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Diversity Gain of Lattice Constellation Based

Joint Orthogonal Space-Time Block Coding
Wei Liu, Jing Lei, Muhammad-Ali Imran, Senior Member, IEEE, and Chaojing Tang

Abstract

It is generally thought that space-time block codes (STBCs) can obtain no more than full space diversity. In this

paper, we propose a new construction method of joint orthogonal STBCs based on M dimensional lattice constellations

for obtaining space and time diversities simultaneously. By deriving the Chernoff bound of error probability, we prove

the exact diversity gain of the proposed code is M times of that in traditional STBCs. This is a valuable scheme as

diversity gain is usually the primary factor to determine the ability of anti-fading. Moreover, the maximum-likelihood

decoder for the proposed code just requires joint decoding of M real symbols, whose complexity is acceptable as

M , usually, needs not to be too big. Numerical results show that the proposed code has remarkable improvement of

performance compared with some typical STBCs under the comparable low decoding complexity.

Index Terms

Space-time block code, multiple-input multiple-output, diversity gain, Chernoff bound, multi-dimensional lattice

constellation.

I. INTRODUCTION

In wireless communications, diversities are very effective strategies to combat the channel fading and improve

the reliability, which generally include time-, frequency-, space-, user-, and polarity-diversities, etc., depending on

the corresponding multiple physical layer resources provided by the wireless channel and the suitable approaches

for exploiting such kind of diversities. In particular, multiple-input multiple-output (MIMO) systems can provide

multiple transmission paths along space due to multiple antennas used. As an approach to exploit the space diversity,

space-time coding techniques have recently received massive research interest in MIMO systems [1]-[11].

Orthogonal space-time block codes (OSTBC) [1]-[3] offer full space diversity and allow simple single-symbol

maximum-likelihood (ML) decoding, but the code rate is always less than one when more than two antennas are

used. Later, the rate limitation is overcome by quasi-orthogonal STBCs (QOSTBC) by relaxing the orthogonality

and slightly increasing decoding complexity, where rate one is reached for more antennas and full space diversity is
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achieved by special constellation rotation [4]. On the other hand, the full rate alternatives to orthogonal and quasi-

orthogonal STBCs namely the Golden codes [5] and Perfect codes [6], [7] are introduced to obtain higher rate and

larger coding gain. However, they generally have a prohibitively high decoding complexity as all the symbols need

to be decoded jointly. Recently, some high rate (rate>1) and even full rate codes are presented in [8]-[10] to still

preserve the low-complexity decodability properties, which are either group-decodable [8], [9] or fast-decodable

[10]. Generally, as a premise of those STBCs to pursue high rate, low complexity, or large coding gain, etc., they

first guarantee to achieve full space diversity [11], as diversity gain is often the primary factor to determine the

performance of coding against channel fading. The maximum achievable space diversity gain of a space-time code

is usually the product NTNR, where NT and NR represent the number of transmit antennas and receive antennas,

respectively. Actually, besides multiple space paths in MIMO channel, each of these space paths exhibits numerous

degrees of freedom for fading along time, which provide the possibility to exploit time diversity as well. Later, a

joint double-Alamouti coding is introduced in [12] to simultaneously achieve space and time diversities and still

reserve low complexity of ML decoding. However, [12] just considers the code construction jointing double blocks

for the case of NT = 2, and gives a rough analysis of diversity orders. First, it is shown by non-strict physical

interpretation from the channel fading that diversity orders is perhaps 4 when NR = 1; then, it is regarded as that

the diversity orders is more than 4 by comparing the slope of BER-SNR curve of the new code with other codes

when NR = 2. The exact orders of diversity gain cannot be got by such a way of slope comparison. The lack of

theoretical analysis and proof for diversity gain is a main shortage of [12].

In this paper, we propose a generic construction method for Lattice-based Joint OSTBCs (LJ-OSTBC), where M

blocks are orthogonal-space-time coded jointly based on multi-dimensional lattice constellations [13], [14], [15],

and the code in [12] can be regarded as a special case of M = 2 = NT . The main contributions of this work

compared with [12] are the following three aspects:

i) As a key and necessary step to construct the LJ-OSTBC, an unified equivalent decoupled model for OSTBCs

is derived, where the MIMO channel is converted into many equivalent SISO channels so that multiple blocks can

be coded combining lattice constellations to obtain time diversity. In addition, such an decoupled model is also a

base for the proposed code reserving low decoding complexity and having practical significance.

ii) We theoretically prove the exact orders of diversity gain by deriving the Chernoff bound of error probability

for the constructed codes. The results show that the proposed LJ-OSTBC can obtain MNTNR orders diversity gain,

which is much bigger than that of traditional STBCs. The result is beyond general concept of space-time coding

and also reflects the value of proposed codes.

iii) We present a typical mobile channel of 1.9 GHz personal communications services (PCS) systems in our

simulations for evaluating the performance and decoding delay of the proposed code. In such a scenario, these

factors of mobility speed, Doppler spread, time-varying and temporal correlation are considered comprehensively.

That is a more practical evaluation than that in [12].

The rest of this paper is organized as follows. In Section II, we derive an equivalent decoupled model for OSTBC

systems. Then, the construction of LJ-OSTBCs is proposed in Section III. Next, the proof of diversity gain is given

in Section IV. The numerical results are provided in Section V. Finally, we draw the conclusions in Section VI.
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Notations: where E(·) denotes the expectation of a random variable; CN (m,σ2) and N (m,σ2) represents

complex- and real-, respectively, Gaussian distribution with mean m and variance σ2; (·)I and (·)Q denote the

real part and imaginary part, respectively, of a vector or matrix; (·)T stands for the transpose of a vector or matrix;

∥ · ∥F is the Frobenius norm of a matrix; I(·) represents a unit matrix; diag(·) denotes diagonalization of a vector

to compose a diagonal matrix; |·| represents the absolute value of a complex number.

II. EQUIVALENT DECOUPLED MODEL OF OSTBC

Let’s start from analyzing the property of channel from an OSTBC. Generally, a STBC can be defined by the

following linear form of dispersion matrices, as

C =
K∑

k=1

Akxk (1)

where x1, x2, ..., xK are K real signals in the codeword; A1 ∼ AK denote the corresponding complex dispersion

matrices with L×NT dimensions; and L is the time length of codeword. The code C also obey the average energy

constraint as E∥C∥2F = NTL. The corresponding L×NR receive matrices is

R =

√
ρ

NT
CH+N (2)

where the factor
√

ρ/NT ensures that ρ is the SNR at each receive antenna, and independent on NT ; H and N

denote the NT ×NR channel matrix and L×NR noise matrix, respectively; the entries of both H and N satisfy

i.i.d. complex Gaussian random variables with distribution CN (0, 1). The channel fadings at different antennas are

flat and mutually independent. Like common STBCs, we assume that the channel satisfy the block fading, i.e., the

channel matrix remains constant within one code block and changes independently during different blocks [11].

Define rj , hj and nj as the jth column of R, H, and N, respectively. With some simple mathematical

manipulations, we can derive a real vectorized model by combining (1) and (2), as

r′ =

√
ρ

NT
H′xeq + n′, (3)

where r′ = [(r1)
T
I (r1)

T
Q ... (rNR)

T
I (rNR)

T
Q]

T is a 2LNR×1 received column vector; n′ = [(n1)
T
I (n1)

T
Q ...

(nNR)
T
I (nNR)

T
Q]

T is a 2LNR × 1 noise vector; xeq = [x1 x2 ... xK ]T is a K × 1 real signal vector; and

H′ =


Ā1h̄1 Ā2h̄1 ... ĀK h̄1

Ā1h̄2 Ā2h̄2 ... ĀK h̄2

...
...

. . .
...

Ā1h̄NR
Ā2h̄NR

... ĀK h̄NR

 (4)

where Āk =

 (Ak)I −(Ak)Q

(Ak)Q (Ak)I


2L×2NT

, k = 1, 2, ...,K, h̄j = [ (hj)
T
I (hj)

T
Q

]T , j = 1, 2, ..., NR, and all

the entries of n′ are i.i.d. real Gaussian variable with distribution N (0, 1/2). Then, it can be got from (4) that

(H′)TH′ is a K ×K real matrix, whose entry at the k1-th row and k2-th column should be[
(H′)TH′]

k1,k2
=
∑NR

j=1
(h̄j)

T (Āk1)
T Āk2h̄j (5)
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where k1, k2 = 1, 2, ...,K. According to the properties of OSTBCs, the dispersion matrices of an OSTBC are

unitary and at the same time satisfy the condition (mentioned in [16]) as (Ak1)
HAk2 + (Ak2)

HAk1 = 0 when

1 ≤ k1 ̸= k2 ≤ K. Therefore, it is not hard to obtain the similar result for the real form as

(Āk1)
T Āk2 + (Āk2)

T Āk1 = 0 (6)

where 1 ≤ k1 ̸= k2 ≤ K. Then, combining (6) and the Theorem 1 in [17], we obtain that
∑NR

j=1(h̄j)
T (Āk1)

T Āk2h̄j

= 0 when k1 ̸= k2. Thus, (H′)TH′ is a diagonal matrix. Since all the dispersion matrices are unitary, then their

real form Āk1 and Āk2 are also unitary. Thereby, when k1 = k2, the diagonal entries
∑NR

j=1(h̄j)
T (Āk1)

T Āk2h̄j =

∥H∥2F . So, we define a K×K real diagonal matrix D = diag ([∥H∥F , ∥H∥F , ..., ∥H∥F ]) and let (H′)TH′ = DD.

Then, an equivalent real channel model of OSTBC can be obtained by multiplying both sides of equation (3) by a

matched filter D−1H′T , as

yeq =

√
ρ

NT
Dxeq + neq (7)

where yeq = D−1H′T r′ is a K × 1 equivalent received vector obtained after match filtering; neq = D−1H′Tn′

is a K × 1 equivalent noise vector. Since all the entries in n′ are i.i.d. and satisfy distribution N (0, 1/2), then

its covariance matrix E(n′n′T ) = (1/2)·I2LNR×2LNR
. It is not hard to prove that the covariance matrix of neq

is E(neqneq
T ) = D−1H′TE(n′n′T )H′D−T = (1/2)·IK×K . That means that the K entries in neq are also i.i.d.

variable with distribution N (0, 1/2). Let yeq = [y1 y2 ... yK ]T and neq = [n1 n2 ... nK ]T , the expression (7)

can be rewritten as

yk =

√
ρ

NT
∥H∥Fxk + nk (8)

where k = 1, 2, ...,K.

We find from (8) that the MIMO channel is converted into K parallel single-input-single-output (SISO) channels

and all these signals x1, x2, ..., xK in C are completely decoupled; moreover, the K signals have the same equivalent

SISO channel ∥H∥F . The derived equivalent decoupled model will play an important role in constructing the LJ-

OSTBC and proving the diversity gain.

III. CODE CONSTRUCTION

Suppose that C(t) =
∑K

k=1 A
(t)
k x

(t)
k , t = 1, 2, ...,M , are the M codewords of OSTBC transmitted along M time

blocks, respectively. Let x(t)
k and A

(t)
k (k = 1, 2, ...,K) be the K real signals and dispersion matrices, respectively,

in the t-th codeword C(t). The corresponding received matrices are

R(t) =

√
ρ

NT
C(t)H(t) +N(t), t = 1, 2, ...,M (9)

where H(t) and N(t) denote the channel matrix and noise matrix, respectively, at the t-th block of codeword

transmission. According to the assumption of block fading, these channel matrices H(t) keep unchanged within

one block period and vary independently to each other at different blocks t = 1, 2, ...,M . From the derivation in

Section II, we will have the following equivalent decoupled model, as

y
(t)
k =

√
ρ

NT
∥H(t)∥Fx(t)

k + n
(t)
k (10)
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where k = 1, 2, ...,K, t = 1, 2, ...,M ; x(t)
k denotes the k-th transmitted real signal in C(t); y(t)k is the corresponding

equivalent receive signal; n(t)
k denotes the equivalent noise satisfying distribution N (0, 1/2). The expression (10)

mean that all the real signals in C(t) will be carried by the equivalent SISO fading ∥H(t)∥F under an i.i.d. real

Gaussian noise. In sequence, we will consider the design of the KM real signals x(t)
k , k = 1, 2, ...,K, t = 1, 2, ...,M .

Let QM be a M dimensional real lattice constellation [13], [15], and x ∈ QM . The lattice point x is often a

rotated version of common real signal vector, as

x = GMs (11)

where s is M × 1 real signal vector, whose components are taken from common PAM constellations; GM is a

M ×M unitary rotation matrix. Obviously, the minimum symbol-wise Hamming distance between any two distinct

signal vectors s ̸= s′ is just one. But the rotation process spreads PAM points in s over all elements in x, so that

any two distinct lattices in QM have all their corresponding elements be different, i.e., the symbol-wise Hamming

distance between them becomes M , which will perform better in aspect of anti-fading. More explanations about

multiple dimensional lattice constellations are presented in Appendix A.

Generally, the M -dimensional signals taken from such QM have the ability to exploit the diversity gain from

multiple independent fadings. At the same time, according to the derivation in (10), there are M equivalent SISO

fadings ∥H(t)∥F , t = 1, 2, ...,M which fades independently. The idea of LJ-OSTBC is inspired by combining the

two properties of lattice constellation and OSTBC. The key design is to assign the M dimensions of QM into

M different codewords so that each dimension of QM can be transmitted via a different equivalent SISO fading.

Thus, we choose one real signal in each codeword of C(1) ∼ C(M) to compose one M dimensional real vector

[x
(1)
k , x

(2)
k , ..., x

(M)
k ]T , k = 1, 2, ...,K. Naturally, K vectors are obtained as each codeword has K real signals.

Let all these vectors be taken from QM , which is defined as

xk
∆
= [x

(1)
k , x

(2)
k , ..., x

(M)
k ]T ∈ QM , k = 1, 2, ...,K (12)

The signal design of LJ-OSTBC is described more clearly in the Fig. 1. These codewords C(1) ∼ C(M), expressed

as the linear form of dispersion matrices, are arranged at M different rows. These real signals which correspond

to the same index k (k = 1, 2, ...,K) compose a M × 1 column vector. All the K column vectors are the lattices

from QM . Some examples of LJ-OSTBC will be given in Appendix B.

When using a LJ-OSTBC with a certain constellation, we often mention in the remaining contents that “the

LJ-OSTBC with QM rotated from a
√
W -PAM”, where W is a given positive integer. That actually means that

each complex signals in the code is taken from the W -QAM constellation. If the code rate is given by R, the

information efficiency η of the proposed LJ-OSTBC should be η = Rlog2W bits per channel use (bpcu).

Substituting (12) to (10), we can obtain the equivalent model of LJ-OSTBC in terms of lattice vectors, as

yk=

√
ρ

NT
diag

([
∥H(1)∥F , ∥H(2)∥F , ..., ∥H(M)∥F

])
xk + nk (13)

where yk
∆
= [y

(1)
k , y

(2)
k , ..., y

(M)
k ]T , nk

∆
= [n

(1)
k , n

(2)
k , ..., n

(M)
k ]T , and k ∈ {1, 2, ...,K}. The expression

(13) also shows that the entries at different dimensions of lattice xk do be equivalently transmitted by different

December 10, 2015 DRAFT
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M
 b

lo
ck

s alo
n
g
 tim

e

All these column vectors are taken from 

an M-dimensional real lattice constellation

(1) (1) (1) (1) (1) (1) (1)

1 1 2 2 ...
K K

x x xC A A A

(2) (2) (2) (2) (2) (2) (2)

1 1 2 2
...

K K
x x xC A A A

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 ...M M M M M M M

K K
x x xC A A A

Fig. 1. Signal design for LJ-OSTBC

“fadings” ∥H(t)∥F , t = 1, 2, ...,M . Due to the aforementioned Hamming distance property of QM , the vector xk

will be identified in QM by knowing just one element at any dimension of xk. From intuition, the receiver is

possibly able to recover the vector xk as long as anyone of ∥H(t)∥F , t = 1, 2, ...,M , does not faded deeply. Except

that all ∥H(t)∥F , t = 1, 2, ...,M , fall in deep fading simultaneously, xk can not be recovered. But this case is very

hard to arise for ∥H(t)∥F , t = 1, 2, ...,M are independent on each other. Thereby, the performance of anti-fading

is improved greatly without spending additional power or rate loss.

Let’s consider the decoding complexity of the LJ-OSTBC. The LJ-OSTBC along M blocks include MK real

signals. They are separated into K vectors x1, x2, ..., xK , which are uncorrelated mutually. Based on (13), the ML

decoding metric of any xk can be obtained as

x̂k = argmin
xk∈QM

 M∑
t=1

∣∣∣∣y(t)k −
√

ρ

NT
∥H(t)∥Fx

(t)
k

∣∣∣∣
2
 (14)

where k ∈ {1, 2, ...,K} and each vector xk can be decoded individually. (14) means that all MK real signals in

LJ-OSTBC are K-group decodable and just require M real symbols joint ML decoding, whose complexity is much

lower than that of all MK signals joint ML decoding. We use the number of calculating and comparing the above

ML metric to measure the decoding complexities. When the LJ-OSTBC is with QM rotated from
√
W -PAM, it is

required to compute and compare the ML metric (
√
W )MK/M times for each block on average.

IV. PROOF OF THE DIVERSITY GAIN

In addition, it can be seen from (13) that each xk, k ∈ {1, 2, ...,K} should have the same performance for

they go though the same fadings and distribution of noises. Thus, we just consider anyone of them and omit the

subscript k in the following performance analysis. Let x = [x(1), x(2), ..., x(M)]T , x′ = [x′(1), x′(2), ..., x′(M)]T ,

and x ̸= x′ ∈ QM . P (x → x′) denote the pairwise error probability (PEP), which is the probability of the received

vector y to be closer to x′ than to x, assuming that the lattice point x is transmitted. In order to prove the diversity

gain of the proposed LJ-OSTBC, we will derive the Chernoff bound of the PEP based on the ML metric in (14).

December 10, 2015 DRAFT
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For expressing conveniently, we define that α(t) ∆
= ∥H(t)∥2F , t = 1, 2, ...,M and let Ω =

[
α(1), α(2), ..., α(M)

]
.

First, supposing that Ω is fixed and known, the conditional PEP is given according to (14), as

P (x → x′|Ω)

= P

(
M∑
t=1

∣∣∣∣y(t) −√ρα(t)

NT
x′(t)

∣∣∣∣2 <
M∑
t=1

∣∣∣∣y(t) −√ρα(t)

NT
x(t)

∣∣∣∣2
)

∆
= P (X > A) (15)

where

X = −
M∑
t=1

√
ρα(t)

/
NT (x

(t) − x′(t))n(t), (16)

A =
1

2

M∑
t=1

(
ρα(t)

/
NT

)
(x(t) − x′(t))

2
. (17)

It is not hard to see that X is a Gaussian random variable and A is a constant when the condition Ω is known.

Furthermore, as n(t) ∼ CN (0, 1/2), it can be derive that the mean of X is zero and the variance is σ2
X = A.

The conditional PEP can be rewritten as P (x → x′ |Ω ) = QGuas(A/σX), where QGuas(·) is the Gaussian tail

function QGuas(x) = (2π)−1/2
∫∞
x

exp(−a2/2)da, which satisfies the Chernoff bound QGuas(x) ≤ exp(−x2/2).

Therefore

P (x → x′|Ω) ≤ exp

(
−A

2

)
=

M∏
t=1

exp
(
−v(t)α(t)

)
(18)

where

v(t)
∆
= (ρ/4NT )

(
x(t) − x′(t)

)2
(19)

The PEP P (x → x′) can be obtained by averaging over the fadings Ω =
[
α(1), α(2), ..., α(M)

]
, whose joint

probability density function is given by p (Ω) = p
(
α(1)

)
p
(
α(2)

)
...p
(
α(M)

)
as α(1) ∼ α(M) are independent to

each other. Then according to (18) we can get

P (x → x′) =

∫
Ω

P (x → x′ |Ω ) p(Ω)dΩ ≤
M∏
t=1

P (t) (20)

where for ∀ t ∈ {1, 2, ...,M},

P (t) = E
(
exp(−v(t)α(t))

)
=

∫
α(t)

exp(−v(t)α(t))p(α(t))dα(t) (21)

In the sequel, we will analyze the probability density property of α(t), t = 1, 2, ...,M . Let the channel matrix

H(t) = {h(t)
ij }NT×NR

, where h
(t)
ij , i = 1, 2, ..., NT , j = 1, 2, ..., NR, t = 1, 2, ...,M , denotes the channel from ith

transmit antenna to jth receive antenna at the t-th block. Obviously, α(t) =
∑NT

i=1

∑NR

j=1 |h
(t)
ij |2; and the probability

density property of α(t) is independent on t due to the identical statistical property for all H(t), t = 1, 2, ...,M . For

simplifying the expression, we define the modulus of NTNR channels in H(t) as zl = |h(t)
ij |, where l = (i−1)NR+j,

i = 1, 2, ..., NT , j = 1, 2, ..., NR, and t is omitted. Thus α(t) can be rewritten as

α(t) =

NTNR∑
l=1

z2l , l = 1, 2, ..., NTNR (22)

December 10, 2015 DRAFT
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Moreover, we know that all zl, l = 1, 2, ..., NTNR will be i.i.d and obey the standard Rayleigh distribution as h
(t)
ij ,

i = 1, 2, ..., NT , j = 1, 2, ..., NR are i.i.d. and satisfy CN (0, 1). So, the probability density function of zl is

f (zl) = 2zl exp
(
−z2l

)
, l = 1, 2, ..., NTNR (23)

Since zl, l = 1, 2, ..., NTNR are mutually independent, substituting (22) to (21), (21) can be rewritten as

P (t) =

NTNR∏
l=1

E
(
exp(−v(t)z2l )

)
(24)

where t = 1, 2, ...,M . According to (23), it is not hard to derive that E
(
exp(−v(t)z2l )

)
= 1/(1 + v(t)), l =

1, 2, ..., NTNR. Thus, we can obtain from (24) that

P (t) =

(
1

1 + v(t)

)NTNR

(25)

Also, the equation (25) holds for any t ∈ {1, 2, ...,M} due to the symmetry property. Then, substituting (19) and

(25) to (20), the Chernoff bound of PEP can be given as

P (x → x′) ≤
M∏
t=1

 1

1 + ρ(x(t)−x′(t))
2

4NT

NTNR

(26)

Since x ̸= x′ ∈ QM and their Hamming distance is equal to M , then any corresponding dimensions of x and x′

should be unequal, i.e., x(t)−x′(t) ̸= 0 for ∀ t ∈ {1, 2, ...,M}. Therefore, the above ”1” at the denominator in (26)

can be neglected when high SNR (ρ >> 1). Then, the PEP can be upper-bounded by the following expression, as

P (x → x′) ≤ ρ−MNTNR

(
(4NT )

−M
2

M∏
t=1

(
x(t) − x′(t)

))−2NTNR

. (27)

The diversity gain is the power of SNR in the denominator of the PEP expression in (27). Thus, the achieved

diversity gain is MNTNR orders for the constructed LJ-OSTBCs, which is M times of the diversity gain for common

STBCs. In STBCs, NT and NR are usually named as the orders of transmitted space diversity and received space

diversity, respectively. Then M , which implies the free degrees of channel along time, is the achieved order of time

diversity here. Since the proposed code obtains more diversity gain, it should have sharper slope of bit-error-rate

(BER) reduction along SNR than that of common codes with only full space diversity. This point will be verified

in following simulations. In addition, the coding gain is determined by the value of
∏M

t=1 (x
(t) − x′(t)) from (27),

which is the so-called product distance [13] from x to x′. To obtain good performance, QM used in LJ-OSTBCs

is chosen with such real lattices in [15], whose Hamming distance is always M and product distance is maximized

by optimal rotation matrices.

V. NUMERICAL RESULTS

In this section, we give some analysis and evaluation about the performance, decoding delay and decoding

complexity of the proposed LJ-OSTBCs by simulations comparison with other typical STBCs. The channels with

two different fadings parameters are included here. The channel state informations are supposed being perfectly

known at the receiver but unknown at the transmitter.
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A. Performance Under Block-Independently Fading Channels

First, we compare the BER performance of the proposed LJ-OSTBCs with OSTBCs [1], [3], Golden code [5],

and QOSTBC [4], which are some typical codes with full space diversity. The channel fadings are constant within

one block and vary independently from one block to another. In Fig. 2, we show the BER performance of LJ-

OSTBC for NT=2=NR, where three Alamouti blocks are coded jointly and Q3 rotated from 4PAM signals are

used. Accordingly, Golden code and Alamouti code use 4QAM and 16QAM, respectively. Then, all of them have

the information rate 4 bpcu. Besides, we also simulate the BER of the code in [12] under 4 bpcu, which actually

corresponds to the LJ-OSTBC with double Alamouti blocks jointly coded. We find that Alamouti code and Golden

code, which both have 4 orders diversity, almost have parallel slopes of BER-SNR curves in high SNR area; the

proposed LJ-OSTBC with M=3, which has 12 orders diversity, obtains the biggest curve slope in all these codes.

As a result, the proposed LJ-OSTBC have about 4dB and 1.5dB performance gain at the BER 10−6 compared with

Golden code and the code [12], respectively.

6 8 10 12 14 16 18 20 22 24

10
−6

10
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10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

4bpcu, N
T
=2=N

R

 

 

Alamouti

Golden

Code [12]

LJ−OSTBC, M=3

Fig. 2. Performance of the LJ-OSTBC with M = 3 compared to Alamouti code, Golden code and the code [12], 4bpcu, NT = 2 and NR = 2.

In Fig. 3, the BER comparison from OSTBC to LJ-OSTBCs with M=2, 3, 4 is given for NT=4 and NR=1.

The OSTBC is the 4 × 4 code in [3] and uses 4QAM constellation; the LJ-OSTBCs with M=2, 3, 4 use the

lattice constellations Q2, Q3, Q4, respectively, all of which are rotated from 2PAM signals. Thus, the information

rates of them are all 1.5 bpcu. Fig. 3 shows that the performance of LJ-OSTBCs improves with M increasing as

the diversity gain rises; and the LJ-OSTBCs with just small M values (M ≥ 2) can enormously outperform the

common OSTBCs; the further improvement of performance will become slow when M is more than four. Thus,

we usually choose M = 2, 3, 4 for the proposed LJ-OSTBCs so that the decoding complexity is still low.
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Fig. 3. Performance of the LJ-OSTBC compared to OSTBC, 1.5bpcu, NT = 4 and NR = 1.
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Fig. 4. Performance of the LJ-OSTBC with M = 4 compared to QOSTBC, 3bpcu, NT = 4 and NR = 1.
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In Fig. 4, we compare the BER of LJ-OSTBC to the well-known 4× 4 QOSTBC in [4] for NT=4 and NR=1

system. Let M=4, so LJ-OSTBC employs four-real-symbols joint ML decoding, whose complexity is comparable

to that of QOSTBC. Besides, 8QAM constellation and Q4 rotated from 4PAM are used for QOSTBC and LJ-

OSTBC, respectively. Thus, they have the same information rate 3 bpcu. As shown in Fig. 4, though the proposed

LJ-OSTBC is slightly worse than QOSTBC at low SNR, it significantly outperforms QOSTBC at high SNR regions

(SNR>15dB) due to the larger slope of BER-SNR curve, where about 3dB gain is obtained at the BER 10−5.

B. Performance Under Block-Correlatively Fading Channels

Though the LJ-OSTBC is designed at block-independently fading assumption, it is necessary to give an evaluation

about the performance and decoding delay when the channel variation slows down. The simulation analysis is

presented here when the channel exists correlation from one block to another. A typical scenario of 1.9 GHz

PCS system is considered, in which the symbol rate is 6.4kBd and the speed of mobility is 112 and 250 km/h,

respectively. A large Doppler spread often results in the channel time-varying with a certain correlation coefficient.

We use the Jakes’ model introduced in [18] to describe the relations of mobility speed, Doppler spread, coherent

time and correlation coefficient. The channel fadings in different transmit-receive links are assumed to be i.i.d and

the correlation coefficient is common for all links. Let R(l) be the correlation coefficient from the t-th block to

the (t+ l)-th block. According to the Jakes’ model, we have R(l) = J0 (2πfdTBl), where J0(.) is the zeroth-order

Bessel function of the first kind; fd is the maximum Doppler spread; TB is the period of each block. Some detailed

parameters for the scenario are shown in Table I. As an example, we simulate the proposed LJ-OSTBC with M = 3,

NT = 2 and NR = 1 based on lattice constellation Q3 rotated from 2PAM, where three adjacent blocks are used to

encode jointly so that the decoding delay is minimum for the proposed approach. As shown in Table I, the decoding

delay is about 1/5 and 2/5 of the coherent time for the speed 112 km/h and 250 km/h, respectively.

The BER of proposed code is shown in Fig. 5 under different mobility speed. For the static case (speed=0),

where the channel keeps invariant during different blocks and there is no time diversity, the proposed code has

the identical performance as the original Alamouti code. For the mobile case (speed=112 km/h or 250 km/h),

the channel will vary with a certain correlation from one block to another. Even if such a correlation is large

(correlation coefficient is 0.9629 and 0.8217, respectively, for the above two speeds), the proposed code can still

obtain significant improvement of performance. When BER=10−4, compared with the static case, the proposed

code has at least 3dB gain for speed 112km/h and 5dB gain for speed 250km/h. In summary, the proposed code

is suitable for mobile wireless communications; the performance improves obviously by using just 2∼3 adjacent

blocks to jointly code, so that the decoding delay is often acceptable and is much less than the coherent time.

C. Comparisons of the Complexity of Decoding

Given by an information efficiency η, we compare the decoding complexity of the proposed LJ-OSTBC and

other codes in Table II and Table III, which correspond to the cases NT = 2 and NT = 4, respectively. Using

η and considering code rate R, the modulation orders W can be obtained by using the equation η = Rlog2W ,

which is presented in Section III. The number of symbols needing jointly decoding is known for those codes. So,
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the equations of decoding complexity can be derived, which are related with η. Moreover, as several particular

examples, the decoding complexity comparisons of those codes for η = 2 and η = 4 with NT = 2 are shown

in Table II, and the case η = 3 with NT = 4 is shown in Table III. When NT = 2, the decoding complexity of

LJ-OSTBC with M = 2, 3, 4 are a litter higher than Alamouti code, but are lower than that of Golden code. When

NT = 4, the decoding complexity of LJ-OSTBC with M = 2, 3, 4 is basically comparable with that of QSTBC-Su

[4].

VI. CONCLUSIONS

In this paper, we propose a construction method of joint OSTBC based on M dimensional lattice constellations

and prove that the achieved diversity gain of the proposed code is M times of that in traditional STBCs. It is

generally thought that a common STBC can obtain at most full space diversity. But the proposed code shows

that the diversity gain of STBCs can further increase by exploiting time diversity simultaneously, which is a

new attempt in space-time coding. The remarkable improvement of performance for proposed code is verified by

numerical results by comparing with other typical STBCs. In addition, it is noteworthy that just small M value can

improve the coding performance significantly, so that the relevant decoding complexity is still low and decoding

TABLE I

SIMULATION PARAMETERS OF THE MOBILE SCENARIO

Carried frequency 1.9 GHZ

Symbol rate 6.4 kBd

Symbol period Ts = 1/6400 ≈ 1.56× 10−4 second

Block period TB = 2Ts ≈ 3.12× 10−4 second

Speed of mobility 112km/h 250km/h

Doppler spread fd=197 Hz fd=440 Hz

Coherent time Tc ≈ 1/fd = 5.1× 10−3 second Tc ≈ 1/fd = 2.3× 10−3 second

Correlation coefficient for adjacent blocks R(1)=0.9629 R(1)=0.8217

Decoding delay of the proposed code 3TB ≈ 9.36× 10−4 second (three blocks length)

TABLE II

COMPARISONS OF DECODING COMPLEXITY GIVEN THE INFORMATION EFFICIENCY η WHEN NT = 2

Alamouti Golden LJ-OSTBC LJ-OSTBC LJ-OSTBC

code code M = 2 M = 3 M = 4

Modulation orders 2η 2
η
2 2η 2η 2η

Number of symbols for 1 complex 4 complex 2 real 3 real 4 real

joint ML decoding symbol symbols symbols symbols symbols

Decoding complexity ( the

number of calculating ML

metric at each block)

2 (2η)
(
2

η
2

)4
2
(√

2η
)2

4
3

(√
2η

)3 (√
2η

)4

Decoding complexity, η=2 bpcu 8 16 8 32/3 16

Decoding complexity, η=4 bpcu 32 256 32 256/3 256
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delay is usually feasible. In future work, a symbol-by-symbol time-varying fading channel, which fades with more

degrees of freedom along time than the block fading case, would be considered for analogous space-time coding

to make use of such time-varying property and obtain both space diversity and more time diversity.
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Proposed LJ−OSTBC, Speed=0km/h

Proposed LJ−OSTBC, Speed=112km/h

Proposed LJ−OSTBC, Speed=250km/h

Fig. 5. Performance of the LJ-OSTBC with M = 3 under different mobility speeds, 2bpcu, NT = 2, NR = 1.

APPENDIX A

EXPLANATIONS OF MULTI-DIMENSIONAL LATTICE CONSTELLATIONS

Initially, [13] and [14] propose the concept of multi-dimensional lattice which can perform well in SISO fading

channels. Later, a class of space-time block codes based on lattices are presented in [19] and [20] in MIMO channels,

TABLE III

COMPARISONS OF DECODING COMPLEXITY GIVEN THE INFORMATION EFFICIENCY η WHEN NT = 4

OSTBC QOSTBC- LJ-OSTBC LJ-OSTBC LJ-OSTBC

Su [4] M = 2 M = 3 M = 4

Modulation orders 2
4η
3 2η 2

4η
3 2

4η
3 2

4η
3

Number of symbols for 1 complex 2 complex 2 real 3 real 4 real

joint ML decoding symbol symbols symbols symbols symbols

Decoding complexity ( the

number of calculating ML

metric at each block)

3× 2
4η
3 2(2η)2 3

(
2

2η
3

)2
2
(
2

2η
3

)3
3
2

(
2

2η
3

)4

Decoding complexity, η=3 bpcu 48 128 48 128 3 × 128
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where the lattices can exploit just the space diversity and they still belong to common space-time codes.

Supposing s ̸= s′ in (11), the lattices are x = GMs and x′ = GMs′. The rotation matrices GM makes lattices

satisfy the properties: 1) let ∆x = x−x′ , [∆x(1),∆x(2), ...,∆x(M)]T , then ∆x(t) ̸= 0 holds for ∀ t = 1, 2, ...,M ,

so that the symbol-wise Hamming distance for any two distinct lattices is M ; 2) the minimum product distance

min
x̸=x′

|
∏M

t=1 ∆x(t)| is as large as possible. These properties make lattices perform well for anti-fading.

We give some rotation matrices GM (M = 2, 3, 4), which are from [15] and used in this paper, as: G2 =

[ 0.8507 − 0.5257; 0.5257 0.8507 ], G3 = [ − 0.3280 − 0.7370 − 0.5910; − 0.5910 − 0.3280 0.7370; −

0.7370 0.5910 −0.3280 ], and G4 = [ −0.3664 −0.2264 −0.4745 −0.7677; −0.7677 −0.4745 0.2264 0.3664;

0.4231 − 0.6846 − 0.5050 0.3121; 0.3121 − 0.5050 0.6846 − 0.4231 ]. The original vector s in (11) is the

common M × 1 real signal vector, whose components are from the real or imaginary coordinates of general QAM

constellations. For instance, when complex signals are taken from W -QAM constellation, each real signal in s is

equivalently from
√
W -PAM constellation. Therefore, in the simulations of this paper, it is often mentioned that “a

proposed LJ-OSTBC with a certain QM rotated from
√
W -PAM”.

APPENDIX B

EXAMPLES OF LJ-OSTBCS

Next, some examples of LJ-OSTBC are given. When NT = 2 and M = 3, three Alamouti codewords [1] are

coded jointly, and the corresponding LJ-OSTBC is given by (28), where [x
(1)
k x

(2)
k x

(3)
k ]T ∈ Q3, k = 1, 2, 3, 4.

When NT = 4 and M = 2, two OSTBCs [3] are coded jointly, and the LJ-OSTBC is shown in (29), where

[x
(1)
k x

(2)
k ]T ∈ Q2, k = 1, 2, ..., 6.

C(1) =

 x
(1)
1 + jx

(1)
2 x

(1)
3 + jx

(1)
4

−x
(1)
3 + jx

(1)
4 x

(1)
1 − jx

(1)
2

C(2) =

 x
(2)
1 + jx

(2)
2 x

(2)
3 + jx

(2)
4

−x
(2)
3 + jx

(2)
4 x

(2)
1 − jx

(2)
2


C(3) =

 x
(3)
1 + jx

(3)
2 x

(3)
3 + jx

(3)
4

−x
(3)
3 + jx

(3)
4 x

(3)
1 − jx

(3)
2

 (28)

C(1) =


x
(1)
1 + jx

(1)
2 x

(1)
3 + jx

(1)
4 x

(1)
5 + jx

(1)
6 0

−x
(1)
3 + jx

(1)
4 x

(1)
1 − jx

(1)
2 0 x

(1)
5 + jx

(1)
6

−x
(1)
5 + jx

(1)
6 0 x

(1)
1 − jx

(1)
2 −x

(1)
3 − jx

(1)
4

0 −x
(1)
4 + jx

(1)
6 x

(1)
3 − jx

(1)
4 x

(1)
1 + jx

(1)
2



C(2) =


x
(2)
1 + jx

(2)
2 x

(2)
3 + jx

(2)
4 x

(2)
5 + jx

(2)
6 0

−x
(2)
3 + jx

(2)
4 x

(2)
1 − jx

(2)
2 0 x

(2)
5 + jx

(2)
6

−x
(2)
5 + jx

(2)
6 0 x

(2)
1 − jx

(2)
2 −x

(2)
3 − jx

(2)
4

0 −x
(2)
5 + jx

(2)
6 x

(2)
3 − jx

(2)
4 x

(2)
1 + jx

(2)
2



(29)
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