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Abstract: Pulsatile flow in a 3D model of arterial double stenoses is investigated using a large eddy
simulation (LES) technique. The computational domain that has been chosen is a simple channel
with a biological-type stenosis formed eccentrically on the top wall. The pulsation was generated at
the inlet using the first four harmonics of the Fourier series of the pressure pulse. The flow Reynolds
numbers, which are typically suitable for a large human artery, are chosen in the present work.
In LES, a top-hat spatial grid-filter is applied to the Navier–Stokes equations of motion to separate
the large-scale flows from the sub-grid scale (SGS). The large-scale flows are then resolved fully while
the unresolved SGS motions are modelled using a localized dynamic model. It is found that the
narrowing of the channel causes the pulsatile flow to undergo a transition to a turbulent condition in
the downstream region; as a consequence, a severe level of turbulent fluctuations is achieved in these
zones. Transitions to turbulent of the pulsatile flow in the post stenosis are examined through the
various numerical results, such as velocity, streamlines, wall pressure, shear stresses and root mean
square turbulent fluctuations.

Keywords: pulsatile flow; double constricted channel; large eddy simulation; Cartesian curvilinear
coordinates; finite volume method

1. Introduction

In the presence of stenosis in an artery, the nature of the flow in the downstream region is
significantly changed. These changes strongly depend on the degree of stenosis and the pulsatile flow
conditions. Due to the presence of a moderate or severe stenosis and the pulsatile nature of flow, highly
disturbed flow occurs in the downstream, and consequently, the flow becomes irregularly complexly
patterned; in other words, the flow undergoes a transition to turbulence. To gain better insight into the
transition to turbulence through the arterial stenosis, numerous research works have been done in
recent years due to the rapid evolution of the sate-of-the-art computing facilities.

Ku [1] described in his review article that blood flow exhibits non-Newtonian behaviour in small
branches and capillaries, where the cells squeeze through, and a cell-free skimming layer reduces the
effective viscosity through artery. However, he also added that in most arteries, blood behaves like a
Newtonian fluid where the viscosity can be taken as a constant, and the typical Reynolds number for
the blood flow usually varies from one (in small arteries) to approximately 4000 (in large arteries); and
due to the cyclic nature of the heart pump, the blood flow is always unsteady and very challenging to
investigate properly.

Khalifa and Giddens [2,3] investigated the post stenotic disturbances by using the laser Doppler
anemometer (LDA) technique. In their experiments, they used a sinusoidal velocity profile and
concluded with the findings that the periodic disturbance arose from the shear layer distal to the

Fluids 2017, 2, 1; doi:10.3390/fluids2010001 www.mdpi.com/journal/fluids

http://www.mdpi.com/journal/fluids
http://www.mdpi.com
http://www.mdpi.com/journal/fluids


Fluids 2017, 2, 1 2 of 19

stenosis, and non-stationary turbulence occurred at the downstream region. They also analysed the
disturbance energy spectra, and the results agree with those of Clark [4].

Many computational studies have been done by several authors. Brien and Ehrila [5] studied
the simple pulsatile flow through an arterial stenosis. Tutty [6] investigated the pulsatile flow in a
circular constricted channel and showed the variation of wall pressure, wall shear stress and flow
pattern at the different phases of flow pulsation. Tu et al. [7], Deplaon and Siouffi [8] studied the
flow characteristics using simple pulsatile flow through a stenosis. A study of steady laminar flow
through tubes with multiple stenoses has been done by Damodaran et al. [9]. Physiological and
simple sinusoidal pulsatile flows through an axisymmetric arterial stenosis have been investigated
by Zendehbudi and Moayeri [10]. The above-mentioned computational studies are related to the 2D
laminar flow.

Dvinsky and Ojha [11] simulated 3D pulsatile laminar flow through an asymmetric stenosis.
They used a sinusoidal pulsation flow and showed only the post stenotic velocity pattern.
Long et al. [12] investigated the physiological pulsatile laminar flow through the arterial stenosis
with a low Reynolds number, and they found that the wall shear stress oscillates between negative
and positive values at the post stenotic region. Laminar to turbulent transition and instability of the
pulsatile flow have been studied by Mallinger and Drikakis [13,14]. They also found that the wall
shear stress oscillates between negative and positive values at the post stenotic region, but in their
studies, they did not provide any information about the turbulent random fluctuations, which are very
important factors from the pathological point of view.

There are very few studies related to double or multiple arterial stenoses in the literature.
One experimental investigation was done by Talukder et al. [15] to study the effects of multiple stenoses
on the pressure drop for various Reynolds numbers ranging from 30 to 280. They reported that the
intensity of pressure drop increases owing to the presence of multiple stenoses. A numerical study of
steady laminar flow through a tube with multiple constrictions was done by Damodaran et al. [9] for
Reynolds numbers between 50 and 250. They also reported a significant change in pressure drop and
wall shear stress due to the effects of multiple constrictions.

Lee et al. [16,17] have investigated steady and physiological 2D turbulent flows through double
arterial stenoses using the Reynolds-averaged Navier–Stokes (RANS) (k-ω) method. Varghese and
Frankel [18] studied the pulsatile flow in a channel with a single stenosis using the RANS simulation.
Later on, Varghese et al. [19] investigated the physiological pulsatile flow through a constricted pipe
with a single stenosis and described elaborately the physics of post stenotic turbulent flows. However,
Scotti and Piomelli [20] clearly indicated the limitations of using the conventional RANS turbulent
models to study pulsatile flows. These models are not capable of predicting time-accurate flow.
Paul et al. [21,22] and Molla et al. [23] investigated the simple sinusoidal pulsatile flow in a planer
channel with a cosine-shaped single stenosis for a maximum Re = 2000 using the LES technique.
Recently, Molla et al. [24–26] have studied the physiological pulsatile flows in a channel with a single
stenosis for Newtonian and non-Newtonian fluids using the large eddy simulation technique.

In this paper, three-dimensional pulsatile flow through double stenoses using the large eddy
simulation technique has been investigated. A simple channel with two cosine-shaped stenoses on the
top wall is chosen as the computational domain. For computational simplicity, we considered a square
channel with two consecutive constrictions because we used an in-house FORTRAN code instead of
using any commercial software. However, we are not against any commercial software. The main
objective is to investigate the effects of turbulent fluid flow with two consecutive constrictions in a
channel to get some idea of what is happening from the medical point of view while these double
stenoses are appearing in human artery. In the previously-published literature, we did not find any
article that has simulated turbulent flow with multiple stenoses and investigated this by using the
large eddy simulation technique. The pulsatile flow is used at the inlet for generating the oscillating
flow. The effects of the double stenoses on the pressure drop, the stress drop and the turbulent intensity
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are examined. In LES, the Piomelli–Liu [27] localized dynamic model has been used for modelling the
subgrid-scale motions, and the maximum contribution of the sub-grid scale (SGS) model is assessed.

2. Formulation of the Problem

The geometry shown in Figure 1 consists of a 3D channel with two cosine-shaped stenoses formed
on the upper wall. The first stenosis is centred at y/L = 0.0, while the second stenosis at y/L = 3.0
with a 50% cross-sectional area reduction at the centre of both stenoses. Here, y is the horizontal
distance or the distance along the flow, and L is the height of the channel. In the model, the height (x)
and its width (z) are kept the same. The length of each of the stenoses is equal to twice the channel
height. The formation of the stenoses is done by using the following relation:

x
L
=


1− δ

2
(
1 + cos yπ

L
)

if −L ≤ y ≤ L
1− δ

2
(
1− cos yπ

L
)

if 2L ≤ y ≤ 4L
1 otherwise

(1)

where δ is the parameter that controls the percentage of the first and second stenoses, respectively,
which are fixed to 1

2 to keep a 50% reduction of the cross-sectional area at the centre of the stenoses.
Here, we have used dense mesh near the top and bottom walls, as well as in the immediate vicinity of
both the stenoses (see Figure 2).
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Figure 1. A schematic of the model with the coordinate system.

4 2 0 2 4 6 8 10 12 14

Figure 2. A crude mesh distribution in the x− y plane.

In LES, the filtered continuity and momentum equations for an incompressible flow take the
following forms in the general Cartesian curvilinear coordinate system:

Akj

|J|
∂ūj

∂ξk
= 0, (2)

∂ūi
∂t

+
Akj

|J|
∂ūiūj

∂ξk
= −

Akj

ρ|J|
∂ p̄
∂ξk

+
Akj

|J|
∂

∂ξk

[(
ν + νsgs

) (Al j

|J|
∂ūi
∂ξl

+
Ali
|J|

∂ūj

∂ξl

)]
(3)



Fluids 2017, 2, 1 4 of 19

where Akj are the elements of the cofactor matrix, A, of the Jacobian |J|. Here, ūi is the velocity vector
along ξi = (ξ1, ξ2, ξ3); p̄ is pressure; t is time; ρ is the fluid density; ν is the molecular kinematic
viscosity of the fluid; and νsgs is the sub-grid scale stress (SGS) eddy viscosity that would be modelled.

The effects of the small scale appear in the SGS term as:

τij = uiuj − ūiūj, (4)

which is modelled as (Smagorinsky [28]),

τij −
1
3
δijτkk = −2νsgsS̄ij = −2(Cs4)2|S̄|S̄ij, (5)

where4 = 3
√
4x4y4z is the filter width and |S̄| =

√
2S̄ijS̄ij is the magnitude of the large scale strain

rate tensors defined as S̄ij =
1
2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. The unknown Smagorinsky constant, Cs, is calculated

using the localized dynamic model of Piomelli and Liu [29].

2.1. Boundary Conditions and Computational Parameters

The velocity profile, which is used to generate the time-dependent pulsatile flow at the inlet of
the channel, is obtained via the analytic solution of the one-dimensional form of the Navier–Stokes
equation in the streamwise direction by taking the pressure gradient as a time-dependent Fourier series.

The Navier–Stokes equation for the fully-developed channel flow can easily be written as:

∂2v̄
∂x2 −

ρ

µ

∂v̄
∂t

=
1
µ

∂ p̄
∂y

, 0 ≤ x ≤ L (6)

where the pressure gradient for the pulsation is defined as:

∂ p̄
∂y

=
2
3

A0 + A
Nh

∑
n=1

Mnei(nωt+φn). (7)

The constants A0 and A appearing in Equation (7) correspond to the steady and oscillatory parts
of the pressure gradient, respectively. Mn and φn are the respective coefficients and the phase angle,
and Nh gives the number of harmonics of the pulsatile flow. The frequency (ω) of the unsteady flow is
defined asω = 2π

T .
The solution of Equation (6) takes the following form:

v̄(x, t) = 4V̄ x
L
(
1− x

L
)
+ A ∑Nh

n=1
iMn L2

µα2n[
cosh(α

√
in x

L )−
cosh(α

√
in)−1

sinh(α
√

in)
sinh(α

√
in x

L )− 1
]

ei(nωt+φn).
(8)

In the solution, the bulk velocity, V̄, depends on the flow Reynolds number, which is defined as
Re = V̄L

ν ; and α = L
√
ρω
µ is the unsteady Reynolds number or the Womersley number, which gives

the ratio of the unsteady to viscous forces. When the Womersley number is relatively small, the viscous
forces usually dominate flow. On the other hand, the unsteady inertia forces play an important role in
the pulsatile flow when α > 10; see Ku [1]. In our simulation the real part of this solution (8) is used
as an inlet boundary condition to generate the pulsatile flow through the channel, and we have used
α = 10.5 for controlling the maximum flow rate. As the objective of this paper is to concentrate the
first four harmonics of the pressure pulse, we have used Nh = 4 in Equation (8).

The amplitude of oscillation, A, is varied with the Reynolds number to maintain the maximum
flow rate at the inlet. For example, for Re = 1000, 1400, 1700 and 2000, the values of A are taken as 0.25,
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0.3, 0.35 and 0.4, respectively. For different harmonics, the values of Mn and φn are given in Table 1
along with the values of A and α (Womersley number).

Table 1. Values of Mn and φn for different harmonics according to Womersley [30].

Nh Mn φn

1 0.78 0.0113446
2 1.32 −1.4442599
3 −0.74 0.4625122
4 −0.41 −0.2879793

The inlet pulsatile velocity profile derived from the above relation (8) is presented in Figure 3 for
the Reynolds number of 2000. In (a), the velocity, recorded at the centre of the inlet plane, is shown
at a full pulsation, while the variation between the top and bottom planes at different phases during
the same pulsation is shown in (b). It is interesting to observe that the oscillating part of the pressure
pulse has created the negative velocity (back flow) close to the walls of the channel during the diastolic
phase (e.g., at t/T = 0.5, 0.625 and 0.75).
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Figure 3. Streamwise inlet velocity v̄/V̄max (a) near the wall x/L = 0.0057, (b) at the centre of the
channel x/L = 0.5 and (c) at the different phases of the pulse while Re = 2000.

No slip boundary conditions are used for both the lower and upper walls of the model, and at the
outlet, a convective boundary condition is used as:

∂ūi
∂t

+ Uc
∂ūi
∂y

= 0, (9)
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where Uc is the convective velocity, which takes the constant mean exit velocity. For the spanwise
boundaries, that means, in z-boundaries, periodic boundary conditions w̄1 = w̄N and w̄N+1 =w̄2 are
applied for modelling the spanwise homogeneous flow.

2.2. Overview of Numerical Procedures

An overview of the computational procedure employed in our simulation is presented in this
section. The governing filtered Equations (2) to (3) in the Cartesian coordinates are transformed into a
curvilinear coordinate system (Thomson et al. [31]), and the finite volume approach is used to discretise
the partial differential equations to yield a system of quasi-linear algebraic equations. To discretise
the spatial derivatives in Equations (2) to (3), the standard second order accurate central difference
scheme is used, except for the convective terms in the momentum Equation (3) for which an energy
conserving discretisation scheme is used (Morinishi [32]).

Time derivatives are discretised by a three-point backward difference scheme with a constant
time step of ∆t, which is represented by:

∂u
∂t
≈ 3

2

(
un+1 − un

∆t

)
− 1

2

(
un − un−1

∆t

)
, (10)

A constant time step is used in the computations to ensure that the maximum Courant number,
(ūj

∆t
∆xj

), based on the filtered velocity, lies between 0.05 and 0.3. Once the governing equations are
discretised, the pressure and velocity fields are obtained by employing a pressure correction method,
which is similar to the SIMPLE algorithm of Patankar [33]. Using the above-mentioned pressure
correction algorithm, the computed pressure and the velocity components are stored at the centre of a
control volume according to the collocated grid arrangement. The Poisson-like pressure correction
equation is discretised by using the Rhie and Chow [34] pressure smoothing approach, which prevents
the even-odd node uncoupling in the pressure and velocity fields.

A BI-CGSTAB [35] solver is used for solving the matrix of velocity vectors, while for the
Poisson-like pressure correction equation, an Incomplete Cholesky Conjugate Gradient (ICCG) [36]
solver is applied due to its symmetric and positive definite nature. Overall, the code is second order
accurate in both time and space.

3. Data Processing

In the data processing, three different types of averaging procedures have been used. For a generic
flow filtered variable, f̄ , the time-mean over the period of time Tf is calculated as:

〈 f 〉(x, y, z) =
1

Tf

∫ t0+Tf

t0

f̄ (x, y, x, t)dt, (11)

where t0 is the initial time. The deviation from this time-mean, which represents a combination of
turbulent fluctuations along with the fluctuations due to pulsations, is then defined as:

f ′(x, y, z, t) = f̄ (x, y, z, t)− 〈 f 〉(x, y, z). (12)

In order to separate the turbulent fluctuations from the pulsatile fluctuations, a phase averaging
technique is applied. The phase average over Tf = NT, where N is the total number of periods and T
is the time period, is computed as:

〈〈 f 〉〉(x, y, t) =
1
N

N−1

∑
n=0
〈 f 〉s(x, y, t + nT), (13)
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where 〈 f 〉s is the spanwise average quantity of f̄ defined as:

〈 f 〉s(x, y, t) =
1
L3

∫ L3

0
f̄ (x, y, z, t)dz, (14)

where L3 is the total number of mesh points used in the spanwise direction. Finally, the random
turbulent fluctuations are computed using:

f ′′(x, y, z, t) = f̄ (x, y, z, t)− 〈〈 f 〉〉(x, y, t). (15)

The root mean square (rms) quantities are calculated as:

frms =

√
1

Tf

∫ t0+T

to
f ′′2dt (16)

4. Results and Discussion

The present code has been successfully used for various numerical simulations involving LES
and DNStechniques. The code is named BOFFIN (body fitted flow integrator), which was originally
developed at Imperial College, London, and the details of the program can be found in [37]. It has
extensively been used in different simulations for pulsatile flows, i.e., [21–25].

The simulations are carried out with Reynolds numbers, Re = 1000, 1400, 1700 and 2000, fixing
the Womersley number α to 10.5. The grid independence test for Re = 2000 is performed with various
grid arrangements, and the details are in Table 2. For all of the computations, time step ∆t is fixed to
10−3. The flow simulation is carried out up to the peak phase of the 11th cycle of pulsation after which
the flow eventually becomes statistically stationary.

Table 2. Mesh details used in the computations.

Case Re Nx Ny Nz ∆t

0 <2000 50 300 50 10−3

1 2000 50 300 50 10−3

2 2000 50 350 50 10−3

3 2000 70 350 50 10−3

Figures 4 and 5 show the grid independence test in terms of the mean streamwise velocity,
〈v̄〉/V̄max, and the turbulent kinetic energy (TKE), 1

2 〈u′′j u′′j 〉/V̄2
max, at the different streamwise axial

positions, while Re = 2000. Three different grid arrangements used in the test are Case 1: 50× 300× 50,
Case 2: 50× 350× 50 and Case 3: 70× 350× 50.

The mean streamwise velocity at the inlet of the channel (Figure 4a) where the flow is laminar
and at the centre of the stenosis (Figure 4b) where the flow is going to be transitional is exactly the
same for the different grid arrangements. However, the velocity slightly deviates at the position of the
post lip of the first stenosis ((c) and (d)) where the permanent re-circulation region takes place. The
velocity decreases slightly at y/L = 2.0, but due to the presence of the second stenosis, it increases at
the centre and post lip of the second stenosis. The negative velocity seen in (f) indicates the presence
of another re-circulation region at the post lip of the second stenosis. After the second stenosis, the
agreement of the velocity for the different grid arrangements is excellent. The maximum difference in
the mean streamwise velocity is about 9% when changing the grid arrangement from Case 1 to 2 and
from Case 1 to 3 is about 14% in the immediate post stenotic region at y/h = 2.0.
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Figure 4. Grid independence test for the mean streamwise velocity, 〈v̄〉/V̄max, at (a) y/L = inlet,
(b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 2.0, (e) y/L = 3.0, (f) y/L = 4.0, (g) y/L = 5.0,
(h) y/L = 6.0, (i) y/L = 8.0, (j) y/L = 10.0, (k) y/L = 12.0 and (l) y/L = outlet, while Re = 2000,
Case 1: 50× 300× 50, Case 2: 50× 350× 50 and Case 3: 70× 350× 50 control volumes.
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Figure 5. Grid independence test for the turbulent kinetic energy (TKE), 1
2 〈u′′j u′′j 〉/V̄2

max, (a) y/L = inlet,
(b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 2.0, (e) y/L = 3.0, (f) y/L = 4.0, (g) y/L = 5.0, (h) y/L = 6.0,
(i) y/L = 8.0, (j) y/L = 10.0, (k) y/L = 12.0 and (l) y/L = outlet, while Re = 2000; Case 1: 50× 300× 50,
Case 2: 50× 350× 50 and Case 3: 70× 350× 50 control volumes.

The turbulent kinetic energy in Figure 5 shows some variations after the stenoses, which are
acceptable. Total grid independence of the computed turbulent random fluctuations is not expected in
LES, and it is adequate to prove in LES that the primary flow features (mean velocities) do not vary
significantly with the grid. Moreover, this dependence is apparent until the grid resolution becomes
fine enough that the LES starts to qualify as DNS. Therefore, the grid arrangement of 50× 300× 50
seems fine to resolve the transient flow adequately in the double stenoses model. In (a) and (b), the
turbulent kinetic energy (TKE) is almost zero as the flow is laminar upstream of the first stenosis.
However, the effects of the second stenosis are clearly seen in frames (d) to (h). In the single-stenosis
case, the maximum rise in TKE was observed in the post lip region, i.e., at y/L = 1.0, which is
shown in Molla et al. [23], but in the double stenoses case, it is seen that there is a sharp rise in TKE
upstream and immediately downstream of the second stenosis. Finally, the TKE gradually decreases
and approaches zero further downstream because of the re-laminarisation process, also seen for the
single-stenosis model.
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The dynamic values of the Smagorinsky constant Cs are presented in Figure 6a–d for the different
Reynolds numbers. The maximum values of Cs, found near the throat and downstream of the second
stenosis, are 0.088, 0.13, 0.14 and 0.19, respectively, for Re = 1000, 1400, 1700 and 2000. Due to the
effects of the two stenoses, the values of the Cs are almost doubled compared to those of the single
stenosis in Molla et al. [23], while Re = 1700 and 2000, and the contribution from the SGS model,
which is presented in Figure 7a,d in terms of the normalised SGS viscosity, increases in the second
stenosis. Furthermore, the maximum SGS viscosity, µsgs/µ, of 0.26, 0.83, 1.64 and 3.69, obtained
respectively for the Reynolds numbers above, corresponds to the large dissipation of the SGS model in
the region of the second stenosis.

2 0 2 4 6 8 10 12

0.010 0.012 0.015 0.019 0.023 0.029 0.035 0.044 0.054 0.066 0.082 0.101 0.125 0.154 0.190

(d)

2 0 2 4 6 8 10 12

0.005 0.006 0.008 0.009 0.011 0.014 0.017 0.021 0.026 0.032 0.039 0.048 0.058 0.072 0.088

(a)

2 0 2 4 6 8 10 12

0.010 0.012 0.014 0.017 0.021 0.025 0.030 0.036 0.043 0.052 0.062 0.075 0.090 0.108 0.130

(b)

2 0 2 4 6 8 10 12

0.010 0.012 0.015 0.018 0.021 0.026 0.031 0.037 0.045 0.055 0.066 0.080 0.096 0.116 0.140

(c)

Figure 6. Dynamic Smagorinsky constant, Cs, for (a) Re = 1000, (b) Re = 1400, (c) Re = 1700 and
(d) Re = 2000 at t/T = 10.25.

2 0 2 4 6 8 10 12

0.005 0.007 0.009 0.012 0.015 0.021 0.027 0.036 0.048 0.063 0.084 0.111 0.148 0.196 0.260

(a)

2 0 2 4 6 8 10 12

0.010 0.014 0.019 0.026 0.035 0.048 0.066 0.091 0.125 0.171 0.235 0.322 0.441 0.605 0.830

(b)

2 0 2 4 6 8 10 12

0.010 0.014 0.021 0.030 0.043 0.062 0.089 0.128 0.184 0.265 0.382 0.550 0.791 1.139 1.640

(c)

2 0 2 4 6 8 10 12

0.010 0.015 0.023 0.035 0.054 0.083 0.126 0.192 0.293 0.447 0.682 1.040 1.586 2.419 3.690

(d)

Figure 7. Normalised sub-grid scale (SGS) eddy viscosity, µsgs/µ, for (a) Re = 1000, (b) Re = 1400,
(c) Re = 1700 and (d) Re = 2000 at t/T = 10.25.
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Figure 8a–h depict the instantaneous cross-stream velocity vectors at the different streamwise
locations while Re = 2000 at t/T = 10.25. At the inlet of the channel (y/L = −5), the flow is laminar,
while at the centre of the first stenosis (y/L = 0), the flow is transitional to turbulent. At the post lip of
the first stenosis (y/L = 1), the recirculation is clearly visible near the upper wall where the turbulent
intensity is higher than the lower wall. At y/L = 2, the flow is fully turbulent, and the intensity of the
turbulence increases at the centre of the second stenosis (y/L = 3). After the second stenosis, the flow
is too chaotic at (y/L = 4 and 5) with a high intensity of turbulence. At the far downstream region,
the intensity of the recirculation decreases gradually.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Instantaneous cross-stream velocity vectors based on the velocity components ū − v̄,
(a) y/L = inlet, (b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 2.0, (e) y/L = 3.0, (f) y/L = 4.0, (g) y/L = 6.0
and (h) y/L = 8.0 while Re = 2000.

The mean streamlines appended on the mean streamwise velocity contours are presented in
Figure 9a–d for the different Reynolds numbers. It is now clearly seen in this figure that there are
two permanent re-circulation regions; the first one lies near the upper wall between the first and
second stenoses, while the second re-circulation region lies at the post lip of the second stenosis.
The length of these re-circulation regions also depends on the Reynolds number. For example,
when Re = 1000 and 1400, the length of the first re-circulation region is larger than the second
re-circulation region; whereas, the length of the second re-circulation region is larger than the first
re-circulation region when Re = 1700 and 2000.

In order to understand more clearly the process of the flow separation from the nose of both
stenoses and the region of the flow transition from laminar to turbulent, the instantaneous streamwise
velocity v̄/V̄max is presented in Figure 10 for the different Reynolds numbers. Here, V̄max is the
reference velocity calculated from Re = 2000. The results show that the shear layer separated from
the nose of the first stenosis is affected by the second stenosis and causes flow re-circulation near the
upper wall between the two stenoses. The highly disturbed flow downstream of the second stenosis is
caused by the separation of the shear layer from the second nose.
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Figure 9. Mean streamwise streamlines appended on the mean streamwise velocity, < v̄ > /V̄max,
for (a) Re = 1000, (b) Re = 1400, (c) Re = 1700 and (d) Re = 2000.
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Figure 10. Contour plot of the instantaneous streamwise velocity, v̄/V̄max, for (a) Re = 1000,
(b) Re = 1400, (c) Re = 1700 and (d) Re = 2000 at t/T = 10.25.

The instantaneous shear stress, τw/ρV̄2
max, at the upper and lower walls is depicted in Figure 11a,b,

respectively, for the different Reynolds numbers. At the upper wall, there are two levels of stress
reduction; one takes place just prior to the centre of the first stenosis where flow is transitional, and the
second one occurs just prior to the centre of the second stenosis where the flow is turbulent. The higher
level of stress drop at the turbulent region can increase the tissue proliferation inside the arterial vessel
and, consequently, increase the percentage of the stenosis. Therefore, the presence of multiple stenoses
in an artery is more dangerous for a patient. In addition, the highly oscillating forms of the wall shear
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stress that occur at the second stenosis are more harmful to the blood cells (Sutera and Mehrjardi [38])
and blood vessels (Fry [39]).

The effects of the multiple stenoses on the mean pressure, 〈 p̄〉/ρV̄2
max, at the upper and lower

walls are illustrated respectively in Figure 12a,b. The effect of pressure drops at the centre of the
stenoses is very acute near the upper wall due to the direct impact of the stenosis, while these are blunt
in the case of the lower wall. Moreover, the effect is prominent in the second stenosis. The pressure
drop in the second stenosis is larger than the first one, which again indicates the fact that the flow
separated from the nose of the second stenosis re-circulates for a longer time than that of a single
stenosis case. Consequently, the risk of thrombosis or stroke also increases.

2 0 2 4 6 8 10 12
0.02

0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Re = 2000

Re = 1700

Re = 1400

Re = 1000

y/L

L
o
w

er
w

al
l

sh
ea

r
st

re
ss

(b)

2 0 2 4 6 8 10 12
0.04

0

0.04

0.08

0.12

0.16

0.2

Re = 2000

Re = 1700

Re = 1400

Re = 1000

y/L

(a)

U
p
p
er

w
al

l
sh

ea
r

st
re

ss

Figure 11. Instantaneous wall shear stress, τw/ρV̄2
max, at the (a) upper wall and (b) lower wall for the

different Reynolds numbers at t/T = 10.25.

The effects of the second stenosis on the turbulent flows are presented in this section in terms of
the root mean square (rms) of the velocity and pressure fluctuations, as well as the energy spectra of
the streamwise velocity fluctuations.

Figure 13 depicts the rms of the cross-stream velocity fluctuations, 〈u′′〉rms/V̄max, at the different
axial locations for the different Reynolds numbers. The results show that at the centre of the first
stenosis, y/L = 0.0, the flow is transitional for Re = 1700 and 2000. The intensity of the cross-stream
velocity fluctuations increases at the downstream of the first stenosis for all of the Reynolds numbers,
and the maximum occurs at y/L = 1.5. Although the intensity of the fluctuations reduces slightly at
the pre lip of the second stenosis, y/L = 2.0, due to the effects of the second stenosis, the fluctuations
increase again in the downstream of the second stenosis near the upper wall. Further downstream,
the turbulent fluctuations diminish in a similar manner as found in the single stenosis where the flow
re-laminarises, which is also known as a recovery zone.
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Figure 12. Time-mean pressure, 〈 p̄〉/ρV̄2
max, at the (a) upper wall and (b) lower wall for the different

Reynolds numbers.
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Figure 13. rms of the cross-stream velocity fluctuations, 〈u′′〉rms/V̄max, at the different axial locations:
(a) y/L = inlet, (b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 1.5, (e) y/L = 2.0, (f) y/L = 2.5, (g) y/L = 3.0,
(h) y/L = 3.5, (i) y/L = 4.0, (j) y/L = 4.5, (k) y/L = 5.0, (l) y/L = 5.5, (m) y/L = 6.0, (n) y/L = 7.0,
(o) y/L = 8.0, (p) y/L = 10.0, (q) y/L = 12.0 and (r) y/L = outlet, for the different Reynolds numbers.
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The rms values of the stream-wise and spanwise velocity turbulent fluctuations 〈v′′〉rms and
〈w′′〉rms at the different axial locations are plotted in Figures 14 and 15, respectively. They are
normalized by V̄max. The maximum value of 〈v′′〉rms is observed after the centre of the second
stenosis at y/L = 3.5, and the maximum value of 〈w′′〉rms/V̄max occurs before the centre of the second
stenosis at y/L = 2.5. Therefore, the presence of the second stenosis is pathologically important since
it increases the turbulent intensity.
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Figure 14. rms of the streamwise velocity fluctuations, 〈v′′〉rms/V̄max, at the different axial locations:
(a) y/L = inlet, (b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 1.5, (e) y/L = 2.0, (f) y/L = 2.5, (g) y/L = 3.0,
(h) y/L = 3.5, (i) y/L = 4.0, (j) y/L = 4.5, (k) y/L = 5.0, (l) y/L = 5.5, (m) y/L = 6.0, (n) y/L = 7.0,
(o) y/L = 8.0, (p) y/L = 10.0, (q) y/L = 12.0 and (r) y/L = outlet, for the different Reynolds numbers.

Another important turbulent quantity is the rms value of the pressure fluctuations presented in
Figure 16. The pressure fluctuations after the immediate downstream region of the first stenosis
are higher near the upper wall, but they mitigate slightly at the centre of the second stenosis.
The magnitude of the fluctuations then increases rapidly up to the position of y/L = 4.5, followed by a
gradual decrease in the downstream. The high level of pressure fluctuations is responsible for the post
stenotic dilatation due to the arterial damage, and these are also a potential source of arterial murmur,
which is a key factor for identifying an arterial stenosis through acoustical techniques (Ask et al. [40]).
The murmur due to the arterial stenosis is usually diagnosed by placing an external “transducer”,
which transmits through the arterial wall. Since the presence of the double stenosis increases the
magnitude of the pressure fluctuations, the intensity of the murmur sound from a double-stenosed
artery would be higher than that of the single stenosis.
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Figure 15. rms of the spanwise velocity fluctuations, 〈w′′〉rms/V̄max, at the different axial locations:
(a) y/L = inlet, (b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 1.5, (e) y/L = 2.0, (f) y/L = 2.5, (g) y/L = 3.0,
(h) y/L = 3.5, (i) y/L = 4.0, (j) y/L = 4.5, (k) y/L = 5.0, (l) y/L = 5.5, (m) y/L = 6.0, (n) y/L = 7.0,
(o) y/L = 8.0, (p) y/L = 10.0, (q) y/L = 12.0 and (r) y/L = outlet, for the different Reynolds numbers.
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Figure 16. rms of the pressure fluctuations, 〈p′′〉rms/ρV̄2
max, at the different axial locations:

(a) y/L = inlet, (b) y/L = 0.0, (c) y/L = 1.0, (d) y/L = 1.5, (e) y/L = 2.0, (f) y/L = 2.5, (g) y/L = 3.0,
(h) y/L = 3.5, (i) y/L = 4.0, (j) y/L = 4.5, (k) y/L = 5.0, (l) y/L = 5.5, (m) y/L = 6.0, (n) y/L = 7.0,
(o) y/L = 8.0, (p) y/L = 10.0, (q) y/L = 12.0 and (r) y/L = outlet, for the different Reynolds numbers.
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For understanding the laminar and turbulent flow region, the streamwise velocity fluctuations
v′′/v′′max against the time period (t/T, where T = 2π) at the different axial locations have been plotted
in Figure 17. In Figure 17, y/L = 0 is the centre of the first stenosis, and y/L = 3 is the centre of the
second stenosis. From this figure, it is clearly seen that the severe turbulence occurred after the second
stenosis, and in the downstream region, the fluctuation is very low, which means the flow is going be
re-laminarised.
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Figure 17. Streamwise velocity fluctuations v′′/v′′max against the time cycle t/T of pulsation at the
different axial locations while Re = 2000 and x/L = z/L = 0.5.

It has been tested that the mean and turbulent flow behaviour does not change over the pulse.
However, the instantaneous flow changes over the pulse, and the maximum instantaneous wall
shear stress occurs at the systolic phase at around t/T = 0.25 of the pulse. Mean and turbulent flow
behaviour changes due to the presence of stenosis. Figure 18 shows the axial velocity behaviour over
the pulse at the different axial locations. At the inlet, flow is laminar pulsatile, and at the centre of the
first stenosis (y/L = 0), the flow is not fully laminar, but may be transitional. At the first post stenotic
region (y/L = 1 and y/L = 2), it is not clearly distinguishable that turbulence peaks occur at the peak
inlet flow or some other time instant. Similar turbulent flow patterns are visible at the centre of the
second stenosis and the post stenotic region (y/L = 3, y/L = 4, y/L = 5, and so on).
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Figure 18. Cont.
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Figure 18. Streamwise velocity v/V̄max against the time cycle t/T of pulsation at (a) y/L = inlet,
(b) y/L = 0 (centre of the first stenosis), (c) y/L = 1.0, (d) y/L = 2.0, (e) y/L = 3.0 (centre of the second
stenosis), (f) y/L = 4.0 and (g) y/L = 5.0, while Re = 2000 and x/L = z/L = 0.5.

5. Conclusions

In this paper, a large eddy simulation has been performed to investigate pulsatile flow through
a square channel with two consecutive constrictions at the upper wall. In the previous studies for
the single stenosis, it has been tested that the flow through the channel in the presence of stenosis is
not fully turbulent. Before the stenosis, the flow is laminar, and at the throat of the stenosis, the flow
might be transitional; as well as in the immediate post stenotic region, flow is turbulent. Therefore, it
is not suitable to use a non-dynamic sub-grid scale (SGS) model for the laminar transition to turbulent
flow, and consequently, the localized dynamic SGS model of Piomelli and Liu [29] has been used for
the present simulations. From the results, it reveals that the effect of the SGS model before stenosis is
almost zero at the laminar flow region.

The results presented in various forms show the effects of the presence of the second stenosis
in an artery. For Re = 2000, the maximum Smagorinsky constant obtained is Cs ≈ 0.2. The
maximum contribution of the SGS model also increases at the region of the second stenosis. The
upper wall pressure drops and wall shear stress increase rapidly in the region of stenoses for
increasing the Reynolds numbers, which are consistent with the results of Talukder et al. [15] and
Damodaran et al. [9]. It is clearly seen that the maximum pressure drops and wall shear stress occur
due to the effects of the second stenosis.

Furthermore, due to the presence of the second stenosis, the turbulent intensity of the flow
increases significantly. From the pathological point of view, the increment in the turbulent fluctuations
is more dangerous, as they damage the material of blood cells and the inner surface of a blood vessel.
The permanent re-circulation zone found in the downstream of the stenoses will also increase the risk
of thrombosis or blood clotting and, consequently, increase the risk of heart attack or brain stroke.

For computational simplicity, a square channel with a rigid wall and with Newtonian blood flow
is considered, which are the main limitations in this present research. We tried to give physical insight
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into the pulsatile blood flow in a model an artery with consecutive double stenoses. Even though
the computational domain is a square channel, the results lead to the conclusion that the presence of
multiple stenoses is harmful to patients.
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