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We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths.

We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime—a

hallmark of resonance fluorescence. The measured resonance-fluorescence spectra allow us to rule

out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with

numerical simulations, the experimental results provide robust characterisation of charge noise in

the environment of the quantum dot. Resonant control of the quantum dot opens up new possibili-

ties for the on-demand generation of indistinguishable single photons at telecom wavelengths as

well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-

wavelength quantum dots. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4965845]

Resonance fluorescence (RF) is a result of coherent

interaction between an electromagnetic field and a two-level

atomic system.1,2 The ability to access the emission resulting

from resonant excitation of a quantum dot (QD)3 has been

shown to furnish unique possibilities to investigate intriguing

quantum optical effects in solid-state systems, such as non-

classical light generation manifesting near-ideal antibunch-

ing,4–6 entanglement,7 squeezing,8 and quantum interference

and Rabi-oscillations.9,10 These can, in turn, be harnessed for

quantum information science. Quantum communication net-

works having nodes consisting of stationary matter qubits

interconnected by flying photonic qubits11 will require tele-

com photons to enable long-distance applications. This

makes a coherent interface of quantum dot spins with tele-

com wavelength photons particularly desirable. Also, due to

considerably reduced decoherence effects under resonant

excitation, the best single-photon sources in terms of demon-

strated indistinguishability, purity, on-demand operation and

brightness are based on QD RF.4–6,10 While QD single-

photon emission occurs under incoherent pumping provided

by nonresonant excitation, the latter also typically generates

extra carriers in the host material. This leads to inhomoge-

neous broadening of the emission from spectral wandering

due to charge fluctuations,12–14 as well as time jitter between

photon absorption and emission due to an uncontrolled step

of non-radiative relaxation to the exciton state before recom-

bination,15 making RF preferable for applications exploiting

single photons.

Despite the promise that telecom-QD RF offers, the pre-

vious work on QD RF has been limited to QDs emitting at

<1lm, where losses in silica fiber are high such that long-

distance quantum communication protocols16 become unfea-

sible. In particular, QDs emitting at k � 950 nm have been

demonstrated extensively as bright sources of coherently-

generated indistinguishable single photons4–6,10,17–21 and as

a bright source of entangled photon-pairs7 via resonant exci-

tation. Translating this progress to QDs emitting in the tele-

communication O-band (k � 1310 nm) or C-band

(k � 1550 nm) has proved challenging. Also, while QD spin-

photon entanglement has been demonstrated,22,23 including the

extra complexity of downconversion to telecom wavelengths,24

actual observation of fluorescence due to resonant interaction

between a telecom-wavelength photon and a quantum dot is yet

to be reported. Even so, the studies of telecom QDs under non-

resonant excitation have characterised their confinement and

spin properties25 and demonstrated their potential as sources

of single indistinguishable26,27 and entangled photons.28 Here,

we demonstrate RF from a single QD emitting in the telecom

O-band. In spite of the considerable charge noise in the envi-

ronment of the QD, we observe nearly transform-limited line-

widths for the central incoherent peak of the Mollow triplet.

This signifies negligible pure dephasing in the QD.

The device was grown on a GaAs substrate by molecular

beam epitaxy. The InAs-QD layer lies in a quantum well

located within the intrinsic region of a p-i-n diode. The

device contains a weak planar cavity consisting of AlGaAs/

GaAs distributed Bragg reflectors for improved collection

efficiency. The QDs are located in 3-lm-diameter apertures

in a 100-nm-thick evaporated Al layer covering the surface

of the device to facilitate navigation to the individual QDs. A
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similar QD has been described in a previous study based on

nonresonant excitation.28 Measurements were performed at

4 K using a high-numerical-aperture confocal-microscope

setup for single-QD spectroscopy. The scattered laser light was

suppressed by using orthogonal linear polarizers in the excita-

tion and collection arms of a confocal microscope with typical

extinction ratios >106. A tunable continuous-wave (CW) laser

diode was used for resonant excitation. For photon counting,

we used both NbTiN superconducting-nanowire single-photon

detectors (SNSPD)29 and a cooled InGaAs single-photon ava-

lanche diode (SPAD) having a peak efficiency of �20% at

�1310 nm for benchmarking.

First, we acquire a micro-photoluminescence (l-PL) map

with a 70-leV-resolution grating spectrometer by varying the

p-i-n diode bias voltage under non-resonant excitation with a

diode laser at k � 1060 nm. In Fig. 1(a), the map clearly

shows the QD neutral (X0) and charged (X�) exciton lines with

the linewidths of �85 leV. This characterisation allows the

tuning of the resonant-excitation laser to the desired QD transi-

tion for the RF measurements. Furthermore, we obtain the life-

time for X0 from time-resolved l-PL measurements to be

T1 ¼ 1:394ð6Þ ns. As measured using a Mach-Zehnder inter-

ferometer, the total coherence time under non-resonant excita-

tion is T2;nres ¼ 89ð8Þ ps. We base RF investigations on X0.

By obtaining detuning spectra at various excitation

wavelengths, we map the RF signal over the X0 plateau at a

fixed power above saturation. The integration time for each

point in the RF measurements is 5 s. Fig. 1(b) shows the peak

energies as a function of p-i-n voltage, while Fig. 1(c) shows

the integrated counts obtained from the fits to the RF

detuning-spectra data acquired for a series of excitation wave-

lengths. The linewidth over the extent of the X0 plateau

[shown in Fig. 1(d)] tends to decrease at more positive vol-

tages/shorter wavelengths. The X0 plateau mapping via RF

manifests a clear Stark shift. The dependence of peak energies

on the electric field F (via the p-i-n diode bias voltage Vg) is

EPL ¼ E0 � pFþ bF2. The field, which is a function of V0

and the thickness of the intrinsic region (d), is F ¼ �ðVg

�V0Þ=d. In this case, V0 ¼ 2:2 V and d ¼ 203 nm.28 The per-

manent dipole moment (p) and the polarizability (b) are

extracted from the fit as p=e ¼ 0:420ð4Þ nm and b ¼
�0:2140ð1ÞleV/(kV/cm)2. For comparison, the nonresonant-

excitation (1060-nm) case gives p=e ¼ 0:385ð1Þ nm and

b ¼ �0:2290ð4Þ leV/(kV/cm)2. We believe these small dif-

ferences are due to additional charging of the host semicon-

ductor matrix induced by nonresonant optical excitation.

The data points in Figs. 2(a) and 2(b) show the

background-subtracted RF counts as we tune the X0 transition

through resonance with the laser using the p-i-n diode bias

voltage. We show two examples with the resonant excitation

laser and voltage across the diode set to k ¼ 1285:28200 nm

and Vg ¼ 1:371 V, respectively [due to reduced linewidths in

detuning spectra, see Figs. 1(a) and 1(d)], at powers, respec-

tively, below and above saturation. Fig. 2(c) shows that the

detuning-spectra linewidth w is essentially independent of the

excitation power. This is expected since the resonant laser

does not charge the defects surrounding the QD. At very high

excitation powers, we observe the onset of power broadening

superseding charge noise. We quantify the charge noise by a

characteristic width parameter wn, which is approximately

equal to the width of the detuning spectra w [see Fig. 2(c)],

since wn � 1=T1. We demonstrate that the RF counts mani-

fest saturation behaviour in Figs. 2(d) and 2(e), which show

the (background-subtracted) RF counts plotted with the back-

ground counts and the corresponding signal-to-background

ratios (SBR). Due to large wn, the two-level system does not

fully saturate at the accessible excitation powers [red curve in

Fig. 2(d)]. We observe SBRs of �3 [Fig. 2(e)] and suspect

that background counts are mainly due to scattering of the

excitation laser light off the structured sample surface. We

note briefly that the characteristic double peak for X0 corre-

sponding to its fine-structure splitting [FSS ¼ 109ð4Þ leV at

Vg ¼ 1:371V in non-resonant PL] is not observable in these

RF detuning spectra, possibly as a result of the diminished

visibility of a smaller-intensity line due to non-orthogonal

fine-structure states.30

We perform high-resolution spectroscopy of the RF

from the QD using a Fabry-P�erot interferometer (FPI) with a

5-GHz free-spectral range and 33-MHz resolution. The inte-

gration time for each FPI measurement is �20 min. The

inelastically scattered component of the acquired FPI spectra,

as shown in Fig. 3(a), clearly reveals the Mollow triplet31

with a linear dependence of Rabi splitting on the square root

of excitation power [Fig. 3(b)]–a quintessential feature of RF

from a two-level system. We subtracted the narrow-linewidth

elastic peak32–34 that was contaminated by a background

laser signal.

FIG. 1. (a) Microphotoluminescence-voltage map. Spectra collected as a

function of the applied diode bias from a single QD within the intrinsic

region of a p-i-n diode under 1060-nm excitation. The two lines of interest

correspond to X0 and X� emissions from a single QD. Exciton plateau map-

ping in resonance fluorescence. (b) Resonance energies showing Stark shifts

with permanent dipole moment p=e ¼ 0:420ð4Þ nm and polarizability

b ¼ �0:2140ð1Þ leV/(kV/cm)2 for RF. PL is plotted for comparison. (c)

Integrated RF counts (Iint) and (d) FWHM of Lorentzian fits to voltage-

detuning RF spectra at different excitation wavelengths at a power of 77 nW

(X¼ 409 MHz).
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Finally, we demonstrate the use of RF to probe the effect

of charge noise12–14 in the telecom-wavelength QD sample.

We model this by calculating the RF spectra for a 2-level

system using the master-equation method,1,2 including the

effects of dephasing due to spontaneous emission, pure

dephasing, and slow charge noise. This enables us to obtain

an analytical result for the detuning spectra with which we fit

the data [e.g., red curves in Figs. 2(a)–2(c)]. By simulating

the high-resolution (FPI) RF spectra, we obtain numerical

results corresponding to various amounts of charge noise wn,

as shown in Fig. 3(c), showing how charge noise broadens

the side peaks of the Mollow triplet in relation to 1=T1. In

modelling charge noise, we assume T1 � Tn � T exp ,13,14,33

where T exp is the experiment acquisition time, and Tn � 1

ms is the timescale of spectral fluctuations due to charge

noise. The combination of our experimental RF data and

numerical results show that charge noise at timescales much

longer than T1 manifests in the voltage-detuning spectra as

a characteristic broadening of the total linewidth [Figs.

2(a)–2(c)]. In the high-resolution FPI spectra, the charge

noise primarily broadens the sidebands of the Mollow triplet

[Fig. 3(c)]. Crucially, we find that the width of the central

peak in our Mollow-triplet data [Cc;min ¼ 0:124ð5Þ GHz] is

consistent with the case of negligible pure dephasing

(T2;res � 2T1 � 2:6ns� T2;nres � 90 ps).

In summary, we present an experimental demonstration

of RF from a single QD emitting at telecom wavelengths

(k � 1300 nm). We observe the Mollow triplet emission–a

key signature of RF–with Rabi splitting showing the expected

square-root dependence on excitation power, and demonstrate

a contrast in dephasing times between the resonant and non-

resonant excitations. Crucially, the near transform-limited

linewidths observed in the central peak of the Mollow-triplet

RF spectra confirm negligible pure dephasing in these QDs.

We also characterise the charge noise in our sample using

RF. In future work we expect that charge noise can be mini-

mised through improved sample design and fabrication. The

results pave the way for directly interfacing stationary matter

qubits with telecom wavelength photons, highly-coherent sin-

gle-photon emission, on-demand generation of indistinguish-

able photons and polarization-entangled photon pairs via RF

at telecom wavelengths.

FIG. 2. (a) and (b) Resonance fluorescence detuning spectra collected from the QD X0 state with the laser background subtracted. Detuning spectra

obtained analytically using the master equation method with the charge noise parameter free was fitted to the data (red) and the case with no charge noise

(blue) plotted for comparison. The scans were performed for diode bias voltages 1.3–1.45 V in 5-mV steps. (c) Linewidths of detuning spectra and

extracted charge noise. Red dots: overall linewidth observed in detuning spectra; black squares: corresponding charge noise characteristic width. (d) and

(e) Power dependence of resonance fluorescence counts. The amplitude of the Lorentzian fits to the background-subtracted RF voltage detuning spectra at

k ¼ 1285:28200 nm is plotted as a function of excitation power. Represented are background-subtracted signal (red dots), background counts measured off

resonance (blue dots), charge-noise-corrected experimental data (black squares) and theoretical saturation curves for the corresponding cases (solid lines).

(e) shows SBR power dependence.

FIG. 3. (a) Observation of Mollow triplet in high-resolution telecom resonance-fluorescence spectra. The inelastically scattered component of the spectra is

shown for six different excitation powers corresponding to the indicated Rabi frequencies X. The plots show the QD X0 RF filtered through the FPI as a func-

tion of the FPI detuning (red dots). Lorentzian fit components: the side peaks (green curve), the central peak (blue curve), and the total (black curve). (b) The

Rabi splitting/frequency as a function of the square root of excitation power showing the expected linear dependence. (c) Theoretical simulation of FPI-spectra

line-widths (FWHM) of the central (CcÞ and either of the side peaks (Cs) as a function of wn obtained from numerical simulation of the master equation. wn¼ 0

corresponds to the ideal case without charge noise. We show the respective ratios for linewidths and comparison with the transform limited case CcT1 ¼ 1. We

are unable to extract precise values for charge noise contributions from the FPI data in (a) because the measurements lie in the shaded region in (c).
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