish stonechats showed mean and 
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peak activities that were significantly lower than those of Siberian birds and similar to those 

of Austrian birds. 

Nocturnal Activity as Proportion of Night Length: We detected generally minor differences in 

results when analysing Zugunruhe activity as a proportion of night length as opposed to in 

absolute units of time (Supplementary material Appendix 2, Figure A6, bottom row). The 

exception was that Siberian stonechats, and to a lesser extent Austrian × Siberian stonechats, 

showed a higher relative peak activity level compared to the original analysis. This is because 

Siberian stonechats began Zugunruhe relatively late in spring and relatively early in autumn, 

when the nights were shorter. Some birds were active for nearly 100% of certain nights in 

spring. 

 

Covariation of Diurnal and Nocturnal Activity  

Across all birds, we observed distinct differences in a bird’s mean diurnal activity depending 

on whether it was also engaging in Zugunruhe. In the first 15 days of Zugunruhe, diurnal 

activity was significantly lower than in the 15 days preceding Zugunruhe onset in autumn 

(effect = -7.74, 844.04 d.f., t = -5.1, P < 0.0001); in spring, however, this effect was much 

reduced, suggesting that birds compensated less for their nocturnal restlessness (interaction 

effect = 6.87, 848.2 d.f., t = 4.28, P < 0.0001). A decrease in diurnal activity at the start of 

Zugunruhe was more pronounced for first year birds, regardless of the season (interaction 

effect = -3.51, 845.62 d.f., t = -2.19, P = 0.0289). We found no significant interactions with 

population or sex. In the 15 days following Zugunruhe completion, diurnal activity in autumn 

increased relative to the preceding 15 days (effect = 3.13, 863.94 d.f., t = 2.7, P = 0.007), and 

even more so in spring (interaction effect = 6.33, 862.58 d.f., t = 3.8, P = 0.0002). There were 

no significant interactions with age, population, or sex. 

Individual birds showed significant negative relationships between diurnal and 

nocturnal activity during periods of Zugunruhe: at the level of the individual day, birds were 

less active during days following high-activity nights (Supplementary material appendix 2, 

Figure A7; autumn: effect = -0.09, 202.5 d.f., t = -5.3, P < 0.0001; spring: effect = -0.20, 

242.43 d.f., t = -10.36, P < 0.0001). Overall, the fixed effect of diurnal activity explained 

approximately 4.0% of the variation in nocturnal activity during autumn Zugunruhe periods 

and 6.5% in spring. During summer and winter, diurnal and nocturnal activity did not covary 

significantly on a daily basis (effect for both periods = -0.02, 259.89 d.f., t = -0.11, P = 0.91). 

During migration periods, neither sex nor population had a significant effect on diurnal 
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activity, whereas during summer and winter, females were on average more active (effect = 

5.81, 552.24 d.f., t = 3.99, P < 0.0001). 

  

Zugunruhe and Activity Outside a Migration Context  

On a population level, when all individuals were included, nocturnal activity during migration 

periods was greatly elevated over summer and winter baseline levels for all populations 

studied (Figure 8, top row). Within individuals, nocturnal activity levels during spring 

migratory periods were positively associated with those during summer and winter after 

accounting for age, sex, and population (winter: effect = 0.05, 358 d.f., t = 3.41, P = 0.0007; 

summer: effect = 0.07, 181.66 d.f., t = 3.78, P = 0.0002). This was also true for activity 

during autumn migratory periods (winter: effect = 0.06, 318.81 d.f., t = 4.19, P < 0.0001; 

summer: effect = 0.02, 2.03 d.f., t = 1.32, P = 0.3167); the non-significant effect of summer 

may have been due to a lack of data (none for first year birds) and thus very low power.  

 Nocturnal activity during migration periods also explained variation in diurnal activity 

during summer and winter, both for spring (winter: effect = 0.32, 290.41 d.f., t = 4.33, P < 

0.0001; summer: effect = 0.50, 146.51 d.f., t = 3.56, P = 0.0005) and autumn (winter: effect = 

0.29, 241.94 d.f., t = 3.66, P = 0.0003; summer: effect = 0.13, 65.66 d.f., t = 0.63, P = 

0.5341). This indicates, for example, that a bird more active than another by an average of 

100 minutes per night during the migration season also averaged 13-50 minutes more activity 

during the day at other times of the year. 

Overall, therefore, more active individuals during the migration periods tended to also 

be more active during other times of the annual cycle, both during the day and at night.  

 

DISCUSSION 

 

Population-specific Patterns of Zugunruhe 

Our analyses reveal clear population-specific differences in the migratory programmes of 

stonechats, akin to documented differences in many traits of life history, physiology, 

morphology, and biological time-keeping (e.g., Gwinner et al. 1983, 1995, Helm et al. 2005, 

2009, Helm 2009, Tieleman et al. 2009, Baldwin et al. 2010, Fuchs et al. 2014, Versteegh et 

al. 2014). These population-level differences were largely consistent with our predictions: 

long-distance migratory Siberian stonechats showed by far the strongest migratory tendencies 

and most consistent behaviour. Siberian birds rarely failed to engage in Zugunruhe and 

consistently showed high Zugunruhe intensities in both spring and autumn. Among the 
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migrant populations, Siberian stonechats were the first to initiate Zugunruhe in autumn and 

the last to do so in spring. Siberian birds had the longest Zugunruhe period in autumn and the 

shortest in spring. This extended autumn Zugunruhe period is likely related to the long 

distances travelled by this population, paired with a possibly slower pace of autumn migration 

(Yamaura et al. 2016; but see Raess 2008). Alternatively, the long fall Zugunruhe may reflect 

a necessity to facultatively remain in migratory condition because of unpredictable resource 

availability (Helms 1963). Although short, the spring Zugunruhe periods of Siberian 

stonechats were exceptionally intense (peak activities were near 100% of the night length). 

This may reflect the need for a rapid long-distance return journey to the breeding grounds 

within a tightly constrained time window (i.e. late enough that spring has arrived—but not too 

late for breeding in a short season, Alerstam 2006, 2011). This view is supported by spring 

field records from stonechats (Raess 2008). 

On the other end of the migration spectrum, resident Kenyan stonechats clearly 

showed the weakest migratory tendencies, but they still regularly engaged in Zugunruhe, 

especially first-year birds (Helm 2006, Helm and Gwinner 2006). Most Kenyan birds showed 

Zugunruhe at least once, but also refrained from engaging in Zugunruhe at least once, 

including the overwhelming majority of older birds. Under temperate photoperiods in the 

laboratory, Kenyan birds showed well-defined population timing, starting at about the same 

time as Austrian birds in autumn, but significantly later in spring. In both seasons, Zugunruhe 

profiles of Kenyan birds had relatively short durations and low intensities. Although the 

present analysis finds relatively low levels, it corroborates the persistence of Zugunruhe and 

several of its features in African Stonechats. The interpretation of this behaviour is still 

unclear and merits further investigation (Zink 2011). 

The Irish and Austrian populations are currently classified as members of the same 

species (European Stonechat), and are both medium distance migrants that reach 

Mediterranean winter quarters. However, in contrast to obligate Austrian migrants, British 

Isles stonechats are partial migrants, with roughly half of the birds remaining at or near the 

breeding sites in winter (Helm et al. 2006). Our study population originated from a coastal site 

in Ireland where birds overwinter, such that our sample could have been biased towards 

resident phenotypes (Helm 2003). Nonetheless, we found that Zugunruhe behaviours in these 

two populations were generally similar, showing intermediate phenotypes of timing and 

incidence compared to Kenyan and Siberian birds. Counter to predictions for partial migrants 

(Berthold 1988a, Pulido et al. 1996, Pulido and Berthold 2010), we could not detect a 

proportion of Irish stonechats showing no Zugunruhe. Most unexpectedly, Irish birds 
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exhibited significantly higher spring Zugunruhe intensity than Austrian birds. These patterns 

are difficult to explain if Zugunruhe is expected to correspond closely to actual migration, and 

if partial migrant populations are expected to show greater dimorphism of migratory 

phenotypes (Berthold 1988a). They are more easily reconciled with regulation of migration 

where Zugunruhe may mark a window of opportunity during which environmental factors act 

to repress or activate actual migration (Helms 1963, Gwinner and Czeschlik 1978, Chan 2005, 

Helm 2006). 

Austrian and Irish stonechats clearly differed from Siberian long-distance migrants. 

Both European populations showed significantly longer Zugunruhe periods during spring 

compared to autumn; this pattern was opposite to the one observed in Siberian stonechats. The 

long spring period of nocturnal restlessness is likely to represent Zugunruhe, rather than 

summer restlessness (Gwinner and Czeschlik 1978) because it ceased when the birds’ 

reproductive organs matured (Helm and Gwinner 2005), just like migration of free-living 

stonechats (Raess and Gwinner 2005). Instead, the early, and long, spring restless periods of 

both European populations may reflect the readiness of these short-distance migrants to react 

to variation in local conditions that may allow for an early return to the breeding grounds, or, 

contrarily, for maximising arrival condition by pausing migration at favourable stop-over sites 

(Alerstam 2006, 2011). We have no convincing explanation for the short Zugunruhe window 

in autumn relative to Siberian stonechats, but speculate that it may reflect the shorter 

migration distance of the European populations. 

The primary difference we detected between the two European populations related to 

the onset of Zugunruhe and matched our predictions. Irish stonechats showed by far the 

earliest spring migratory tendencies of all populations, regularly starting by late January. This 

early endogenous spring window fits well with field data, including those from ringing 

recoveries (Helm et al. 2006). Early spring arrival is expected both because of the more 

temperate environment of the British Isles, allowing for suitable environmental conditions 

earlier in the year, and because returning partial migrants will compete with resident 

conspecifics for territories upon arrival (Lack 1943, 1944). However, Irish birds also started 

Zugunruhe significantly earlier in autumn compared to their continental counterparts. This 

finding is more challenging to interpret in ecological terms. In terms of biological time-

keeping mechanisms, it confirms a shift of the entire annual cycle of Irish compared to 

Austrian stonechats: annual cycle organisation and photoperiodic responses of both 

populations were identical, but migrations, reproduction and moult were all advanced by 

approximately one month in Irish stonechats (Helm 2003, 2009, and unpublished data). 
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Hybrid Phenotypes: Our data show that hybrid stonechats express behavioural traits that are 

generally intermediate with respect to their parental groups. This is most obvious for the 

timing measures of Austrian × Siberian hybrids compared to Austrian or Siberian groups, and 

it indicates a strong genetic basis for both timing and intensity of migratory restlessness. 

These findings of intermediate phenotypes parallel data from other traits in stonechats, 

including timing of reproduction and moult, immune traits, metabolic measures, and life 

history traits (e.g., Gwinner et al. 1995, Helm et al. 2009, Versteegh et al. 2014, but see 

Tieleman et al. 2009). They also align with findings from other crossbreeding studies of 

migratory birds, including Silvereyes (Zosterops lateralis, Chan et al. 2005) and Blackcaps 

(Berthold 1988a, Helbig 1996), although inheritance patterns in Quail (Coturnix coturnix) 

appeared to be biased towards resident types (Deregnaucourt et al. 2005). 

Sexes: In contrast to the extensive differences between populations, the sexes of stonechats 

exhibited similar endogenous migratory programmes, in line with their unusual behaviour of 

wintering in heterosexual pairs (Gwinner et al. 1994). We found no effect of sex on the 

frequency with which birds abstained from Zugunruhe or on the intensity or autumnal timing 

of Zugunruhe. However, males started spring Zugunruhe on average 4.6 days earlier than 

females. Protandry in spring migratory timing has been documented in the wild in many 

species, and it is seen as advantageous that males arrive to defend territories as early as 

possible (e.g., Kokko et al. 2006, Copack and Pulido 2009, Alerstam 2011). Our findings add 

to the increasing evidence that such differences between the sexes can be hard-wired. Maggini 

and Bairlein (2012) have recently shown that in Wheatears, protandry of Zugunruhe persisted 

even in the absence of environmental cues such as photoperiod, and is therefore part of the 

birds’ circannual programme (Gwinner 1986, 1996). 

 

Age, Season and Individual Activity Levels 

Development and Age: In our study, juvenile stonechats showed strong nocturnal restlessness 

even before the beginning of postjuvenile moult. Likewise, hand-raised first year birds of 

other species also showed periods of elevated nocturnal activity after fledging, but prior to 

finishing postjuvenile moult (Gwinner 1990, Mukhin 1999). Wild birds are unlikely to 

commence migration during intense moult (Jenni and Winkler 1994), but postfledging 

movements have been associated with movements to moulting areas or explorative behaviours 

(Mukhin et al. 2005, Brown and Taylor 2015). Prospecting and training flights of young birds 

during the summer may be relevant for the development of celestial compass systems and 

establishment of navigational targets for return migration (Mukhin et al. 2005). Stonechats 
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have been reported to move locally in juvenile flocks, for example to suitable moulting sites 

(Urquhart 2002), and ringing recoveries confirm such early-life movements (Helm et al. 

2006). Juvenile restlessness in captivity could therefore represent a true urge to move, but one 

that differs from actual migration. 

Subsequently, the expression of the stonechat endogenous migratory programme 

changed profoundly with age in ways that depended on season and population. Generally, 

occurrence and intensity decreased with age, and these decreases were most conspicuous in 

the more weakly migratory populations (Kenyan, Austrian, Irish, compared to Siberian) and 

in the lower-intensity migratory season, autumn. Across all populations, older stonechats were 

approximately twice as likely to abstain from Zugunruhe compared to first year birds. 

Decreases in overall activity with age are well known from many animal species, including 

vertebrates and invertebrates (Ingram 2010) and could well be unrelated to migration. We 

therefore used our data on activity outside of a migration context to assess whether the 

reductions in Zugunruhe represented general age-related patterns. We identified a consistent, 

but slight, reduction of activity levels with age for nocturnal activity also during summer and 

winter, and for diurnal activity around the annual cycle. In contrast to Zugunruhe, this 

reduction was consistent for the populations and seasons. Our findings thus suggest that the 

decrease in Zugunruhe in older birds was predominantly associated with migratory 

programming, rather than a general ageing process. 

The magnitude of the age-related reductions in Zugunruhe was astonishing. Age 

effects on Zugunruhe are rarely discussed in the literature, and where they have been reported, 

patterns were inconsistent, for example between the sexes of European blackbirds (Lundberg 

1988, Schwabl and Silverin 1990). It is possible that the reductions derived from long periods 

spent in captivity (Schwabl and Silverin 1990), or from modifications of the migration 

programme by prior experience (Ketterson and Nolan 1983, 1988). For example, based on 

experiments with Dunnocks (Prunella modularis), Schwabl et al. (1991) speculated that birds 

may recognise previous wintering locations and accordingly reduce Zugunruhe when exposed 

to them. Whatever the interpretation, it is interesting to note that in stonechats, age effects 

were absent in the most migratory population (i.e., Siberian stonechats). 

We also found effects of age on the timing of Zugunruhe. Autumn timing was 

consistently earlier in older birds by approximately 2-3 weeks across populations, but duration 

did not change. These findings are consistent with those from other annual cycle events in 

stonechats, including earlier reproductive cycles and earlier moult in second-year compared to 

first-year stonechats (Helm et al. 2009). In the field, adults of many bird species commence 
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autumn migration before juveniles (Newton 2008), presumably because juveniles benefit from 

a longer stay on the breeding grounds for maturation and the completion of postjuvenile 

moult. In spring, older stonechats started Zugunruhe slightly later but ended it earlier, 

possibly primed by previous photoperiodic experience (Sockman et al. 2004). 

Seasons: Overall, our analysis demonstrates stark differences between spring and autumn 

Zugunruhe. Zugunruhe was more difficult to measure in autumn than in spring because of its 

more drawn out time profile and lower, more variable intensity. Autumn Zugunruhe was also 

confounded by juvenile restlessness and is known to be affected by other early-life effects, in 

particular by variation in hatching date (Helm and Gwinner 2006). Intensity of Zugunruhe 

was much higher in spring than in autumn for Austrian and Irish stonechats. Siberian birds 

appeared to make greater use of the available night time in spring than in autumn, but their 

high activity levels in both seasons were statistically inseparable. 

These seasonal differences correspond well with Zugunruhe data of other species and 

with observations of wild birds. Many species migrate more rapidly during spring than 

autumn (Alerstam 2006, Newton 2008, Nilsson et al. 2013, Bäckman et al. 2016, Horton et al. 

2016), and several aspects of migratory physiology reflect this faster pace. For example, when 

being re-fed after a fasting period, Blackcaps pause Zugunruhe in autumn, but not in spring 

(Fusani and Gwinner 2005). Such differences may result from higher selection pressure on the 

timing of spring migration because of its proximity to the breeding season, relative to the 

apparently more “casual” pace of autumn migration (e.g., Lack 1943, 1944, Helms 1963, Both 

et al. 2004, Alerstam 2006, Newton 2008). In our data, this interpretation is further supported 

by findings from diurnal activity. During Zugunruhe, mean diurnal activity was lower than 

before or after Zugunruhe, in accordance with the idea that birds require more rest to 

compensate for the increase in nocturnal activity (Rattenborg et al. 2004, Fuchs et al. 2006, 

Bäckman et al. 2016). The drop in mean diurnal activity during Zugunruhe was less 

pronounced during spring, indicating that birds generally maintained high diurnal activity 

levels in spring. However, in both seasons, stonechats compensated for increased nocturnal 

activity on a day-to-day basis by reducing diurnal activity levels after highly active nights, 

and this effect was at least as clear in spring as in autumn.  

Finally, unlike for intensity, differences in the duration of Zugunruhe between the 

seasons were not consistent between populations (e.g. spring migration was shorter than 

autumn migration for Siberian stonechats, but the opposite was true for Irish stonechats); this 

type of heterogeneity might be expected from bird migration theory (Alerstam 2006, 2011). 
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Individual Activity Levels: Within individuals, Zugunruhe occupied a unique position in the 

annual cycle, with no significant elevations of nocturnal activity detected outside the 

migration seasons. However, intensity of Zugunruhe also covaried with individual differences 

in overall activity and was positively correlated with activity levels outside of the migration 

season, both during daytime and night-time. This finding implies that Zugunruhe intensity is 

not solely a measure of migratory tendency but also contains some information about a bird’s 

overall behavioural phenotype, including, for example, possible differences in “personality” 

or physiology (e.g., Mettke-Hofmann et al. 2005, Reale et al. 2007, van Oers and Naguib 

2013). Breeding programs for high levels of Zugunruhe (e.g., in Blackcaps, Berthold 1988a) 

may have thus selected in part for generally high locomotor activity, although in our study 

within-individual correlations between activities were low relative to the Blackcaps’ large 

selection response. Locomotor activity levels are known to be highly heritable. For example, 

genetic studies of mice found a QTL (quantitative trait locus) for the amount of activity, 

indicating high potential for selection (Mayeda and Hofstetter 1999). 

Because variation in Zugunruhe intensity can predict variation in activity in other 

behavioural contexts, Zugunruhe intensity may be less useful than previously believed as a 

measure of migratory tendency. However, this depends on whether heightened overall activity 

levels covary with migration in the wild. Consequently, there is a need for further research on 

the relationship between Zugunruhe and other behavioural traits (Marchetti and Baldaccini 

2003, Nilsson et al. 2010). In future genetic experiments on Zugunruhe, data should be 

collected on traits that shed light on the migratory context of behaviour (Noordwijk et al. 

2006). 

 

Changepoint analysis as a quantitative tool for Zugunruhe 

Our analytic approach allowed us both to classify presumed migrants and non-migrants and 

identify of periods of Zugunruhe on the individual level for the vast majority of birds from all 

taxa and age groups. Overall, the algorithm performed equally well for classifying Zugunruhe 

regardless of a population’s migratory phenotype. The parameters of the method can easily be 

adjusted to fit other phenotypes or answer different questions. In contrast to fixed exclusion 

criteria (e.g., Maggini and Bairlein 2010), changepoint analysis has the advantage of assessing 

changes in nocturnal activity in the context of a given bird’s behavioural profile, thus 

accommodating individual differences by using an individual-specific baseline. Consequently, 

changepoint analysis is presumably less prone to bias from behavioural differences or 

recording methods. Some studies have applied individual-specific criteria, e.g., nocturnal 
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activity relative to diurnal activity (Ramenofsky et al. 2008), or white-noise techniques (Helm 

and Gwinner 2006). However, unlike changepoint analysis, these measures were not specific 

to the seasonal features of Zugunruhe. In comparison to autocorrelation techniques (Helm and 

Gwinner 2006), changepoint analysis classified fewer birds as exhibiting Zugunruhe, 

presumably because of its focus on major changes in nocturnal activity profiles. Importantly, 

and in contrast to commonly used “eyeballing” methods, changepoint analysis is objective 

and repeatable as long as its settings are documented. Strong contrasts and sharp delineation 

between Zugunruhe and neutral periods, especially during spring migration, were easiest to 

measure unambiguously (Supplementary material Appendix 2, Figure A1AC). However, even 

in cases with noisy data, the decisions made by the analytic approach were objective 

compared to methods of manual classification of raw data. Delineation of Zugunruhe by 

changepoint analysis was also more adaptable to the features of Zugunruhe than methods 

based on fixed thresholds (e.g., Pulido et al. 1996: Owen and Moore 2008), and general 

algorithms such as “edge detectors” (Helm and Gwinner 2005).  

Our findings on Zugunruhe intensity were robust to variation in analysis method: 

population-level comparisons of raw activity data largely mirrored results of Zugunruhe 

intensity. This suggests that more conventional analytic methods are sufficient for detecting 

coarse intensity patterns. Overall, we feel that the main advantage of our approach is its 

general applicability, and we hope to aid its implementation with our provided R script 

(Supplementary material Appendix 3).  

 

Conclusions: Implications for Avian Migration Studies 

Our study shows that Zugunruhe is a robust component of the annual cycle in the stonechat 

complex: the behaviour was present in four populations with drastically different migratory 

phenotypes. Characteristic differences in Zugunruhe between the populations were apparent 

in our common-garden set-up, supporting the view that genetic variation drives differences in 

the underlying migration programme (see also e.g. Berthold 2001, Maggini and Bairlein 2010, 

Ketterson et al. 2015). A heritable basis of the main features of Zugunruhe was further 

indicated by intermediate patterns in hybrids, in line with findings from other crossbreeding 

studies of migratory birds, and matching evidence from wild species. For example, tracking 

data from wild Swainson’s Thrushes (Catharus ustulatus) revealed intermediate routes taken 

by hybrids from a migratory divide (Delmore and Irwin 2014). The largely consistent 

evidence for genetic migration programmes is encouraging for future studies of the 

evolutionary architecture of movement behaviour (e.g., identifying the specific genes that are 
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responsible for such variation, their regulation, and their interactions), which could combine 

Zugunruhe with genomic tools (Petersen et al. 2013, Liedvogel and Lundberg 2014). 

In our stonechat study, the differences between populations imply high evolutionary 

lability of migratory traits as well as some phenotypic plasticity of individuals, for example 

with increasing age. In agreement with findings from other species, Zugunruhe levels were 

higher and more robustly programmed in spring than in autumn (e.g., Helms 1963, Maggini 

and Bairlein 2010). Several comparisons between populations indicated that the timing of 

spring and autumn migration can be modified independently. Remarkably, however, we 

observed an apparent coupled change across seasons within European Stonechats: Irish birds 

showed a consistent phase shift in timing compared to Austrian birds throughout the annual 

cycle, despite their overlapping wintering ranges (Helm et al. 2006, Helm 2009). Similarly 

consistent phase differences (often referred to as carry-over effects) within species have 

recently also been reported in field studies of migratory waders and songbird (Conklin et al. 

2010, Briedis et al. 2016) and may thus have an inherited basis.  

We also found patterns that are not commonly reported, despite possibly being 

widespread. For example, stonechats of all groups showed juvenile nocturnal restlessness 

during their postfledging phase, sometimes even before the start of moult (Mukhin 1999). A 

better understanding of this behaviour could provide important cues for studies of avian 

navigation, prospecting and dispersal. In addition, the striking reductions of Zugunruhe with 

age could indicate plasticity and learning processes that are yet to be understood, requiring 

testing in wild birds over several years of their life. Furthermore, our comparisons of diurnal 

and nocturnal activity across the annual cycle suggest that individuals that showed higher 

levels of Zugunruhe were also generally more active birds. This calls for closer study of 

relationships between Zugunruhe and other behaviours, including personality traits (Oers and 

Naguib 2013), and for cautious interpretation of findings from selective breeding experiments 

(Berthold et al. 1988a). 

Clearly, many questions remain about the interpretation of Zugunruhe. Our findings of 

undiminished Zugunruhe in partially migrant Irish stonechats and confirmation of Zugunruhe 

in Kenyan residents underscore an urgent concern: the parts of this behaviour that align with 

actual migration need to be distinguished from those that indicate an environmentally 

sensitive preparedness to migrate (Merkel 1956, Helms 1963, Gwinner and Czeschlik 1978, 

Helm 2006). This view is supported by exciting new research from wild birds. Bäckman et al. 

(2016) have provided the first annual-cycle data of activity of a free-living migratory bird, a 

Red-backed shrike (Lanius collurio). Intriguingly, the same species had earlier been recorded 
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in captivity (Gwinner and Biebach 1977). The overall timing of migration is well-matched in 

both studies. However, in agreement with observations from stop-over sites, the wild bird 

showed relatively few nights with migratory flights, whereas its captive conspecifics showed 

several months of continued Zugunruhe. Another recent study, on European Blackbirds 

(Turdus merula Zúñiga et al. 2016), found that radio-tracked wild migrants showed no 

increase in nocturnal activity until the night of departure from the breeding grounds, whereas 

captive birds slowly built up Zugunruhe over several weeks. The physiological and ecological 

mechanisms that affect alternations between flight and stopover mode are now under intense 

investigation, using both Zugunruhe and tracks of free-flying birds (Fusani et al. 2009, 2013, 

Goymann et al. 2010, Eikenaar et al. 2014, Skrip et al. 2015). Dissection of the genetic and 

environmental regulators of migration will not only aid migration research, but also allow 

important advances for understanding how genes and environment interact to shape complex 

behaviour. 

We believe that Zugunruhe will continue to be a powerful tool in the study of avian 

migration. If used with circumspection and in combination with new tools, from molecular 

methods to new tracking technologies (Alerstam 2011, Liedvogel and Lundberg 2014, 

Ketterson et al. 2015), Zugunruhe will reveal new answers to ancient questions about the 

migration of birds (Alerstam 1990). 
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• Appendix 3: Tools for changepoint analysis in R, containing an annotated script, 

functions and an example subset of data from stonechats. To run the script, please 

store all R files in a single folder. 
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FIGURE CAPTIONS 

 

Figure 1. (A) Stonechat range map highlighting the locations and migratory phenotypes of the 

four populations: Partially migratory Irish stonechats Saxicola rubicola hibernans, medium 

distance migrants S. rubicola rubicola from Austria, resident S. torquatus axillaris from 

Kenya, and long-distance migrants S. maurus from Siberia (Kazakhstan). Arrows indicate 

migratory routes between breeding and wintering grounds. We further included the following 

two hybrid groups: Austrian × Siberian and Austrian × Kenya. (B) Adjustment of the timing 

of Zugunruhe in response to the day lengths experienced over a bird’s posthatching period, for 

captive Austrian and Kenyan stonechats. The onset ages of Zugunruhe for Austrian stonechats 

are shown as blue triangles (dashed blue line); the onset ages for Kenyan stonechats are 

shown as orange dots (solid orange line). Stonechats hatching later in the breeding season 

compensated for this by commencing Zugunruhe at earlier ages. Inlay: pairs of Austrian (left) 

and Kenyan (right) stonechats. Modified after Helm and Gwinner (2006). 

 

Figure 2. Nocturnal activity relative to moult completion in juvenile Irish, Austrian and 

Siberian stonechats. Although stonechats do not migrate until after the completion of 

postjuvenile moult, young birds showed “juvenile restlessness” before this time, especially 50 

or more days before moult completion (negative values along the x-axis). This activity 

typically reached a minimum 20-30 days before moult completion, after which Zugunruhe 

began. Activity level is defined as the number of active ten-minute periods during the night 
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for an individual bird. For each day, a boxplot is shown that describes the activity levels of 

birds in each population. Wide coloured bars corresponding to a given day represent the 

interquartile range (middle 50%) of activity values for Siberian stonechats on that day. Thin 

coloured lines extend outwards to the most extreme data point that is not an outlier, where an 

outlier is defined as exceeding a distance of 1.5 times the interquartile range from the bar. For 

clarity, outlier points are not shown.  

 

Figure 3. The proportion of seasons during which stonechats showed Zugunruhe, by 

population and age. Proportions were analysed with binomial errors; error bars show one 

standard error. Bar charts in the top row (A, B) directly contrast autumn and spring seasons 

side-by-side, while the bottom row (C, D) directly contrasts birds in their first year from older 

birds. Kenyan stonechats frequently abstained from Zugunruhe (spring and autumn), as did 

Irish and Austrian populations (autumn only).  

 

Figure 4. Consistency of individual birds’ Zugunruhe behaviour by population. Shown are the 

proportions of birds for each population that engaged in Zugunruhe always (i.e., “migrants”), 

sometimes (middle row: “mixed”) and never (bottom row: “residents”). Included are birds for 

which data were available for at least two seasons (spring or autumn); numbers on the x-axis 

are total numbers of birds included from each group, and error bars are 95% confidence 

intervals. Letters shown above bars indicate significant pairwise differences: groups that do 

not share a letter are significantly different. For example, in the “Always” category, Kenyan 

stonechats share an ‘a’ with Irish birds and Kenyan-Austrian hybrids, but not with the 

remaining groups, from which they differ significantly. Among non-hybrid groups, Siberian 

stonechats had the highest proportion of migrants and Kenyan stonechats had the highest 

proportion of “residents.” Irish, Kenyan, and Austrian groups all had substantial numbers of 

“mixed” individuals that sometimes engaged in Zugunruhe. 

 

Figure 5. Timing of Zugunruhe by population. (A) and (B) show the dates of onset, mean, and 

end of autumn and spring Zugunruhe, respectively, determined with changepoint analysis. 

Numbers under boxplots show the number of migration periods in the given category; there 

are multiple migration periods for some birds with multiple years of data. Boxplots show 

interquartile range, and whiskers extend to the most extreme data point that is not an outlier 

(see legend of Figure 2). Outliers are not shown for clarity. Rows of letters at the top of plots 

indicate significant pairwise differences within each timing category: groups that do not share 
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the same letter are significantly different. (C) to (F): Population level activity profiles of 

hybrids and their parental populations during autumn (C, E) and spring (D, F) migration 

periods. Activity level is quantified as the number of active ten-minute periods during the 

night for an individual bird. (C) and (D) compare nocturnal activity in Siberian stonechats, 

Austrian stonechats, and Austrian × Siberian hybrids. (E) and (F) compare nocturnal activity 

in Kenyan stonechats, Austrian stonechats, and Austrian × Kenyan hybrids. Lines show 

medians, and coloured bars show the interquartile ranges (middle 50%) of activity values 

corresponding to that day. Data shown are smoothed by fully overlapping 30-day windows, 

incremented by one day.  

 

Figure 6. Intensity of Zugunruhe by population. (A) and (B) compare Zugunruhe with 

nocturnal activity during summer and winter (A: autumn, B: spring). (C) and (D) compare 

hybrids with their parental populations (C: autumn, D: spring). Activity level is defined as the 

number of active ten-minute periods during the night for an individual bird. Intensity of 

Zugunruhe (i.e., peak intensity) values are calculated as the mean activity level during the 

most-active 15-day period of Zugunruhe, as identified by changepoint analysis. Summer and 

winter values are the mean level of nocturnal activity across the least-active 30-day periods 

for each population. In (C, D), we show individual-specific corrected peak, calculated by 

subtracting the mean activity of flanking summer and winter periods from peak intensity. 

Numbers under boxplots show the number of migration periods in the given category; there 

are multiple periods for some birds with multiple years of data. Boxplots as in Figure 2. 

Letters shown at the top of plots indicate significant pairwise differences: groups that do not 

share a letter are significantly different. 

 

Figure 7. Population-level nocturnal activity in Siberian, Austrian and Irish stonechats, 

contrasting different age groups during the autumn and spring migration periods (first year 

(A) and (B) versus later years (C) and (D) for autumn and spring, respectively). Activity level 

is quantified as the number of active ten-minute periods during the night for an individual 

bird. Lines show medians and coloured bars show the interquartile range (middle 50%) of 

smoothed activity values corresponding to that day. Data shown are smoothed by fully 

overlapping 30-day windows, incremented by one day. For details, see Figure 5 (C-F).  

 

Figure 8. Comparison between overall nocturnal and diurnal activity levels by season for each 

population. Boxplots show activity levels for each migration season flanked by activity levels 
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during summer and winter “neutral” seasons (for definitions, see Figure 6). The boxplots 

show daily activity levels as the number of 10-minute active periods for night (top row) and 

day (bottom row); boxplots as in Figure 2. 
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