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ABSTRACT: We used a network of 135 NO2 passive
diffusion tube sites to develop land use regression (LUR)
models in a UK conurbation. Network sites were divided into
four groups (32−35 sites per group) and models developed
using combinations of 1−3 groups of “training” sites to
evaluate how the number of training sites influenced model
performance and residential NO2 exposure estimates for a
cohort of 13 679 participants. All models explained moderate
to high variance in training and independent “hold-out” data
(Training adj. R2: 62−89%; Hold-out R2: 44−85%). Average
hold-out R2 increased by 9.5%, while average training adj. R2

decreased by 7.2% when the number of training groups was
increased from 1 to 3. Exposure estimate precision improved with increasing number of training sites (median intralocation
relative standard deviations of 19.2, 10.3, and 7.7% for 1-group, 2-group and 3-group models respectively). Independent 1-group
models gave highly variable exposure estimates suggesting that variations in LUR sampling networks with relatively low numbers
of sites (≤35) may substantially alter exposure estimates. Collectively, our analyses suggest that use of more than 60 training sites
has quantifiable benefits in epidemiological application of LUR models.

1. INTRODUCTION

Traffic related air pollution (TRAP) is associated with
premature mortality and adverse health outcomes.1 However,
the quantification and interpretation of such associations are
made less certain by challenges of reliably estimating human
exposure to air pollutants across extended spatial areas and
temporal periods. The majority of exposure estimates in large
cohort studies are based on modeled pollutant concentrations
to address practical problems that prevent direct exposure
assignment through monitoring of pollution concentrations in
sufficiently numerous locations over sufficiently long time
periods.
Land use regression (LUR) modeling is an extensively used

exposure estimate approach that uses geographical information
systems (GIS) and statistical analyses to quantify multivariate
relationships between geographic features and measured TRAP
concentrations.2 LUR is relatively simple and cost-effective to
implement, and can be applied to different atmospheric
pollutants measured over large geographical areas3 and to
quantify associations between air pollution concentrations and
meteorological,4−6 temporal,7,8 and building geometry informa-
tion.9,10

A practical limitation is the requirement to conduct extensive
monitoring prior to LUR model development, with studies
typically monitoring at least 20 sites, two or more times, with
subsequent extrapolation to estimate annual average expo-
sures.3,11,12 Limited numbers of monitoring sites combined
with a high number of variables increases the risk of
“overfitting” LUR models. To maximize the number of sites
used in model development it is common to use all available
data as “training sites” in model development retaining few, if
any, independent “hold-out” sites for model evaluation. Model
performance, quantified by explained variance of concentrations
at the training sites used for model development, has been
observed to decrease as the number of training sites is
increased, while performance on quantification of variance of
hold-out observations has been observed to increase as the
number of training sites increases.13−15 Leave one out cross
validation (LOOCV) is often used to evaluate LUR model
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performance; however this approach may overestimate model
performance.16 A possible strategy to increase the number of
monitoring sites is to use local authority managed monitoring
networks, either alone or in combination with LUR “purpose
designed” networks. In the United Kingdom local authorities
operate passive diffusion tube (PDT) networks as part of
statutory local air quality management activities, providing
observations which can be used for LUR development and
evaluation. Monitoring in local authority networks is conducted
throughout the year, and hence provides annual mean estimates
without extrapolation, although there is potential for “prefer-
ential sampling” through relatively high numbers of roadside
monitoring locations which may bias model estimates.17 A
review in 2008 by Beelen et al.3 identified 25 LUR studies, and
of these, seven made use of data routinely collected by local
authorities. Subsequently published research has mostly used
purpose designed networks in LUR model development,
although there are some examples employing routinely
collected data.18−22

Our study developed LUR models for the Greater Glasgow
conurbation using data routinely collected through local
authority PDT networks. We examined the effect of
randomized site selection on model development, and the
effect of increasing the number of training sites. We used the
LUR models to estimate residential exposure of 13 679 cohort
participants at 9631 separate postcode address locations and
examined the extent to which estimated NO2 concentrations
differed at each address location between LUR models
developed from different groups of training sites to quantify
the precision of exposure estimates. Our analyses enabled direct
comparison of exposure estimates produced by LUR models
developed from independent subsets covering the same spatial
and temporal extent of the full network.

2. MATERIALS AND METHODS
2.1. Study Area and Monitoring Sites. The study

focused on the Glasgow conurbation (55.865°, −4.260°;
population approximately 1.2 million) in the west of Scotland.
The conurbation includes local authority areas of Glasgow City,
Renfrewshire, East Renfrewshire and East Dumbartonshire,
whose combined PDT networks included a total of 218 sites
during the decade preceding 2016.
Monthly PDT NO2 observations obtained from local

authorities23 were converted to annual averages for each site,
excluding sites with <75% annual data collection.21,24 We
selected 2007 for analyses to maximize the number of available
monitoring sites (n = 135). Local authority PDT networks are
often designed primarily to estimate compliance with national
and international air quality objectives. 80% of sites used in this
study were classed as kerbside or roadside according to
historical UK Department for Environment, Food & Rural
Affairs (DEFRA) classification categories, that is, sites located
within 1 and 15 m from a road, respectively.24 Possible biases
arising from design of the monitoring network are outlined in
the Discussion section of this paper. GPS coordinates for site
locations were checked against known locations, and corrected
if positional errors were discovered (Supporting Information
S1). All PDT’s used in the study were supplied and analyzed by
a single analytical laboratory, although analyses were conducted
separately for each local authority area.
PDTs exhibit known biases relative to automatic chem-

iluminescence monitors25 and DEFRA recommend “bias
adjustments” to PDT NO2 data.24 However, as bias adjust-

ments differed between local authorities we chose to use PDT
data prior to bias adjustment. Monthly PDT concentrations
were generally within 2% of simultaneous colocated automatic
monitoring measurements for the Glasgow conurbation
(Supporting Information S2) suggesting that our use of
unadjusted data would have had limited effect on our analyses.

2.2. Buffers and Variables. Variables were classified into
traffic and nontraffic categories; and circular buffers created
around each monitoring site at radii of 25 to 5000 m. Buffers
for traffic related variables were limited to 1000 m to be
consistent with other studies.11,18,26 Noncircular variables (e.g.,
‘Distance to nearest major road’) were also included. Full
details are provided in Supporting Information S3.
Digital road network data from the OS Mastermap data set27

included Motorways, A roads, B roads, minor roads, and local
streets. Variables representing single road classes or combina-
tions of road classes were included, along with variables
weighted by the number of lanes. Traffic counts were available
for motorways and A roads,28 but were not used as their spatial
accuracy was limited.
A number of variables were examined as possible indicators

of the depth and geometry of street canyons to represent the
potential for reduced local dispersion of air pollutants. Building
heights from light detection and ranging (LiDAR) measure-
ments29 were manually processed to remove nonbuilding
polygons prior to calculation of variables representing building
area, building volume, street configuration and visible sky. The
“street configuration” variable is similar to building volume
except that only buildings within buffer distances of between 20
and 50 m from the road centerline were included in the
calculation to more closely represent the influence of street
canyons. The methods, buffer sizes and constraints reported by
Tang et al.10 were used. The percentage of visible sky was
calculated in ArcGIS 3D Analyst using the “Skyline Graph”
function. We evaluated this approach against field observations
and found good agreement between calculated and observed
values (Supporting Information S4).
Similar themed land use classifications from the CORINE

Vector Land Cover Data set for 200630 were combined to
reduce the number of variables entered into the model. For
example, land classes for green urban areas and sports and
leisure were combined into a single variable. The land cover
class for roads was excluded as this was included in the
Mastermap data.
Population and working population in “datazones” (census

output areas with 500−1,000 household residents) were
obtained as midyear estimates for 2007 derived from the
2001 census.31 Altitude above sea level (as a potential predictor
of increased dispersion in higher more exposed locations) was
provided as a raster layer from the Panorama digital terrain
model.32

2.3. Model Development. The relationship between
observed NO2 and land use variables was quantified using
supervised forward regression in SPSS using a similar, but not
identical, approach to Gulliver et al.18 (details in Supporting
Information S5).
To estimate uncertainty introduced by the model building

process, we adapted a design suggested by Gulliver et al.
(2013)18 to first stratify sites by geographical subareas (in our
case local authority areas); and second to randomly split the
stratified sites into four completely independent groups
(numbered 1−4) each of which represented pollution
variations across the geographical area of the Glasgow

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b02089
Environ. Sci. Technol. 2016, 50, 11085−11093

11086

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02089/suppl_file/es6b02089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02089/suppl_file/es6b02089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02089/suppl_file/es6b02089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02089/suppl_file/es6b02089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02089/suppl_file/es6b02089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02089/suppl_file/es6b02089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02089/suppl_file/es6b02089_si_001.pdf
http://dx.doi.org/10.1021/acs.est.6b02089


conurbation. “Baseline” models, representing best case
scenarios that maximized the number of training PDT sites
used in model development while still maintaining approx-
imately 25% of the total number of PDT sites as independent
hold-out sites in independent groups for model evaluation,
were developed from combinations of three out of the four
groups. “Subset” models were developed from single groups
(subsequently referred to as Subset_1G groups) or combina-
tions of 2 groups (Subset_2G groups) to investigate the
influence of the number of sites on variance explained by
models. Models were named as follows: “Model_xyz” where
“Model” describes the type of model, and “xyz” describes the
groups included in the training data set (Supporting
Information S6).
Models were evaluated against independent hold-out sites

not included in model development. Where one or two groups
were used in model development, models were also evaluated
against a random subset (n = 33) of the hold-out sites which
was resampled 500 times, and an average R2 for the resampled
hold-out data reported. This approach provides consistency to
model evaluation as the sample size of the hold-out data was
equal and similar to the number of hold-out sites in the baseline
models. Model explained variance (Training adj. R2), root-
mean-square error (RMSE), leave one out cross validation
(LOOCV R2; for training data only) and fractional bias (FB; for
hold-out data only), were calculated as metrics of model
performance.
2.4. Pollution Maps and Exposure Estimation. Spatial

variations in NO2 were mapped at 10 × 10 m resolution.
Details of how pollution surfaces were produced are provided
in Supporting Information S7. To avoid negative concen-
trations during mapping, (which may have arisen because of the
absence of PDT sites in rural locations in the local authority
networks used for model development) the lower limit of
modeled concentrations was set equal to the annual average
measurement (9.7 μg m−3) at the Waulkmillglen Scottish
Automatic Network monitoring site located in a rural location
approximately 16 km to the south of the city center. This
adjustment to background concentration was required at, on
average, 4.7% (min. 0%; max. 9.9%) of cohort postcode
centroids (see below) depending on model involved.
Residential exposure was estimated for a cohort of 13,679

patients attending a blood pressure clinic in Glasgow City33

using postcode centroid coordinates for each cohort address

location (9,161 separate postcode centroids) to extract the
modeled concentrations from the pollution surfaces. We
compared exposure estimates in two ways. First, we computed
within-model summary statistics for each model to characterize
the distribution of residential exposures produced by the
model. Second, we assessed between-model precision of
exposure estimates at each cohort participant location for
each type of model; that is, we calculated “intralocation”
precision statistics across all models from Subset-1G, Subset-2G
and Baseline models, respectively. Precision was assessed
through two metrics; the difference between maximum and
minimum exposure estimate at each location for each model
type (subsequently referred to as “intralocation range”), and the
relative standard deviation (RSD) of exposure estimates at each
location for each model type (subsequently referred to as
“intralocation RSD”). In addition we estimated mean exposure
at each location for each model type (subsequently referred to
as “intralocation mean”). Analyses were conducted with ArcGIS
and R.34,35

3. RESULTS

3.1. PDT NO2 Observations. Highest and lowest mean,
range and maximum concentrations were observed in Glasgow
City and East Renfrewshire respectively (Supporting Informa-
tion S8). Glasgow City had the largest number of sites (n = 60)
and largest percentage (23%) of urban background sites24 (cf.
approximately 20% background sites in amalgamated data set
for the full conurbation).
The four randomly selected groups had similar distributions

of NO2 concentrations, with exception of group 2 which had a
maximum concentration 30% lower than the remaining groups
because of a lower proportion of very high concentration sites
in group 2 (Supporting Information S9). Groups 1−4
contained 5, 9, 6, and 7 background sites and 5, 2, 5, and 5
kerbside sites, respectively.

3.2. Baseline Models. Baseline (3-group) models
explained 71−82% and 56−85% of the variation in NO2 in
training and hold-out data respectively (Table 1). Models with
the highest training adj. R2 (Baseline_123 and 134) had the
lowest hold-out R2. RMSE ranged between 7−9 μg m−3 and 6−
13 μg m−3 for training and hold-out sites, respectively. FB was
small indicating slight over or under prediction depending on
the model. LOOCV R2 was generally 2−4% lower than
Training adj. R2 (Table 1).

Table 1. LUR Model Statistics for Baseline Models Developed from Three Training Groupsa

model included variablesb
training
“n”

training
adj. R2

LOOCV
R2

training
RMSE

HO
R2

HO
RMSE

HO
FB

Baseline_123 11.8 + 1.25 × 10−5 x BUILD_VOL300 + 3.45 x10−3 x ABM_SUM300 −
0.037 x DIST_ABM_MIN + 1.11 x10−6 x ALL_URB2000

100 0.82 0.81 7 0.56 12.7 0.015

Baseline_124 9.1 + 1.704 × 10−5 x BUILD_VOL200 + 3.31 × 10−3 x
ABM_MIN_SUM300 + 1.73 × 10−6 x ALL_URB2000 − 0.045 x
DIST_ABM_MIN

100 0.73 0.7 8.8 0.82 7.9 0.003

Baseline_134 25.7 + 4.99 × 10−4 x BUILD_VOL500 − 0.053 x DIST_ABM_MIN −
1.44 × 10−6 x GREEN_RUR2000 + 2.27 × 10−4 x STRT_CONF20/25
+ 4.99 × 10−4 x ABM_SUM1000 + 0.123 x MIN_SUM25

103 0.77 0.74 8.4 0.62 10 0.088

Baseline_234 9.4 + 2.35 × 10−5 x BUILD_VOL200 + 5.25 x10−3 x ABM_SUM200 +
1.60 × 10−6 x ALL_URB2000 − 0.04 x DIST_ABM_MIN

102 0.71 0.67 9.1 0.85 7 −0.041

aVariable order reflects order in which variables were entered into the model. bAbbreviations for included variables are as follows, and are described
in further detail in section S3 of the Supporting Information. The numbers at the end of variable names refer to GIS buffer radii in meters.
ABM_SUM: major road length; ABM_MIN_SUM: major and minor road length; ALL_URB: all urban area (continuous and discrete);
BUILD_VOL: building volume: DIST_ABM_MIN: distance to nearest major or minor road; GREEN_RUR: green rural area; MIN_SUM: minor
road length; STRT_CONF: street configuration. LOOCV: Leave one out cross validation; HO: Hold-out; RMSE: root-mean-square error; FB:
Fractional bias.
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Baseline model variables were relatively consistent, with all
models including variables representing building volume, road
length and distance to a major or minor road. Models also
included buffers representing urban (Baseline_123 & Base-
line_234) or green (Baseline_124 and Baseline_134) areas.
Building volume explained the largest percentage of variance in
all models (58−70%) followed by the sum of the length of
major roads within specified buffer distances (Supporting
Information S10).
Baseline models contained no influential sites (i.e., Cooks

Distance36 < 1 for all sites), but a single outlier was identified
with a residual greater than 3 times the standard deviation of
the residuals. Regression residuals showed no spatial
autocorrelation (Morans I p > 0.05) (Supporting Information
S10).
3.3. Sensitivity Analyses. Subset_1G models developed

from 1 training group (n ≈ 33) explained 75−89% variance in
training data, 50−65% in hold-out data, and 51−65% in
resampled hold-out data compared to 67−81% in training data
and 51−65% in hold-out data for baseline models (Table 2).
Subset_1G models showed heterogeneity in the included
variables and buffer sizes and generally contained fewer
variables than baseline and Subset_2G models. Training
RMSE for Subset_1G models were generally lower than
those observed for baseline models, while hold-out RMSE for
Subset_1G models were slightly higher than those observed for
baseline models (Table 2).
Subset_2G models developed from two groups (n ≈ 66)

explained similar variance in training data (62−86%) to
baseline models. Explained variance in hold-out data was
slightly lower for Subset_2G models compared to baseline
models (hold-out explained variance R2 61−75%; resampled
hold-out explained variance R2 62−75%; Table 2). All subset
models had small FB (Table 2).

3.4. Pollution Maps and Exposure Estimation. All
models predicted broadly anticipated spatial patterns in
pollution with high concentrations predicted in the city center,
adjacent to main roads, and around road junctions (Supporting
Information S11, S12). Baseline model maps were similar for
three out of four models (Figure 1), with Baseline_134
highlighting pollution contrasts around the road network more
prominently than other Baseline models (Figure 1C). Median
exposures of 24.9, 27.2, 26.7, and 24.9 μg m−3 were predicted
by Baseline_123, 124, 134, and 234 models respectively (Figure
2), with between 8 and 10% of the cohort group estimated to

Figure 1. NO2 pollution maps of Glasgow city center modeled by baseline models developed from three out of four randomly selected groups of
passive diffusion tube monitoring sites. (A) Baseline_123, (B) Baseline_124, (C) Baseline_134, and (D) Baseline_234. Pollution maps are raster
maps for each model created by summing the contribution to overall pollution estimates from each variable in the model.

Figure 2. Boxplot of estimated exposure concentrations at cohort
residential addresses for each model. Central line represents median.
Box represents range. Upper and lower whiskers represent the highest
and lowest datum within 1.5 times the upper and lower interquartile
range, respectively. Circles reflect data outside this range. The dashed
horizontal line denotes the 40 μg m−3 UK air quality standard for NO2.
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be exposed to residential concentrations above the UK national
air quality standard of 40 μg m−3 (data not shown). Baseline
models estimated between 4 and 6% of the cohort were
exposed to background concentrations, contributing to a
bimodal distribution of mean intralocation exposure estimates
(Figure 3A).

The distribution of cohort exposure estimates highlighted
inconsistencies between Subset and Baseline models, with
Subset_1G models showing the widest range of modeled
concentrations (Figure 2). Subset_1G models estimated
between 4% (Subset_1G_1) and 25% (Subset_1G_4) of the
cohort were exposed to concentrations greater than 40 μg m−3,
while Subset_2G models estimated between 8 and 9% were
exposed to concentrations greater than 40 μg m−3 (data not
shown).
The median intralocation range for Subset_1G Subset_2G

and Baseline models was 11.4, 6.6, and 4.3 μg m−3 respectively
(Figure 3C). The median intralocation RSD was 19.2, 10.3, and
7.3% for Subset_1G, Subset_2G, and Baseline models
respectively (Figure 3B).

4. DISCUSSION
4.1. Baseline Models. Baseline models developed from

local authority PDTs explained 56−85% of the variance in NO2
concentrations at hold-out sites; similar to model performance
statistics reported for LUR models developed from purpose
designed networks.3

Building volume was selected first in each model and
explained 58−70% of variance in NO2 concentrations in
training data. Although it was unexpected that building volume
would have the highest explanatory power, other studies have

reported that variables other than those derived from traffic
have explained the largest proportion of variance in LUR
models.11,21 The higher percentage of NO2 variance explained
by building volume compared with traffic derived variables may
be a consequence of the limited traffic data used in this study
(no information on traffic flow and fleet composition) as
literature reported models including traffic intensity have
explained, on average, an additional 10% variance compared
with those which did not.11

An a priori assumption for building volume was that it
represented the built-up area (hence human activity) in
proximity to the monitoring sites. We allowed building volume
and street configuration variables to coexist in the models, as
studies in The Netherlands and London demonstrated
improvements in explained variance in models with variables
representing street configuration.9,10 Only Baseline_134
included a street configuration variable (Table 1) and the
increase in explained NO2 variance was modest, suggesting that
building volume accounted for a substantial proportion of street
canyon induced concentration contrasts (Supporting Informa-
tion S10). Larger buffer sizes were selected for building volume
(200−500 m) compared with those selected for street
configuration (25 m), suggesting that building volume
represented emissions over a wider area in addition to the
local influence of the street canyon. The CORINE land
classification data, which also represents urban area, was
included in three out of four baseline models; and whereas
VIF was generally low (VIF < 2) there was potential for
multicolinearity with building volume variables. This illustrates
subjectivity in decisions regarding which variables should be
considered mutually exclusive when establishing selection
criteria prior to LUR modeling.
Similarly, assumptions about anticipated direction of

associations were not always clear. This study frequently
found “local street” variables to be significant in model
development; however these variables had a negative coefficient
implying increased local streets reduce NO2 concentrations.
Thus, in relation to the anticipated sign of effect, local streets
were removed during model development. Local streets tended
to be located away from busier roads (and hence elevated
pollution concentrations) and therefore this potentially valid,
though counterintuitive, association was omitted from the
models reported here.
Separating the data into groups and development of baseline

models from three out of four groups, had a modest influence
on training and hold-out explained variance, and variable
selection. Site residuals also showed consistency in direction
and magnitude between models, irrespective of the groups used
to build the models (Supporting Information S14). The lower
explained variance observed on hold-out data for the “best”
training models (and vice versa) may imply that models are
strongly influenced by a relatively small number of sites and the
extent to which those sites are characterized by the GIS
variables in the study. The outlying site provides an extreme
example of this. This site was located in the city center in a
pedestrian square away from direct emission sources but near
to a very large shopping center. Measured concentrations were
low, but due to the influence of the building volume variable,
modeled concentrations were high. Removing this site from the
hold-out data in Baseline_123 increased explained variance
from 56% to 72%.

4.2. Sensitivity Analyses. Subset_1G models (n ≈ 33)
developed from independent PDT networks that did not share

Figure 3. Exposure estimate variability for Baseline (4 models),
Subset_2G (6 models), and Subset_1G models (4 models). (A)
Histograms of mean intralocation predicted concentration; (B)
Histograms of intralocation RSD; (C) Histograms of intralocation
range of model estimates.
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any training sites had heterogeneous selected variables between
models. Only Subset_1G_3 included building volume con-
trasting with Baseline models where all models selected
building volume as the first variable. Subset_1G models had
substantially higher training adj. R2, and lower hold-out R2

(Table 2) than other models, highlighting a risk of overfitting in
models developed from small numbers of training sites and
large numbers of variables, consistent with findings of Wang et
al.,15 Johnson et al.,14 and Basagaña et al.13

Subset_2G models (n ≈ 66 sites) explained, on average,
9.5% more, and 3.5% less variance in hold-out data compared
to Subset_1G and Baseline models, respectively. Remaining
model statistics, and included predictors, were similar between
Subset_2G and Baseline models. These findings, and those of
Basagaña et al., who concluded that >80 sites are desirable for
LUR model development, highlight a risk of misclassification of
exposure from models developed from fewer sites.
4.3. Exposure Estimation. Subset_1G models involved a

similar number of training sites to some LUR studies in the
literature,3 and their development from independent groups of
PDT sites provided an opportunity to examine the potential
variability of cohort exposure estimates developed from models
developed from small networks of sites. The influences of
training site number on model performance has been reported
in other studies.15,37,38 However, these studies compared
models developed using different sampling regimes, timeframes,
and spatial scales; and did not examine distributions of cohort
exposure estimates. Consequently these earlier studies are
relevant to, but not directly comparable with our analyses.
Subset_1G models generated pollution maps with marked

differences in spatial patterns between models (Supporting
Information S12 and S13). Model differences are reflected in
exposure estimates at cohort locations; with median intra-
location range and RSD of 11.4 μg m−3 and 19.2% respectively
across the four models; and 4−25% of the cohort group
estimated to be exposed to concentrations greater than 40 μg
m−3 depending on the group of sites used to develop the
model. This illustrates that potential for misclassification of
exposure between Subset_1G models is markedly greater than
for the Baseline and Subset_2G models.
Variations in Subset_1G exposure estimates result, in part,

from the wider range of estimates from the Subset_1G_4
model. Subset_1G_4 explained the lowest percentage of
variance in hold-out data (Table 2), although this alone does
not explain the higher variability in exposure estimates for
Subset_1G models as a whole, as removal of Subset_1G_4
only reduced the median intralocation range and RSD to 7.6 μg
m−3 and 14.9% respectively (i.e., variance of restricted set of
Subset_1G models remained higher than Subset_2G models
despite removal of Subset_1G_4).
Variations in intralocation estimates between models are

unlikely to result from the number of background and kerbside
sites, or the distribution of NO2 concentrations within each
group, as these were broadly similar between groups
(Supporting Information S9). Furthermore, Subset_1G_2,
which contained the lowest range of PDT concentrations and
the lowest maximum concentration, did not give substantially
different exposure estimates at the cohort locations (Figure 2).
Variations in Subset_1G exposure estimates may instead reflect
inherent variations which might be expected if LUR models
with similar numbers of sites are redeveloped for the same
geographic area using alternative PDT networks, particularly if
large numbers of variables are used in model development.13

However, it is also possible that our study overestimated
variability between Subset_1G models. Many LUR studies
expend considerable effort selecting sites in sampling net-
works.39 In contrast our study generated four random networks
as a subset of a larger network, which was comprised of four
independent local authority PDT networks.
Subset_2G models (n ≈ 66) showed increased precision

compared to Subset_1G models, with median intralocation
range and RSD of 6.7 μg m−3 and 10.3% respectively.
Subset_2G models estimated that between 8 and 9% of cohort
participants were exposed to residential NO2 concentrations
>40 μg m3, which was similar to the estimates provided by
Baseline models supporting the suggestion that a minimum of
60 sites are required for reliable LUR estimates.

4.4. Limitations. Biases may have been introduced into our
LUR models through characteristics of the local authority PDT
networks used. 80% of PDT sites were at kerbside and roadside
locations where concentrations are anticipated to approach or
exceed air quality standards, introducing possible biases from
“preferential sampling”.17 This proportion of kerbside and
roadside sites is greater than many LUR models reported in the
literature where typically 50−75% of monitoring sites are in
background locations.15,21,40,41

Entirely unbiased comparisons between 1, 2, and 3-group
models could not be made. Subset_1G models did not share
training sites and so were fully independent of each other. In
contrast models developed from 2 and 3 groups shared up to
50 and 66% respectively of the training sites between models
(e.g., Subset_2G_12 shared 50% of the training sites with
Subset_2G_14). This may have constrained the selection of
predictors, and may consequently have improved the precision
of Baseline and Subset_2G exposure estimates. A PDT network
in excess of 400 sites would be required to obtain four fully
independent replicates of Baseline models.
With appropriate acknowledgment of the above limitations,

our analyses allow estimation of the effect of use of different
sizes of network on LUR model development and exposure
estimates within realistic constraints of available pollution
monitoring networks. An “ensemble” exposure prediction of
the average of the four baseline models would be an
appropriate way to apply these model estimates in epidemio-
logical analyses.18
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G.; Cirach, M.; Declercq, C.; Deḋele,̇ A.; Dons, E.; de Nazelle, A.; et al.
Development of Land Use Regression Models for PM2.5, PM2.5
Absorbance, PM10 and PMcoarse in 20 European Study Areas;
Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46 (20),
11195−11205.
(13) Basagaña, X.; Rivera, M.; Aguilera, I.; Agis, D.; Bouso, L.; Elosua,
R.; Foraster, M.; de Nazelle, A.; Nieuwenhuijsen, M.; Vila, J.; et al.
Effect of the number of measurement sites on land use regression
models in estimating local air pollution. Atmos. Environ. 2012, 54,
634−642.
(14) Johnson, M.; Isakov, V.; Touma, J. S.; Mukerjee, S.; Özkaynak,
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