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Abstract—Minimization of drive test (MDT) has recently been
standardized by 3GPP as a key self organizing network (SON)
feature. MDT allows coverage to be estimated at the base station
(BS) using user equipment (UE) measurement reports with the
objective to eliminate the need for drive tests. However, most
MDT based coverage estimation methods recently proposed in
literature assume that UE position is known at the BS with
100% accuracy, an assumption that does not hold in reality.
In this paper we develop an analytical model that allows the
quantification of error in MDT based autonomous coverage
estimation (ACE) as a function of error in UE as well as BS
positioning. Our model also allows characterization of error in
ACE as function of standard deviation of shadowing.

Index Terms—Self-organization, coverage estimation, position
estimation error

I. I NTRODUCTION

Timely cell outage detection is a major problem in state of
the art wireless cellular systems. In legacy cellular networks
cell outages are generally detected through a combination of
following: 1) Field drive tests, 2) hardware or software failure
alarms at the operation and maintenance center (OMC), 3)
complaints raised by customers. These methods are manual
and suffer from inherent delay. Reliability of these methods
is also limited because of the human error factor and low
spatio-temporal granularity of the reports and alarms available
at OMC or measurements gathered through drive tests. On
the other hand, cell densification is emerging as a dominant
strategy for increasing cellular system capacity and quality of
service in wake of 5G [1]. With increasing cell density the
rate of cell outage is also bound to increase. Aforementioned,
manual cell outage detection methods cannot cope with the
complexity and rate of cell outages expected in emerging ultra-
dense networks, in cost effective and reliable fashion.

To overcome this challenge, 3GPP has recently standardized
a self-organizing network (SON) use case, called minimization
of drive test (MDT) [2], [3]. Hapsari et al. [2] describes in
detail the solution adopted in 3GPP MDT whilst Baumann et
al. [3] demonstrates that MDT can reduce drive tests. With
MDT standardized, BSs will have access to user equipment
(UE) reported measurements that will consist of reference
signal received power (RSRP) of the serving and neighboring
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cells among other measurement reports. These measurements
are called MDT measurements. Using MDT measurements
level of coverage in an area of interest can be estimated
without conducting expensive and time consuming drive tests
or waiting for customer complaints. Cell outages can thus
be detected by applying data analytics and machine learning
techniques of various types [4], [5] on the MDT reports.
However, most of these recently proposed methods that esti-
mate coverage using MDT with different algorithms e.g., grey
prediction,k-nearest neighbor anomaly detector (k-NNAD) [4]
are beleaguered by one common challenge. These methods
assume that UE position is accurately known at the BS. This
assumption does not reflect reality faithfully as even the most
accurate UE positioning methods have non-zero error range
[6], [7]. In this paper we address this challenge by analyzing
and quantifying the error in coverage estimation caused by
the error in UE positioning. To the best of our knowledge our
recent study in [8] was the first one to look into effect of UE
positioning error on coverage estimation through MDT.

In this paper we extend that work by incorporating the
impact of shadowing and BS position inaccuracy into the
quantification of error in coverage estimation. Significance of
this work lies in the fact that results obtained can be used
to calibrate the estimated coverage through MDT, for given
values of standard deviation of shadowing and UE and BS
positioning error range, in area under consideration. The rest of
the paper is organized as follows: In Section II, we discuss the
autonomous coverage estimation (ACE) framework. In Section
III, we derive the cell coverage probability of the ACE scheme
for the channel model with both pathloss and shadowing,
while Section IV gives the derivation for the pathloss dominant
channel model. In Section V, we present the numerical results
which show that our analytical derivations are very accurate.
Conclusions are drawn in Section VI.

II. A UTONOMOUSCOVERAGE ESTIMATION FRAMEWORK

We consider an ACE scheme which exploits the measure-
ment reports gathered by the UE. In such a system, UE mea-
surement reports are tagged with their geographical location
information and sent to their serving BS. After retrieving the
measurements, the serving BS further appends its geographical
location information and forwards them to a trace collection
entity (TCE), which can then generate the coverage map.
The reported geographical coordinates of the UE and BSs are
obtained from positioning techniques, such as observed time
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difference of arrival (OTDOA) or assisted global positioning
system (A-GPS) [6]. However, these techniques are prone
to errors, and hence, the reports may be tagged to a wrong
location. Given a reported UE position,o, with coordinates
(c, d), we assume that its actual location is within a circular
disc with radiusr which is centered ato, as illustrated in Fig.
1(a). Furthermore, the actual position of the BS also lies within
a circular disc with radiuse centred at its reported position.

For analytical tractability, we consider a single cell deploy-
ment scenario where RSRP measurement reports are gathered
by the UE. Since MDT measurement reports are based on
long term averaged received power, only the shadowing and
pathloss effects are taken into consideration in our analysis.
The signal propagation model we employ for obtaining the
RSRP is as follows

Pr(p) =

(
p

p0

)−η
Pt

Pl(p0)
Φ, (1)

wherePr(p), Pt and η denote RSRP at distancep from the
BS, transmit power and pathloss exponent, respectively. The
parameterp0 denotes the reference distance with a known
pathloss,Pl(p0). The shadowing effect is modeled by the
random variable,Φ, which follows a log-normal distribution
such that10 log10 Φ follows a zero mean Gaussian distribution
with standard deviationσ in dB. The error in coverage
estimation as a result of such autonomous scheme is evaluated
by assessing the reliability of radio frequency (RF) coverage
on the measurement based on the fundamental metric of cell
coverage probability.

1) Cell Coverage Probability:In general, the cell coverage
probability can be defined as

C =
1
A

∫
P [Pr(p) ≥ γ] dA, (2)

and can be thought of equivalently as the average fraction of
the UE who at any time achieves a target RSRP,γ, i.e. the
average fraction of network area that is in coverage at any
time. Hence, given a circular radial distanceR from the BS,
we are interested in computing the percentage of area with
RSRP greater than or equal toγ.

2) Error in Coverage Estimation via ACE:The cell cover-
age probability obtained from (2) will be the same as the ACE
scheme when the tagged geographical location information
are accurate. However, the ACE scheme becomes sub-optimal
when the reported UE and BS positions deviate from the
actual, thus leading to a much lower cell coverage probability.
Hence, we define the error in coverage estimation via ACE,
which quantifies how its estimated coverage probability de-
viates from the actual cell coverage probability over a fixed
area, as follows

DA =

∣
∣
∣
∣
C − CACE

C

∣
∣
∣
∣ ∗ 100% (3)

where C and CACE are the actual cell coverage probabil-
ity given in (2) and the coverage probability estimated from
the ACE scheme, respectively, over a fixed area,A. In the
following sections we derive the coverage probability of the
ACE scheme.

III. C ELL COVERAGE PROBABILITY WITH ACE

Here we consider the scenario where both shadowing and
pathloss are the dominant factors in the channel propagation

(a) BS and UE positioning (b) Calculating the angles

Fig. 1. (a) UE with reported positiono, its actual position lies within
the circular disc with radiusr centeredo. (b) shows the triangle created
in (a).

model. The probability that the reported RSRP (indB) at
a distancep from the BS will exceed the thresholdγ, i.e.
P[Pr(p) ≥ γ] can be obtained from [9] as

P[Pr(p) ≥ γ] =
1
2
−

1
2
erf
(
a + b ln

p

R

)
, (4)

wherea=

(
γ(dBm)−Pt(dBm)+Pl(p0)(dB)+10η log10

R
p0

)

σ
√

2
, andb =

(10η log10 e) /σ
√

2 when there are no errors in UE and BS
location information. In the same way, cell coverage probabil-
ity of the ACE scheme without error in location information
can be expressed as

C=
1
2
−

1
R2

∫ R

0

p erf
(
a+b ln

p

R

)
dp. (5)

A. UE Geographical Location Information Error

Now we consider the case with error in the geographical
location information reported by the UE to their serving BS.
As stated earlier, the actual location of a UE lies within a
circular disc centered at the reported location. Consequently,
its actual location with reference to its reported location can
be modeledas

p(κ, φ) =
√

p2 + κ2 − 2pκ cos φ, (6)

where0 ≤ κ ≤ r and 0 ≤ φ ≤ 2π. Note thatκ and φ are
used to define all possible actual UE positions. The PDF of the
distance and direction of the UE’s actual location with respect
to its reported position are1r and 1

2π , respectively. Therefore,
the modifiedP[Pr(p) ≥ γ] as a result of the inaccuracies in
the UE’s location information can be obtainedas

P [Pr(p) ≥ γ] = Eκ,φ {P [Pr(p(κ, φ)) ≥ γ]} = (7)

1
2πr

∫ r

0

∫ 2π

0

P [Pr(p(κ, φ)) ≥ γ] dφdκ,

whereE is the expectation. This further simplifiesas

P[Pr(p) ≥ γ] =

1
2πr

∫ r

0

∫ 2π

0

[
1
2
−

1
2
erf

(

a+
b

2
ln

(p(κ, φ))2

R2

)]

dφdκ, (8)

by substituting (4) into (7). Consequently, the actual percent-
age of the areaA in coverage due to the ACE scheme can be
obtained as

CACE =
1
A

∫
P[Pr(p) ≥ γ]dA = (9)

1
πrR2

∫ R

0

∫ r

0

∫ 2π

0

p

[
1
2
−

1
2
erf

(

a+
b

2
ln

(p(κ, φ))2

R2

)]

dφdκdp.
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Fig. 2. BS with reported position atX has an actuallocationX, which is
displaced fromX by e.

B. UE and BS Geographical Location Information Error

In addition to the UE’s position error, we consider here the
scenario where the geographical location information reported
by the serving BS to the TCE is displaced at a distancee
from its actual location, as depicted in Fig 2. Hence, the
measurement reports stored in the TCE are also tagged with
a wrong BS position, thus resulting in the generation of a
wrong coverage map. In order to estimate the actual coverage
probability of the ACE scheme over the areaA (circular
area) centered at the reported BS positionX, we estimate
the fraction of the measurement reports that will still be in
coverage based on the actual BSpositionX.

ConsiderR as the radius of the area of interestA centered
at X, we can create a virtual representation ofA centered
at X such that both intersects atS1 and S2, as shown in
Fig. 2. The intersecting points are characterized by the angle,
α = π−cos−1

(
e

2R

)
. Hence, using this property, we define two

regions,A1 andA2
1, which are the shaded and unshaded areas

in the area of interest, respectively, and we estimate the actual
fraction of UE in coverage based on the actual BSposition,
X. The distance between the reported UE position in region
A1 and A2 with respect to the actual BS positions can be
expressed as

p̃A1(θ)=

√

R2+e2−2Recos

[

π−θ−sin−1

(
e sin θ

R

)]

(10)

p̃A2(θ)= sin

[

θ−sin−1

(
esin(π−θ)

R

)][
sin(π−θ)

R

]−1

, (11)

respectively, whereπ − α ≤ θ ≤ 2π − α and2π − α ≤ θ ≤
3π−α for p̃A1(θ) andp̃A2(θ), respectively. Consequently, the
actual coverage probability of the ACE scheme over the area
A can be expressed as

CACE =
2

πR2

(∫ π−α

0

∫ p̃A1 (θ)

0

pP[Pr(p) ≥ γ]dpdθ

+
∫ α

0

∫ p̃A2 (θ)

0

pP[Pr(p) ≥ γ]dpdθ

)

, (12)

when there are errors in both the UE and BS geographi-
cal location information. By substituting the expressionof
P[Pr(p) ≥ γ] in (8) into (12), it can be further expressed as
(13) which is given at the top of the next page.

1Note that the sum of the areas of the two region is such thatA1+A2 = A

IV. ACE COVERAGE PROBABILITY: PATHLOSS ONLY

CHANNEL MODEL

Here we consider the scenario where the pathloss is the
predominant factor in the channel propagation model. We
further assume that the cell radiusR is such thatR =
p0

(
γPl(p0)

Pt

)η

. Hence for the case with no error in geographical

location information,P [Pr(p) ≥ γ] = 1, while 0 ≤ p ≤ R.
Consequently from equation (2), the cell coverage probability
over the circular radial distance,R, C = 1, in this case.

A. UE Geographical Location Information Error

It can easily be shown that for the case without shadowing
and with only UE positioning error, P [Pr(p) ≥ γ] in (7) is
equivalent to the fraction of the circular disc area that lies
within the cell radiusR, as illustrated in Fig 1. By applying
laws of trigonometry, weobtainP [Pr(p) ≥ γ] as follows

P [Pr(p) ≥ γ] =
β − sin β

2π
+

θ − sin θ

2π

(
R

r

)2

, (14)

where β(p) = 2 cos−1
[

p2+r2−R2

2pr

]
, θ(p) =

2 cos−1
[

R2+p2−r2

2pR

]
and 0 ≤ p ≤ R. Hence, the cell

coverage probability over the areaA and as a result of the
ACE scheme can be obtained according to (9) as
CACE =

1
A

∫
P [Pr(p) ≥ γ]dA = (15)

1
πR2

∫ 2π

0

∫ R

0

p

(
β − sin β

2π
+

θ − sin θ

2π

(
R

r

)2
)

dp,

for the case without shadowing but with error in UE position.

B. UE and BS Geographical Location Information Error

Following a similar approach with the shadowing case, we
derive the cell coverage probability for the case with errors in
both the UE and BS geographical location information. The
cell coverage probability of the ACE for the case with pathloss
as the dominant factor in the channel propagation model can
also be expressed as in (12), butwith P[Pr(p) ≥ γ] defined in
(14). We thus arrive at (16) given at the top of the next page.

V. NUMERICAL RESULTS

For the numerical results, we consider measurement re-
ports gathered for a single cell. Throughout this section, we
assumeη = 3.5, Pt = 46 dBm, γ = −84.5 dBm and
σ = 7 dB, unless otherwise stated. We estimate the cell
coverage probability over a circular coverage area having

radiusR = p0

(
γPl(p0)

Pt

)η

≈ 553.1681 m from the BS. We
first validate the derived cell coverage probability expressions
of the ACE scheme for both the case with only errors in the
reported UE geographical location information, and the case
with errors in the reported UE and BS geographical location
information, in Fig. 3. We compare our analytical results on
error in coverage with ACE over the areaA = πR2, i.e.
DA, with the simulated results for the case when pathloss and
shadowing are the dominant factors in the signal propagation
model, in the upper graphs of Fig. 3. Whereas, a comparison
for the case where only pathloss is the dominant factor is
presented in the lower graph of Fig. 3. We note that our
analytical results tightly matches with the simulation.
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CACE =
2

πR2

(∫ π−α

0

∫ p̃A1 (θ)

0

∫ r

0

∫ 2π

0

p

[
1
2
−

1
2
erf

(

a+
b

2
ln

(p(κ, φ))2

R2

)]

dφdκdpdθ

+
∫ α

0

∫ p̃A2 (θ)

0

∫ r

0

∫ 2π

0

p

[
1
2
−

1
2
erf

(

a+
b

2
ln

(p(κ, φ))2

R2

)]

dφdκdpdθ

)

. (13)

CACE =
2

πR2

(∫ π−α

0

∫ p̃A1 (θ)

0

p

(
β−sin β

2π
+

θ−sin θ

2π

(
R

r

)2
)

dpdθ+
∫ α

0

∫ p̃A2 (θ)

0

p

(
β−sin β

2π
+

θ−sin θ

2π

(
R

r

)2
)

dpdθ

)

. (16)
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Fig. 3. Error in coverage estimated via ACE withe = 20 in (13) and (16).
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Fig. 4. Coverage probability at the cell edge when e = 100 and r = 100.

Fig. 4 shows the coverage probability at the reported UE
position p̄, which is at an angleθ to the reported BS position,
for e = 100 m andr = 100 m. For the selectedθ values, it can
be observed that the coverage probability obtained via the ACE
scheme is much lower when there are UE and BS positioning
errors. In Fig. 5, we plot the error in coverage with ACE
against UE error radius,r, and BS position error,e. The results
show that the performance of the ACE scheme depreciates as
the UE and BS positioning error increases. It can be further
observed in Fig. 5 that the performance ACE scheme becomes
more degraded as the shadowing standard deviationσ reduces.
This implies that errors in UE and BS position estimation
are less severe on the coverage asσ increases. The reason
for this is that increasingσ introduces more randomness to
the received signal; hence randomness created by the UE
positioning error would have more impact on a lowerσ.
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Fig. 5. Error in coverage estimated via ACE: both shadowing and pathloss

VI. CONCLUSIONS

In this paper, we have investigated the impact of UE and
BS positioning error on the coverage estimated through a
minimization of drive test (MDT) based autonomous coverage
estimation (ACE) scheme. We showed that the performance
of the ACE scheme will be suboptimal as long as there are
errors in the reported geographical location information. Note
that in this paper, RSRP based ACE using MDT measurement
report has been presented. Since interference is a key limiting
factor in cellular communication, SINR based ACE, which
exploits RSRQ (Reference Signal Received Quality) MDT
measurement reports, deserves attention in future study.
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