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Abstract. Mammals have developed evolutionarily conserved 
programs of transcriptional response to hypoxia and inflam-
mation. These stimuli commonly occur together in vivo and 
there is significant crosstalk between the transcription factors 
that are classically understood to respond to either hypoxia 
or inflammation. This crosstalk can be used to modulate the 
overall response to environmental stress. Several common 
disease processes are characterised by aberrant transcrip-
tional programs in response to environmental stress. In this 
review, we discuss the current understanding of the role of the 
hypoxia-responsive (hypoxia-inducible factor) and inflamma-
tory (nuclear factor-κB) transcription factor families and their 
crosstalk in rheumatoid arthritis, inflammatory bowel disease 
and colorectal cancer, with relevance for future therapies for 
the management of these conditions.
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1. Introduction

Oxygen (O2) constitutes 20.8% of the atmospheric air, and 
is the third-most abundant element in the universe, after 
hydrogen and helium. It is not only a key component of all 
major biomolecules of living organisms, but also a key 
constituent of inorganic compounds. Oxygen homeostasis is 
crucially important to maintain the survival of all vertebrate 
species (1). Therefore, organisms developed a way to coor-
dinate the oxygen levels in the intracellular compartments 
in order to maintain homeostasis. When these mechanisms 
fail, and the intracellular concentration of oxygen decreases, 
a stress condition called hypoxia is created. Hypoxia can be 
defined as a condition lacking the necessary oxygen to meet 
metabolic requirements. The level at which this is reached 
will vary depending on the metabolic requirements of the 
cell. Hypoxia is a relevant physiological stress associated with 
many processes, such as adaptation to high altitudes or human 
diseases (e.g, cancer) (2). The hypoxia-inducible factors (HIFs) 
are a family of transcription factors whose levels are regulated 
in response to hypoxic stimuli, and when active can enact a 
transcriptional program that allows the cell to respond to the 
hypoxic environment.

Another important physiological stress is inflammation. 
Inflammation represents a protective attempt to eliminate 
pathogens and initiate the healing process of a wound. As 
in hypoxia, cells have evolved sophisticated mechanisms 
to control the inflammatory response to pathogens. A key 
element of these mechanisms is a family of transcription 
factors termed nuclear factor κ-light-chain-enhancer of acti-
vated B cells (NF-κB). NF-κB is composed of several family 
members that activate signalling pathways in response to a 
variety of stimuli (such as virus, bacteria or cytokines) which 
ultimately engage a complex transcriptional program, allowing 
the cell to respond to this environmental stress (3).

Several diseases, including rheumatoid arthritis (RA), 
inflammatory bowel disease and colorectal cancer (CRC) 
result from the deregulation of the hypoxia and inflammation 
pathways (4-6). Consequently, recent scientific research has 
been focussed on attempting to understand how these path-
ways are regulated, crosstalk and respond in disease. In this 
review, we describe the current understanding of the role of 
the HIF and NF-κB transcription factor families in response 
to hypoxia and inflammation and discuss their crosstalk in 
RA, inflammatory bowel disease and CRC, with relevance for 
future therapies for the management of these conditions.
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2. The HIF system

The HIFs are a family of transcription factors that sense 
changes in environmental oxygen and orchestrate a transcrip-
tional program, which forms an important part of the cellular 
response to the hypoxic environment. HIF-1 was first identified 
over 20 years ago through studies of erythropoietin gene expres-
sion (7). HIF is a heterodimeric transcription factor that consists 
of a constitutively expressed HIF-1β subunit and an O2-regulated 
HIF-α subunit (8). Three isoforms of HIF-α have been identified 
since these initial studies (HIF-1α, -2α and -3α) (Fig. 1A). The 
HIF-α isoforms are all characterized by the presence of basic 
helix-loop-helix (bHLH)-Per/ARNT/Sim (PAS) and oxygen-
dependent degradation (ODD) domains (Fig. 1A). Both HIF-1α 
and HIF-2α have important cellular functions as transcription 
factors with some redundancy in their targets (9,10). HIF-2α 
protein shares sequence similarity and functional overlap with 
HIF-1α, but its distribution is restricted to certain cell types, 
and in some cases, it mediates distinct biological functions (11). 
HIF-3α is the most recently discovered isoform. The regula-
tion of HIF-3α expression is complex in comparison to HIF-1α 
and HIF-2α with several splice variants that can function as a 
competitive inhibitors of the HIF-α-HIF-1β interaction (12,13), 
or by directly activating target genes in hypoxia that mediate 
both hypoxia dependent and independent functions. The role 
of HIF-3α in the cellular response to hypoxia remains an 
active area of study (14). Several splice variants of HIF-1β 
[also known as aryl hydrocarbon receptor nuclear translocator 
(ARNT)] have been identified (15,16). Though their exact 
functions are not known, at least one splice variant has been 
associated with poor prognosis in oestrogen receptor-negative 
breast cancer (17).

3. HIF regulation by οxygen

The regulation of the HIF-α subunits by oxygen occurs 
mainly at the post-transcriptional level, and is mediated by 
hydroxylation-dependent proteasomal degradation (Fig. 1B). In 
well-oxygenated cells, HIF-α is hydroxylated in its ODD. For 

HIF-1α this is at prolines (Pro)402 and Pro564 (18), whereas 
HIF-2α is hydroxylated at Pro405 and Pro531 (Fig. 1B) (19). 
Proline hydroxylation is catalysed by a class of dioxygenase 
enzymes called prolyl hydroxylases (PHDs). There are three 
known PHDs, 1-3, all of which have been shown to hydrox-
ylate HIF-1α. PHD2 has a higher affinity for HIF1α, whereas 
PHD1 and PHD3 have higher affinity for HIF-2α (20,21). All 
PHDs require Fe2+ and α-ketoglutarate (α-KG) as co-factors 
for their catalytic activity and have an absolute requirement 
for molecular oxygen as a co-substrate, making their activity 
reduced in hypoxia (22-25).

Prolyl-hydroxylation of HIF-α attracts the von Hippel-Lindau 
(vHL) tumour suppressor protein, which recruits the Elongin 
C-Elongin B-Cullin 2-E3-ubiquitin-ligase complex, leading to 
the Lys48-linked poly-ubiquitination and proteasomal degrada-
tion of HIF-1α (Fig. 1B) (26-28). Interestingly, PHDs have also 
been shown to be able to sense amino acid availability through 
α-KG oscillations (29), and the centrosomal protein Cep192 
has been described as a hydroxylation target for PHD1 (30), 
indicating an additional function for these enzymes as nutrient 
sensors and regulators of cell cycle progression. Both PKM2 
and HCLK2 have also both recently been described as new 
hydroxylation targets for PHD3 (31,32).

In hypoxia the PHDs are inactive, or have reduced activity, 
since they require molecular oxygen as a cofactor. Under 
these conditions HIF-α is stabilized, can form a heterodimer 
with HIF-1β in the nucleus and bind to the consensus cis-
acting hypoxia response element (HRE) nucleotide sequence 
5'-RCGTG-3', which is present within the enhancers and/or 
promoters of HIF target genes (Fig. 1B) (33-35). HIF-α stabi-
lisation therefore allows the cell to enact a transcriptional 
programme that is appropriate to the hypoxic environ-
ment (18) (Fig. 1B).

4. HIF target genes

The HIF heterodimer can regulate the expression of over 
100 target genes involved in a broad range of physiological 
functions including: angiogenesis, erythropoiesis, metabolism, 

Figure 1. (A) Schematic diagram of HIF proteins. Boxes represent different protein domains. The hydroxylation sites for HIF-1α and HIF-2α are noted above the 
schematic structure. (B) Schematic diagram of HIF pathway. In the presence of oxygen (normoxia), c bind to HIF-1α and catalyse the hydroxylation of proline 
residues. Once hydroxylated, HIF-1α binds rapidly to the vHL, which results in its polyubiquitination. This targets HIF-1α for proteasome-mediated degradation. 
In the presence of low oxygen (hypoxia), HIF-1α is stabilized and can translocate to the nucleus. HIF-1α dimerises with its partner HIF-1β and transactivates 
target genes containing hypoxia response elements (HREs). HIF, hypoxia-inducible factor; vHL, von Hippel Lindau; bHLH, basic helix-loop-helix; CTAD, 
C-terminal transactivation domain; LZIP, leucine zipper; NLS, nuclear localisation signal; ODD, oxygen-dependent domain; PAS, Per/ARNT/Sim domain.
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autophagy, apoptosis and other physiological responses to 
hypoxia (36). Canonical HIF signalling is based on the recogni-
tion of a putative HRE in the promoter or enhancer of the target 
gene that results in the recruitment of the HIF heterodimer and 
machinery required for transcription. Proteomics approaches 
have been used to identify protein changes in response to 
hypoxia in comparison with gene changes. Changes in just 
over 100 proteins in response to hypoxia have been identi-
fied (37,38). However, proteins identified represent both known 
and undescribed HIF targets, raising the possibility of HIF 
action outside of the conventional canonical pathway. Indeed, 
in addition to canonical signalling, there are various described 
mechanisms by which the stabilised HIF isoforms can influ-
ence the activity of other signalling pathways independent of 
the HIF heterodimer or a HRE. Non-canonical HIF signal-
ling has been demonstrated to regulate aspects of Notch (39), 
c-Myc (40) and p53 (41) signalling.

5. Inflammation and the NF-κB pathway

Inflammation is a complex physiological process characterised 
by the activation of several coordinated signalling pathways 
in response to stress. Generally, the inflammatory response 
involves both anti- and pro-inflammatory mediators, given by 
the expression of small peptides (e.g., cytokines), glycoproteins 
(e.g., cluster of differentiation (CD)], and transcription factors, 
such as NF-κB.

NF-κB is considered the main pro-inflammatory family 
of transcription factors (42-44). In mammalians, it is charac-
terised as a family of five Rel-domain proteins; RelA, RelB, 
cRel, p100/p52 and p105/p50 (Fig. 2A). Interestingly, it has been 
shown that almost all combinations of homo- or hetero-dimers 
between the five NF-κB subunits are possible (45). This is 
important, not only because it gives an extra layer of complexity 
to the NF-κB system, but also because it gives specificity 

according to cellular context, stimuli or DNA sequences that 
are bound to the subunits (44,46). All the NF-κB subunits are 
characterised by a conserved 300-amino acid domain, the Rel 
homology domain (RHD), which is located in the N-terminus 
of the protein (Fig. 2A), and is responsible for dimerisation, and 
DNA binding. While RelA, RelB and cRel contain a C-terminal 
transactivation domain (TAD) (Fig. 2A), p105 and p100 contain 
Ankyrin-repeats motifs in their C-terminus (ANK) (Fig. 2A), 
responsible for the dimerisation with other subunits, and subse-
quent sequestration/inactivation in the cytoplasm (Fig. 2B).

There are distinct pathways for the activation of NF-κB, 
according to the stimulus, as well as the kinases and NF-κB 
subunits involved (3). The most common, and most well studied 
is the classical or canonical NF-κB pathway (Fig. 2B). In unstim-
ulated cells, the NF-κB dimers remain inactive in the cytosol, 
bound to an inhibitory protein, inhibitor of NF-κB (IκB) (47). 
Upon stimulation, for example by the pro-inflammatory cyto-
kine, tumour necrosis factor-α (TNF-α), the inhibitor of κB 
kinase (IκB kinase; IKK), is activated, and phosphorylates IκB. 
This leads to the degradation of IκB and the release/transloca-
tion of the NF-κB complex into the nucleus (48). In the nucleus, 
the activated NF-κB complex binds to specific 9-10 base pair 
DNA sequences (κB sites) to activate a complex regulatory 
network in response to a specific stimulus (49). The combina-
tion of different possible homo- and heterodimers, stimuli and 
cellular context leads to a myriad of possible outcomes, namely 
the activation or inhibition of apoptosis, cellular growth and 
carcinogenesis (50).

The NF-κB system is complex and is involved in multiple 
biological roles; it is thus expected that it is deregulated in 
many different diseases. NF-κB abnormal activation has been 
associated with several human diseases, such as inflammation-
related diseases (inflammatory bowel disease and asthma), 
cancer (apoptosis suppression), viral infections (HIV) and 
genetic diseases (incontinentia pigmenti) (51).

Figure 2. (A) Schematic diagram of NF-κB subunits. p50 and p52 are not shown, and they are derived from p105 and p100, respectively. Boxes represent different 
protein domains. (B) NF-κB canonical pathway. The presence of a stimuli results in the activation of the IKK complex, which mediates the phosphorylation of 
IκB protein, which signals it for proteasomal degradation. This results in NF-κB dimer release and translocation into the nucleus. NF-κB, nuclear factor-κB; 
IKK, inhibitor of κB kinase; RHD, Rel homology domain; TAD, C-terminal transactivation domain; LZ, leucine zipper motif; NLS, nuclear localisation signal; 
ANK, ankyrin-repeat motifs; DD, death domain.



BIDDLESTONE et al:  HYPOXIA AND INFLAMMATION IN DISEASE862

6. Crosstalk between hypoxia and inflammation in disease

Hypoxia and inflammation are intimately linked. It has been 
reported that individuals with mountain sickness presented 
with increased inflammatory cytokines circulating in the 
blood (52). Additionally, healthy volunteers who have been 
exposed to a hypoxic environment for three nights in high 
altitudes (>3,400 meters), presented with high levels of the 
inflammatory cytokine, interleukin (IL)-6, in the blood (53). On 
the other hand, several inflammatory diseases, such as RA and 
inflammatory bowel disease, also exhibit areas of combined 
hypoxia and inflammation, which are usually associated with 
a poor prognosis of the disease (54-57).

Hypoxia and inflammation are also connected at the 
molecular level (48,58,59). HIF (hypoxia) and NF-κB (inflam-
mation) have been shown to have several common target genes, 
common regulators, and importantly, common stimuli (48). 
NF-κB activation has been shown to stabilise HIF-1α in 
hypoxia, and, together with HIF-1β, in inflammation (60,61). 
On the other hand, HIF-1α has been shown to repress NF-κB 
in vivo and in vitro under inflammatory conditions (59,62,63). 
The complexity of the combined response of HIF and NF-κB 
in hypoxia makes the crosstalk of these two pathways more 
intricate, and difficult to study. However, by developing a 
suitable inflammatory model, where the pathways can be 
controlled, as well as the conditions of the stimuli, these studies 
could provide very useful information that ultimately should be 
used to uncover new therapeutic strategies in a diverse range 
of diseases where hypoxia and inflammation are predominant 
features. In this review, the crosstalk between the main players 
induced in both inflammation and hypoxia in three clinical 
settings is addressed.

Hypoxia and inflammation crosstalk in RA. RA is a systemic 
autoimmune disorder characterised by chronic inflammation 
of the synovial membranes of joint tissues at multiple anatom-
ical sites which ultimately leads to localised destruction and 
debilitating deformity (64,65). The RA joint synovium is char-
acterised by both inflammatory and hypoxic regions (Fig. 3), 
which are highly infiltrated with lymphocytes (CD4+ T cells, 
and B cells), macrophages and macrophage-like and fibroblast-
like synoviocytes (66). The molecular basis of RA is still 
poorly understood, mainly because RA is a heterogeneous 
disease composed of several possible treatment responses, and 
clinical manifestations (67-69). These differences make RA 
difficult to treat, and further studies on the crosstalk between 
pathways involved in the disease are required.

The role of NF-κB in RA. The deregulation of several tran-
scription factors, such as NF-κB, activator protein-1 (AP-1), 
and signal transducer and activator of transcription (STATs), 
has been strongly associated with the inflammatory setting 
of RA (70-72). NF-κB, in particular, has been shown to be 
highly activated in the RA synovium (73,74). This is excep-
tionally important due to the major role of NF-κB in activating 
inflammatory responses, such as through the activation of 
the pro-inflammatory cytokine, TNF-α, or the chemokine, 
IL-8 (75). The activation of a coordinated and complex network 
of pro-inflammatory cytokines, chemokines, metalloprote-
ases (MPPs) and metabolic proteins by NF-κB, leads to the 
activation of a positive feedback loop, enhancing the activation 
of more pro-inflammatory signals that ultimately results in 
chronic and persistent inflammation (Fig. 3) (75,76).

The role of HIF in RA. The HIF family of proteins are 
additional transcription factors with direct relevance to 
RA (77,78). Recently, HIF-1α was identified as a key player in 

Figure 3. HIF and NF-κB crosstalk in RA. In RA, the synovial join is characterised by hypoxic and inflammatory regions (in blue and red, respectively). Hypoxia 
leads to the activation of HIF-1α, which is involved in several cellular processes (such as apoptosis, vasomotor control, energy metabolism and angiogenesis). 
Additionally, hypoxia leads to the activation of HIF-2α, which is involved in the activation of pro-inflammatory cytokines. In RA, inflammation leads to the 
activation of NF-κB, which activates a pro-inflammatory programme, including pro-inflammatory cytokines, chemokines, metalloproteases and metabolic 
proteins. While HIF-1α has been implicated in the repression of the NF-κB pathway (59), HIF-2α has been shown to increase inflammation (78). In RA, this 
crosstalk remains poorly understood. RA, rheumatoid arthritis; HIF, hypoxia-inducible factor; NF-κB, nuclear factor-κB.
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RA, and therefore as a potential therapeutic target (79). HIF is 
important to coordinate the hypoxia response in the synovial 
tissue, and the deregulation or failure of that response leads to 
cellular dysfunction, and can ultimately lead to cell death (80). 
Furthermore, the intense hypoxic region in the synovial 
tissue (2-4%), activates a hypoxic response through HIF, which 
is involved in regulating several genes involved in apoptosis, 
vasomotor control, energy metabolism, and importantly, angio-
genesis (Fig. 3) (16,48,81-83).

Even though the role of HIF in RA has been firmly estab-
lished, the contribution of each α-subunit remains poorly 
understood. Recently, HIF-2α was implicated as the essential 
catabolic regulator of inflammation in RA (78). In that study, 
the authors demonstrated that the overexpression of HIF-2α 
in joint tissues, but not HIF-1α, was sufficient to induce RA 
pathogenesis (78). The full contribution of the α-subunits to RA 
remains elusive. However, it seems clear that each α-subunit 
contributes differently to the progression of RA. HIF-1α 
plays a more anti-inflammatory role, whereas HIF-2α acts in 
a pro-inflammatory manner. What regulates this differential 
expression of the isoforms is still unknown. However, taking 
into consideration that NF-κB is the main activator of the HIF 
transcription factors, it would be interesting to understand 
whether NF-κB has any role in this HIF-1α to HIF-2α switch, 
and whether that would be dependent of the presence of 
hypoxia, inflammation, or both combined.

Inflammatory bowel disease (IBD). The intestinal mucosa is 
exposed to steep hypoxic gradients (63) and is in a constant 
state of controlled inflammation, which is necessary to 
allow tolerance to otherwise harmless ingested dietary anti-
gens (Fig. 4) (84). This fine balance is pathologically disturbed 
in inflammatory bowel disease (IBD); a relapsing-remitting 
progressive disorder of the gastrointestinal tract that comprises 
both Crohn's and ulcerative colitis. The symptoms of IBD can 
range from mild to severe and include abdominal pain, intes-
tinal bleeding, weight loss, fever and diarrhoea (85). The two 

IBD sub-types have different distribution patterns: ulcerative 
colitis is restricted to the colon, whereas Crohn's colitis can 
affect any part of the GI tract. Both are thought to occur when 
inappropriate immunological activity in the intestinal mucosa 
results in epithelial barrier dysfunction leading to exposure of 
the mucosal immune system to luminal antigenic material and 
further cycles of inflammation and barrier dysfunction that 
underlie disease progression (86,87).

Role of the HIF system in IBD. Hypoxia has been found 
to play a role in IBD. Lower resting oxygen levels have been 
demonstrated in sections of IBD tissue compared to the controls 
using a 2-nitroimidazole based approach (63). In keeping with 
these observations, HIF-1α and HIF-2α activation has been 
associated with disease and increased vascular density in 
human specimens (88). The increased vascular density was 
subsequently demonstrated to be effected by vascular endo-
thelial growth factor (VEGF), an established target of the HIF 
system (89). Compartmental analyses of the effects of hypoxia 
have been possible in murine models, where hypoxia has been 
shown to affect the epithelium, primarily during periods of 
inflammation (63). The colonic epithelium is the most hypoxic 
and HIF-active tissue layer because it is physically farthest 
away from the colonic vascular plexus and closest to the anoxic 
bowel lumen. This effect is exacerbated by oxygen consump-
tion by luminal bacteria (90), and the presence of inflammatory 
mediators and lipopolysaccharide (LPS), which have been 
shown to regulate HIF activity (48).

In the context of IBD, HIF system activity is thought to 
be protective, acting through three mechanisms: i) inhibi-
tion of epithelial cell apoptosis; ii) enhanced expression of 
barrier-protective genes; and the iii) promotion of neutrophil 
apoptosis (Fig. 4) (86). Evidence of the anti-apoptotic effects 
of HIF has been demonstrated indirectly through experiments 
to investigate the role of the hydroxylase inhibitor, dimethyl-
oxaloylglycine (DMOG), in colitis. Using a murine model of 
dextran sodium sulfate (DSS)-induced colitis, HIF stabilisation 
following treatment with DMOG has been shown to prevent 

Figure 4. HIF and NF-κB crosstalk in inflammatory bowel disease. In IBD, the intestinal mucosa is characterised by hypoxic and inflammatory regions (in blue 
and red, respectively). HIF-1α is activated in hypoxia, and acts as a protective barrier by inhibiting apoptosis of epithelial cells, enhancing the barrier-protective 
genes, and by promoting the apoptosis in neutrophils. Inflammation leads to the activation of NF-κB, which is involved in the expression of inflammatory 
cytokines that can lead to inflammation and/or NF-κB activation. HIF, hypoxia-inducible factor; NF-κB, nuclear factor-κB; IBD, inflammatory bowel disease.
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apoptosis in a mechanism thought to be mediated by the anti-
apoptotic protein, cIAP-2 (91). Recently, this effect has been 
specifically attributed to PHD1, since the homozygous loss of 
PHD1, but not PHD2 or PHD3, has been shown to be protective 
in the same murine model of DSS-induced colitis (92). This 
effect is most likely HIF-dependent, since the conditional 
knockout of HIF-1α in mouse intestinal epithelial cells has 
been shown to result in an enhanced susceptibility to the devel-
opment of colitis (63).

In addition to its anti-apoptotic effects, the HIF system 
can protect against colitis through the expression of barrier-
protective genes. Several HIF-dependent target genes have 
been proposed as mediators of this effect: CD55 (93), ecto-50 
nucleotidase (94), A2B receptor (95) MUC-3 (96), intestinal 
trefoil factor (97), and P-glycoprotein (98) all play a role in the 
regulation of the intestinal mucosa barrier and have all been 
demonstrated to be regulated in a hypoxia-dependent manner.

There is also evidence of the differential effects of the 
HIF-α isoform in IBD. HIF-2α expression has been shown to be 
increased in colon tissues of mice after the induction of colitis. 
This was also observed in patients with ulcerative colitis or 
Crohn's disease (62). Interestingly, in that study, while the loss 
of HIF-2α was associated with attenuated colonic inflamma-
tion, the overexpression of HIF-2α led to spontaneous colitis 
and increased inflammation.

Role of NF-κB in IBD. Other transcriptional programs are 
active in IBD in addition to those enacted by the HIF system. 
IBD is primarily an inflammatory pathology and NF-κB 
activity has been linked to its progression (5). A high degree 
of NF-κB induction has been demonstrated in intestinal 
macrophages and epithelial cells (99). In IBD, inflammatory 
cytokines can drive NF-κB activation, leading to the produc-
tion of more inflammatory cytokines and potentiating further 
NF-κB activation (Fig. 4). NF-κB-induced TNF-α expression 
is one example of this type of positive feedback loop (100). 
Interestingly, NF-κB can have a dual role in IBD, potentiating 
inflammation in intestinal macrophages while protecting from 
inflammation in mucosal epithelial cells. Sharing interesting 
similarities to the effects of HIF activation, NF-κB signalling 
in intestinal epithelial cells has been shown to be protective 
against the development of colitis (101). Deletion of the NF-κB 
pathway in intestinal epithelial cells results in decreased 
expression of anti-apoptotic genes, such as Bcl-xL, and leads to 
reduced epithelial barrier function and increased susceptibility 
to colitis (102). Conditional knockout of NEMO and subsequent 
NF-κB inhibition has been shown to result in severe epithelial 
inflammation in a murine model (102). Similarly, epithelial 
cell-specific IKKβ deletion has been shown to result in the 
sustained production of pro-inflammatory Th1 cytokines and 
increased intestinal inflammation (103). Several treatments 
have been proposed to target NF-κB activity in IBD, including 
proteasome blockade, the administration of non-coding RNAs 
to interfere with NF-κB-DNA binding and anti-TNF-α immu-
notherapy. However, all have been met with significant systemic 
toxicity due to the broad role of NF-κB in multiple organs.

NF-κB-HIF crosstalk in IBD. Sharing similarities with 
the microenvironment of RA, in IBD both inflammation and 
hypoxia are present in the intestinal epithelium and contribute 
to disease progression (104). It is generally [but not univer-
sally (105)] understood that both NF-κB and HIF activity are 

protective in episodes of colitis (101). Significant crosstalk 
between these pathways has already been established, and it 
has been proposed that both pathways may act in concert to 
contribute to the epithelial barrier function of the colon in a 
process that is deregulated in IBD.

One example of this crosstalk is the regulation of apop-
tosis by both pathways (106,107). The caspase recruitment 
domain family, member 9 (CARD9) is understood to function 
as a molecular scaffold for the assembly of a BCL10 signal-
ling complex that activates NF-κB (106), and has also been 
shown to be involved in the regulation of hypoxia-sensitive 
pathways (107). CARD9 therefore represents one point of 
crosstalk that may be important in the development of IBD as 
a promising target for further investigation.

Our laboratory and others have demonstrated NF-κB-
dependent HIF-1α mRNA regulation (61,108). NF-κB can 
also regulate HIF signalling through IKKγ and HIF-2α, which 
increases HIF-2α transcriptional activity through interaction 
with cAMP response element-binding (CREB) binding protein 
(CBP)/p300 (109). Negative feedback through the NF-κB-
dependent induction of the micro-RNA, miR-155, in response 
to LPS has been shown to target HIF-1α for silencing (110). 
Furthermore, our laboratory have recently demonstrated 
an evolutionarily conserved negative feedback mechanism 
through which HIF can regulate NF-κB in a mechanism that 
is dependent on the kinases, TAK-IKK and CDK6 (59).

CRC. CRC is a lethal disease affecting over 500,000 individuals 
annually (111). In contrast to the protective effects of HIF and 
NF-κB activity in IBD, both can play important roles in the 
development of colorectal malignancy. In CRC, the hypoxic 
milieu is similar to that of IBD but, critically, the cells are trans-
formed to allow them to react differently to the activation of 
either system. In addition, chronic inflammation is a hallmark of 
cancer (112). The role of the HIF system and the role of NF-κB 
activity are considered below, and the significance of their 
crosstalk with respect to the development of CRC is examined.

Role of the HIF system in CRC. The role of the HIFs in cancer 
progression has long been appreciated due to their ability to 
promote angiogenesis through one of the principally identified 
HIF-1α target genes, VEGFA (113). However, it is becoming 
more evident that hypoxia and the HIF system can affect tumour 
growth through modulation of proliferation, apoptosis and 
epithelial to mesenchymal transition (EMT) (Fig. 5). Hypoxia 
and the subsequent HIF activation are generally understood to 
be prognostically bad and lead to tumour progression (114). In 
CRC, HIF-1α stabilisation has been shown to lead to a poor 
disease outcome. Shay et al (114) demonstrated that the inhibi-
tion of HIF signalling using acriflavine halted the progression of 
an autochthonous model of established colitis-associated colon 
cancer in immuno-competent mice. In their model, treatment 
with acriflavine was shown to decrease tumour number, size 
and advancement, in an effect thought to be mediated through 
the inhibition of HIF-dependent targets, such as VEGFA. These 
data provide a direct link between HIF-1α expression and 
tumour progression. However, HIF isoform activation can be 
antagonistic in the context of tumour progression. In contrast to 
the effect of high HIF-1α expression, high HIF-2α expression 
has recently been reported to prevent CRC progression (115). 
The antagonistic effects of HIF-1α and HIF-2α are important 
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for the regulation of proliferation and apoptosis in cancer 
biology (40,82,116). The HIF system can affect proliferation 
through the regulation of cMyc. HIF-1α can promote cell cycle 
arrest by the direct opposition of c-Myc activity and the induc-
tion of p21 in CRC (116). Conversely, HIF-2α has been shown 
to promote proliferation in through its augmentation of cMyc 
function (40).

The HIF system can also affect apoptosis through the regu-
lation of p53. p53 stability leads to apoptosis in somatic cells 
and it is frequently mutated in cancers in pursuit of immortality. 
HIF-1α has been shown to stabilise wild-type p53 via physical 
interaction through its ODD (41,117). As a form of negative 
feedback, p53 can promote the degradation of HIF-1α (118). 
The negative feedback of wild-type p53 on HIF-1α could 
explain the increased stability of HIF-1α in tumours that 
express mutant p53 which is incapable of degrading HIF-1α. 
The net result of the p53-HIF-1α interaction is increased 
apoptosis in damaged cells that are exposed to hypoxia (119). 
HIF-2α can inhibit p53 phosphorylation, resulting in a reduc-
tion in p53 pathway activity and the prevention of apoptosis in 
response to damaging stimuli (120). In addition to its role in 
the regulation of p53, HIF has been linked to the positive regu-
lation of apoptosis through the control of several pro-apoptotic 
factors, including caspase-3, Fas and Fas ligand (121).

Hypoxia is a critical determinant of the motile and invasive 
phenotype of cancer cells. HIF activation is also important in 
the regulation of genes involved in EMT, including the direct 
regulation of the EMT-promoting transcription factors, Snail 
and Twist, which have both been described as direct targets of 
the HIF system (122-124). EMT is a critical event in the induc-

tion of tumour metastasis (125). Notch has also been shown to 
mediate HIF-1α-dependent EMT (126).

Role of NF-κB in CRC. The role of NF-κB in CRC is an 
active area of study (101,127-129). Inflammation is an important 
trigger in the establishment and development of CRC. Patients 
with long-standing IBD have an increased risk of developing 
CRC (127,128). In this context, NF-κB activation can promote 
tumourigenesis and CRC progression. In CRC, chronic inflam-
mation results in sustained reactive oxygen species (ROS) 
production, leading to DNA damage (Fig. 5) (130). Treatment 
with non-steroidal anti-inflammatory drugs (NSAIDs) reduces 
the development of CRC in patients with IBD and hereditary 
CRC (131,132), and the inactivation of NF-κB signalling reduces 
the formation of inflammation-associated tumours (101,129). 
IL-6 has been shown to be important for the number and size of 
tumours formed in mice (133), and IKKβ conditional knockout 
mice have been shown to develop more numerous tumours (134).

As with the HIF system, the mechanism of NF-κB-induced 
tumourigenesis and progression can be multifactorial. The 
activation of the NF-κB pathway confers survival, proliferation, 
angiogenic and migratory advantages (Fig. 5) (112,135-138); 
all of which are hallmarks of cancer (112). NF-κB activation 
can block apoptosis by regulating the anti-apoptosis proteins, 
such as inhibitor of apoptotic proteins (IAPs) (139), or by the 
inhibition of prolonged c-Jun N-terminal kinase (JNK) signal-
ling, modulating the accumulation of ROS (140). Alternatively, 
NF-κB activation can enhance IL-2 production, which can 
activate Janus kinase 3 (Jak3) by autophosphorylation (141). 
Jak3 can activate STAT3. Jak3 and STAT3 over-activation has 
been observed in human colon cancer in vivo and in vitro, and 

Figure 5. HIF and NF-κB crosstalk in CRC. In CRC, the intestinal lumen is characterised by hypoxic and inflammatory regions (in blue and red, respectively). 
HIF-1α is activated in hypoxia, and is involved in the modulation of tumour growth, apoptosis, and EMT. Inflammation leads to the activation of NF-κB, which 
is involved in the expression of pro-inflammatory cytokines, ROS production, and tumour survival. In CRC, there are some points of crosstalk between NF-κB 
and HIF, namely in the regulation of p53, APC, and cMyc. HIF, hypoxia-inducible factor; NF-κB, nuclear factor-κB; CRC, colorectal cancer; EMT, epithelial to 
mesenchymal transition; ROS, reactive oxygen species; APC, adenomatous polyposis coli.
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shown to prevent apoptosis, leading to poor prognosis (142,143). 
In addition, NF-κB activation can affect proliferation and cell 
growth through the regulation of its target genes, cyclin D1 
and cMyc (144-146), and promote angiogenesis through the 
regulation of VEGF and IL-8 (136). Finally, NF-κB activation 
has been shown to affect the expression of matrix metallopro-
tease-9 (MMP-9), in murine colon adenocarcinoma cells (147), 
an important protein in the regulation of migration and invasion.

NF-κB-HIF crosstalk in CRC. The data presented above 
demonstrate a clear overlap between the effectors of the HIF 
and NF-κB systems in the establishment and development 
of CRC. Solid tumours are characterised by the presence of 
hypoxia, as well as inflammation (6). Potential points for cross-
talk include the regulation of cMyc and p53 (Fig. 5). NF-κB 
interacts with the co-activators, p300 and CREB-binding 
protein, to inhibit p53 function. This effect is reinforced by 
the NF-κB-dependent upregulation of the p53 inhibitor, mouse 
double minute 2 (MDM2) (3,148) and is similar to that exerted 
on p53 by HIF-1α. The expression of NF-κB, HIF, VEGF and 
Bcl-3 has been shown to correlate with proliferation, angiogen-
esis, decreased survival and a poor clinical outcome (149,150). 
In addition, TNF-α has been shown to stabilise Snail and 
β-catenin in a process that requires the downregulation of 
glycogen synthase kinase-3β (GSK3β) by NF-κB and the 
activation of Akt cascades, resulting in the promotion of 
EMT (151). These data are clinically important since NF-κB 
and Twist have been associated with lymph node metastasis in 
patients with CRC (152). Interestingly, HIF has been shown to 
interact with both Snail and Twist, making this another poten-
tial point for crosstalk between the pathways (153).

In addition to the mechanisms outlined above, there is 
a complex interplay between HIF, NF-κB and adenoma-
tous polyposis coli (APC), that appears to be important in 
CRC (Fig. 5). One of the earliest events in the development 
of CRC is loss of the APC gene. Our laboratory has recently 
reported a functional crosstalk between HIF-1α and APC at 
the transcriptional level (154). HIF activation represses APC 
expression, acting at its promoter to result in positive activation 
and proliferation through the Wnt/β-catenin signalling and the 
TCF-LEF pathway (155), reduction in genetic and microtubule 
stability and reductions in cell migration (6,156).

The repression of APC by HIF-1α is complicated by the fact 
that medium levels of β-catenin can induce NF-κB, resulting 
in positive feedback, and high levels of β-catenin inhibit 
NF-κB, resulting in negative feedback (6). Further studies are 
required to determine the functional significance of this inter-
action in vivo. However, it represents another exciting point of 
crosstalk with importance for CRC disease progression.

7. Conclusion

In this review, the current understanding of the mechanisms of 
the HIF and NF-κB systems has been discussed with specific 
reference to the crosstalk between these two stress-responsive 
pathways. This crosstalk is significant for many disease 
processes and its role in RA, inflammatory bowel disease and 
CRC has been discussed in detail. It is important to note that 
the crosstalk between these pathways has significance beyond 
pathological processes. For example, in healthy individuals 
who live at a high altitude, prolonged HIF activation can lead 

to reduced NF-κB activity, effectively dampening the immune 
response. Further studies in this area is required; however, it is 
interesting that the anecdotal evidence of increased H. pylori 
infection in Tibetan monks exists (157). Individuals with 
mountain sickness have presented with increased levels of 
inflammatory cytokines circulating in the blood (52). Another 
study demonstrated that healthy volunteers who spent three 
nights at high altitudes (>3,400 meters), presented with high 
levels of the inflammatory cytokine, IL-6 (53). This hypoxia-
inflammation crosstalk is also relevant in the clinical context. 
It was shown that ischemia in organ grafts increased the risk of 
inflammation and, consequently, graft failure or organ rejec-
tion (158). Accurate systematic experimentation is important 
to determine the mechanisms of the crosstalk between these 
pathways since these findings may have an impact on multiple 
disease processes, apart from those discussed herein. These 
include diabetes and systemic sclerosis, where limb perfusion 
is not optimal, resulting in increased tissue breakdown in the 
absence of an appropriate inflammatory response, leading to an 
increased infection rate.
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