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Title 

Guillain-Barré syndrome: a century of progress 

 

Abstract 

In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high 

cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease 

we now know as Guillain–Barré syndrome (GBS).100 years on, we have made great progress with 

the clinical and pathological characterization of GBS. Early clinicopathological and animal studies 

indicated that GBS was an immune-mediated demyelinating disorder with secondary axonal injury if 

severe; the current treatments of plasma exchange and intravenous immunoglobulin, which were 

developed in the 1980s, are based on this premise. Subsequent work has, however, shown that the 

underlying disease can be an axonal injury. The association of Campylobacter jejuni strains has led to 

confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an 

antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and 

other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor 

eculizumab are the first of targeted immunotherapy in GBS. 

 

Guillain–Barré syndrome (GBS) is the commonest cause of acute flaccid paralysis and manifests as 

rapidly evolving weakness and sensory disturbance in arms, legs and in some patients, facial, bulbar 

and respiratory muscles. Many patients will make a good recovery over many months but in severe 

cases patients can require months of intensive care support and be left with permanent severe 

weakness, sensory disturbance and pain. Furthermore, around 5% die from complications including 

respiratory failure, pneumonia and arrhythmias, making it a medical emergency with a high 

morbidity and significant mortality. 

Descriptions of clinical cases that closely resemble the condition we now know as GBS were made at 

least as early as 1859, when Jean Baptiste Octave Landry reported on “acute ascending paralysis”. 

His report led to use of the term “Landry's ascending paralysis” to describe subacute ascending 

peripheral sensory and motor dysfunction. He observed that:  

“The sensory and motor systems may be equally affected. However the main problem is usually a 
motor disorder characterised by a gradual diminution of muscular strength with flaccid limbs 
without contractures … The paralysis moves rapidly from lower to upper areas. The progression can 
be more or less rapid. When the paralysis reaches its maximum intensity, the danger of asphyxia is 
always imminent. However in eight out of ten cases death was avoided. When there is a reversal of 
the paralysis, the recovery period involves phenomena opposite to those indicated in the 
development period. Patients then either recover very quickly, or the disease becomes chronic with 
slow improvement” 1. 
 
Thus, the core clinical features of the condition were described, but its aetiology and pathogenesis 

remained obscure to mid-nineteenth and early twentieth century neurologists. The focus was on 

delineating the clinical features of this disorder to enable its differentiation from similar conditions, 

such as polio, which was a highly prevalent differential diagnosis for acute flaccid weakness.It was 



not until 1916 that Guillain, Barré and Strohl published the paper that would define the disease and 

the next 100 years of research.  

[H1] 1916 — Guillain, Barré and Strohl 

In 1916,2 Europe was on the brink of destruction, the Battle of the Somme had killed or wounded 

over one million men, yet Guillain, Barré and Strohl— three army physicians at the neurological 

military centre of the French Sixth Army — were discussing the CSF constituents and tendon reflexes 

of two paralysed soldiers. In 1891, Walter Essex Wynter had published the first use of lumbar CSF 

sampling with a cutdown technique, and in the same year, Quincke reported the first use of the 

lumbar puncture3. In 1916, Guillain, Barré and Strohl used Quincke’s method to determine the 

protein level and cell count in the CSF of their patients. 

The three neurologists observed high CSF protein levels in the absence of any rise in inflammatory 

cells— their so-called “dissociation albumino-cytologique”. This finding was distinct from the high 

white cell counts seen in the CSF of patients with other prevalent causes of acute flaccid paralysis, 

such as syphilis and polio. At the time, the finding firmly established that the condition was a clinical 

and pathological entity distinct from other infective causes of flaccid paralysis— Guillain–Barré 

syndrome was born. 

Our current understanding of GBS allows for the finding of normal CSF protein levels, especially early 

in the disease because we know that the CSF protein level might not be elevated until the second 

week, and CSF white cell counts up to 50 cells/μl. Moreover, we also now consider a wide clinical 

spectrum to result from the same underlying acute immune-mediated peripheral nerve and nerve 

root inflammation. Nevertheless, the original CSF findings remain the CSF hallmark and a 

diagnostically important and supportive test result4.  

[H1] Early controversy 

Initially, the awkward eponym Landry–Guillain–Barré–Strohl syndrome was used to describe the 

condition. By 1927, the term had been simplified to Guillain–Barré syndrome5, even though Strohl 

had been instrumental in the electrographical recordings and characterization of the loss of tendon 

reflexes. Guillain and Barré continued as highly regarded neurologists after the War. Guillain insisted 

that the condition he described was benign, in the sense that it was not fatal, and therefore resisted 

the notion that Landry had described the same syndrome. Furthermore, he and Barré insisted on the 

high CSF protein level and low cell count being necessary to define their syndrome and differentiate 

it from other infectious diseases. The clinical features compatible with the diagnosis were the 

subject of much debate; for example, the original report described no cranial nerve or bladder 

involvement, but with time, Guillain and Barré accepted these as possible features. 

[H1] Early pathological and animal studies 

In 1949, whilst debate continued about the nosological limits and essential clinical features of GBS, 

Haymaker and Kernohan published a large case series of autopsy findings from 50 patients with 

GBS6. This work remains one of the largest and most comprehensive pathological studies of GBS, 

although up to a quarter of patients included would not satisfy current definitions of GBS (for 

example some had CSF cell counts >100 cells/μl). In addition, the use of autopsy samples inevitably 

leads to selection for the most severely affected patients. Nonetheless, this study was influential 



because it set forth a concept of the pathogenesis of GBS. The authors reported nerve oedema 

during the first few days after onset, with subsequent focal swelling of myelin sheaths and 

irregularity of axons. They described lymphocytic and macrophagic infiltration from around day nine, 

and Schwann cell proliferation a few days later. They proposed that the cellular response was not 

the primary effector of nerve destruction, but secondary to an initial injury, which might be 

humorally mediated. Their proposal was the conceptual ancestor of the modern hypothesis: initial 

antibody-mediated injury with subsequent cellular infiltration, further damage, then repair. 

This proposal of the pathogenesis had barely been articulated when, in 1955, an animal model of 

immune-mediated peripheral nerve inflammation — experimental allergic neuritis (EAN) — was 

published7. In this study, rabbits developed weakness and ataxia ~2 weeks after immunization with 

sciatic nerve homogenates in Freund adjuvant. The animals exhibited high CSF protein levels, normal 

white cell counts and lesions in the nerve roots, spinal ganglia and peripheral nerves. These lesions 

were characterized by perivascular infiltration with mononuclear cells, segmental demyelination and 

some axonal degeneration. The disease could be transferred to naïve animals by injection of 

lymphocytes from immunized animals 8. This work represented a breakthrough in animal modelling 

of autoimmune neuropathy, and enabled systematic unravelling of cellular and molecular 

mechanisms behind T-cell-mediated peripheral nerve demyelination. Subsequent work identified 

the myelin protein P2 as the neuritogen9,10, showed that P2-specific CD4+ cells are the main effector 

cells10, and revealed the potential contribution of autoantibodies 11. EAN has proven to be a fruitful 

experimental model, and remains widely used. 

The pathological features in the original report of EAN were at odds with the model of pathogenesis 

described by Haymaker and Kernohan. This discrepancy was addressed by an autopsy study of 19 

patients with GBS, conducted at the institution at which the EAN model had been developed12. This 

study revealed a temporal and pathological profile that closely resembled EAN. Even in the earliest 

stages, marked lymphocytic and polymorphonuclear infiltrates were seen in peripheral and cranial 

nerves, and even in some terminal motor nerve branches. Myelin breakdown was seen in motor and 

sensory nerves, and there was retraction of myelin at nodes of Ranvier, leading to focal 

demyelination. Nerve roots were sometimes involved, nerve injury was so proximal in some cases 

that changes were seen in the anterior horn cells, and patients who had survived the longest 

exhibited muscle denervation. The authors concluded that GBS is a “cell-mediated immunologic 

disorder, in which peripheral myelin is attacked by specifically-sensitized lymphocytes”. Subsequent 

pathological studies confirmed these findings13 and extended the observations to identify the role of 

macrophages as major effectors of myelin stripping14 and axonal injury15. 

The discrepancies between the report from Haymaker and Kernohan, which indicated minimal 

inflammation in the early pathological phase, and studies that have implicated T cells and 

macrophages as the main effectors of pathology remain somewhat unexplained. A pathological 

spectrum or dichotomy undoubtedly exists, with demyelination at one end and axonal injury at the 

other; Haymaker and Kernohan might have included a large proportion of patients with axonal injury 

and minimal cellular infiltration. Despite the discrepancy, human pathological data combined with 

an accessible animal model resulted in wide acceptance that the dominant pathological process is 

nerve demyelination mediated byT cells and macrophages, a model that has shaped our 

understanding of the disease for over 40 years. 



[H1] Charles Miller Fisher 

In 1956,Charles Miller Fisher reported three patient case histories in the New England Journal of 

Medicine16;little could he have known of the long-lasting impact these reports would have on our 

understanding of GBS. These patients had a triad of areflexia, ophthalmoplegia and ataxia, and 

Fisher proposed that they had an unusual variant of “idiopathic polyneuritis”. The subacute onset 

and resolution of symptoms, along with the finding of albuminocytological dissociation, might have 

been what led him to consider the condition to be a variant of GBS with “an unusual and unique 

disturbance of peripheral neurons”.  

Fisher’s report is a masterpiece of the classic clinicoanatomical method of 19th and 20th century 

descriptive neurology, all the more remarkable because he saw one of the patients much later than 

the illness and drew his conclusions from their account and the clinical record. He identified signs 

that the CNS could be involved, which ultimately led to the realization that Miller Fisher syndrome 

(MFS), Bickerstaff brainstem encephalitis and GBS represent different points on the same 

immunopathological spectrum17. 

[H1] Inadvertent insights  

[H2] Association with swine flu vaccination 

The epidemiology of GBS has been studied extensively, largely as a consequence of its reported 

association with the swine flu vaccination in 1976. Military recruits at Fort Dix in New Jersey, USA, 

had contracted an influenza-like illness, and several isolates from these patients were identified as 

H1N1 viruses that were antigenically similar to those that caused the great swine flu pandemic of 

1918. Concern over another deadly pandemic led to production of enough vaccine to immunize the 

entire US population.45 million people received the vaccine in October 1976. By December, planned 

surveillance had identified clusters of GBS cases, leading to the conclusion that the risk of GBS was 

increased in the first 6 weeks after immunization (RR 7.6,95% CI 6.7–8.6). The immunization 

program was suspended by mid-December, but continued surveillance led to the conclusion that 

many cases of GBS were directly related to the vaccine18. 

This report has caused nearly 40 years of concern and debate about the relationship of influenza 

vaccination — and, by analogy, all vaccines —with GBS. The report was questioned on several 

methodological issues, and an independent review of GBS cases included noted that many did not 

meet the accepted diagnostic criteria — the original study consequently received fierce criticism19. 

The US Justice Department eventually convened an independent assessment of the data by an 

expert panel, who confirmed that, despite methodological flaws of the study, the risk of GBS was 

elevated and peaked 2–3 weeks after vaccination, with an attributable risk of 0.49–0.59 extra cases 

per 100,000 adult vaccinees20. Several subsequent influenza immunization programmes have been 

monitored for an increased incidence of GBS; in 1998, a retrospective case series of patients with 

GBS confirmed an increased risk of GBS (RR 1.7, 95% CI 1.0-2.8)in the 6 weeks after influenza 

vaccination21. 

Following the controversy precipitated by the 1976 swine flu vaccination, the Centers for Disease 

Control and Protection urged the National Institute of Neurological and Communicative Disorders 

and Stroke to develop more-stringent diagnostic criteria for GBS to ensure more definitive case 



ascertainment during monitoring. Diagnostic criteria had previously been proposed in 196022, but 

the vaccination controversy led to development of the Ashbury criteria23, which were further 

clarified in 1981 and 1990, largely to incorporate advances in neurophysiological techniques24,25. 

These criteria served as the diagnostic standard for many clinical trials and epidemiological and 

pathological studies undertaken since their development. In 2014, the Brighton Collaboration (an 

international collaboration that facilitates the development of internationally standardised case 

definitions for various illnesses; www.brightoncollaboration.org)developed case definition criteria 

(Table 1); use of these criteria and their validation in GBS cohorts has begun4. 

[H2] Association with gangliosides 

In the 1970s and 1980s, purified gangliosides were administered to patients in many countries for 

various neurological disorders. Gangliosides are sialylated glycosphingolipids that are enriched in 

neuronal membranes and involved in neuronal processes including synaptogenesis, neuritogenesis, 

neuronal precursor migration, neuronal regeneration and myelination26. Clinical trials had suggested 

that exogenous gangliosides improved symptoms of diabetic neuropathy and offered some 

neuroprotection in ischaemic stroke. Promising results had also been seen in the prevention and 

treatment of neurodegenerative diseases27. 

In the 1990s, the role of anti-ganglioside antibodies in mediating peripheral nerve injury in GBS was 

becoming clearer (see Anti-ganglioside antibodies), and case reports emerged of GBS in patients 

who had received ganglioside-based medications28, triggering fears that these drugs were causing 

GBS in some patients. Eventually, most countries withdrew gangliosides for most indications, 

although controversy over their association with GBS persists. Several epidemiological studies have 

indicated no elevated risk of GBS in patients treated with gangliosides,29,30and no cases of GBS have 

been reported in several trials of the ganglioside GM1 for spinal cord injury31. 

[H1] Electrophysiological developments 

Early electrophysiological studies established that conduction block in peripheral nerves is the 

neurophysiological hallmark of GBS, and that this feature is part of a widespread, multifocal 

demyelinating process in most patients32. These clinical findings were confirmed by many animal 

studies in which serum from EAN model mice or from humans with GBS induced acute lesions with 

conduction block in wild-type mice, and passive transfer of serum from animals immunized with 

galactocerebroside or anti-galactocerebroside antibodies caused focal paranodal disruption and 

subsequent demyelination33-35. 

These studies helped to clarify the nature of the underlying pathological process, and others focused 

on the diagnostic utility of electrophysiology. This work established that reduced motor amplitudes 

are the earliest changes in GBS, and that serial testing detects evolving demyelinating features36,37. 

These findings remain the cornerstone of electrodiagnosis in GBS, although the subsequently 

identified pure axonal form of GBS (see Axonal GBS) has different characteristic electrophysiological 

features: reduced compound muscle action potential amplitude and reversible conduction failure, 

among others. In early GBS, electrophysiological findings are often normal or difficult to classify, and 

can lead to misclassification of axonal forms as acute inflammatory demyelinating polyneuropathy 

(AIDP). Increasing recognition of this difficulty has resulted in calls for redefining the 

electrophysiological diagnostic criteria for GBS38. 

http://www.brightoncollaboration.org/


[H1] Axonal GBS 

By the mid-1980s, GBS was considered to be a primary demyelinating T-cell-mediated autoimmune 

disorder of peripheral nerves and nerve roots. Secondary axonal degeneration and Wallerian-like 

degeneration after severe demyelination was felt to represent the severe end of the demyelinating 

process. In 1985, however, Thomas Feasby and colleagues cared for a patient with severe post-

diarrhoeal GBS who became tetraplegic and developed respiratory failure within 36 h. Nerve 

conduction studies revealed inexcitable nerves — an unusual finding — and she died from a cardiac 

arrest on day 28 after onset of weakness. The autopsy revealed severe, widespread axonal 

degeneration in the nerve roots and periphery without lymphocytic inflammation, rather than the 

usual characteristic segmental demyelination. The team were convinced they had seen something 

new and published their findings from several similar cases in 198639. Their proposal of a pure axonal 

form of GBS met with much scepticism, and Feasby had to fiercely defend his findings40until similar 

cases were reported41 and the concept gained some ground by the early 1990s.  

At a similar time, a collaborative group reported on a unique GBS-like syndrome —the Chinese 

paralytic syndrome (CPS) —that occurred in seasonal outbreaks among children in rural China42and 

was characterized by severe flaccid tetraplegia that progressed rapidly and often necessitated 

ventilator support. Most patients exhibited high CSF protein levels and low or absent white cell 

counts, typical of GBS. Electrophysiological recordings of reduced motor amplitudes, preserved 

conduction velocities and preserved sensory nerve action potentials, however, pointed to a severe 

axonal neuropathy43.Autopsy tissue from 12 patients did not show demyelination typical of GBS, but 

extensive Wallerian-like degeneration of sensory and/or motor axons. The condition was classified 

as a type of GBS and subdivided according to the axons affected; the terms acute motor and sensory 

axonal neuropathy (AMSAN) and acute motor axonal neuropathy (AMAN) were coined. The 

pathology identified in this work — macrophage invasion of the periaxonal space at the paranodal 

and nodal regions, where there is immunoglobulin and complement deposition, and displacement of 

the axon (Figure 1)44— is in marked contrast to the macrophage-mediated myelin stripping and the 

antibody and complement deposition in Schwann cells in the demyelinating form of GBS (Figure 

1)45,46,which became known as acute inflammatory demyelinating polyneuropathy (AIDP) to reflect 

the pathological distinction from AMAN and AMSAN. Subsequent studies confirmed the existence of 

AMAN and AMSAN in populations globally, although the proportions of patients with GBS subtypes 

vary geographically; for example, AMAN and AMSAN are more common in China and Asia, whereas 

AIDP is more common in North America and Europe. 

[H1] Molecular mimicry in pathogenesis  

[H2] Campylobacter jejuni 

Long-standing recognition that a diarrhoeal illness can precede GBS has led many to search for an 

infectious trigger. For example, in 1958, Campbell reported antecedent respiratory tract infections in 

60% of patients with GBS in his case series, and diarrhoea in 10–20%47. He suggested that “the 

Landry–Guillain–Barré syndrome is a non-specific reaction to several infective agents and is possibly 

due to an abnormal antigen–antibody response”. 

In 1982, Rhodes and Tattersfield reported on a patient with GBS after a diarrhoeal illness and whose 

stool was positive forC.jejuni48. This report was soon followed by a retrospective study of 56 patients 



with GBS, 38% of whom exhibited serological evidence of C.jejuni infection49. Numerous subsequent 

studies documented the prevalence of C.jejuni infection or seropositivity in patients with GBS, 

confirming the finding to be widespread and reproducible50. 

In 1993, Yuki and colleagues demonstrated that the core lipooligosaccharides of the C.jejuni strains 

associated with GBS have structural similarity with various gangliosides present on peripheral nerve 

membranes51, indicating that molecular mimicry of gangliosides could contribute to GBS. 

Furthermore, lipooligosaccharides from the C.jejuni strains associated with MFS were shown to have 

identical structures to that of ganglioside GQ1b52. In 2004, Yuki demonstrated that immunization of 

rabbits with the ganglioside-like lipooligosaccharides from GBS-associated C.jejuni strains resulted in 

a subacute flaccid tetraplegia and pathological changes similar to those seen in AMAN53.  

[H2] Anti-ganglioside antibodies 

In recent decades, the spotlight has fallen on the pathogenic mechanism that links C.jejuni and 

molecular mimicry of gangliosides with GBS. The presence of anti-GM1 ganglioside IgM antibodies in 

multifocal motor neuropathy has long been known, and other anti-ganglioside antibodies were 

reported in patients with GBS in 198854. In 1990, Yuki postulated that anti-ganglioside antibodies 

might be present in a patient with AMAN following C.jejuni enteritis; he identified high titres of anti-

GM1 IgG, which fell with resolution of the illness 41.Numerous subsequent studies established that 

anti-GM1 IgG are present in a high proportion of patients with GBS, mostly those with AMAN or 

AMSAN55. Other anti-ganglioside antibodies were subsequently associated with specific clinical 

subtypes of GBS, including anti-GD1a antibodies with AMAN56 and anti-GQ1b and anti-GT1a with 

acute oropharyngeal palsy57. 

In the context of anti-ganglioside antibodies, the condition described by Miller Fisher took on 

greater significance. The association between specific anti-ganglioside antibodies and specific GBS 

subtypes became accepted, but the proportion of patients who were seropositive for these 

antibodies was generally relatively low and of limited diagnostic use. By contrast, in 1992 Chiba and 

colleagues detected anti-GQ1b IgG antibodies in six consecutive patients with MFS, and 

consequently proposed that it could be a useful diagnostic marker 58.This report opened the door to 

a plethora of studies that confirmed that the presence of anti-GQ1b IgG antibodies in 80–95% of 

patients with MFS and in many patients with MFS–GBS overlap conditions or Bickerstaff 

encephalitis17. Anti-GQ1b IgG antibodies have, therefore, served as a useful clinical diagnostic 

marker of MFS. 

A remarkable twist in the anti-ganglioside antibody story has emerged with the discovery that some 

anti-ganglioside antibodies can only be detected in the blood of some patients with techniques that 

involve simultaneous presentation of multiple gangliosides or gangliosides with other lipids59,60. This 

observation has led to recognition of the fact that specific epitopes present in vivo might depend on 

interactions between multiple molecules on the cell membrane, and that this complex arrangement 

is not readily reproduced with traditional antibody testing methods61,62. Novel diagnostic techniques 

have been developed to begin addressing this issue, and might reveal antibodies in patients who 

have hitherto tested seronegative63. 

[H2] Pathogenic mechanism 



The association of anti-ganglioside antibodies with specific GBS subtypes might, of course, be an 

epiphenomenon rather than an indication that the antibodies mediate pathogenesis. Numerous 

investigators over several decades and several continents have attempted to determine whether 

these antibodies are pathogenetic and how they mediate damage. In summary, many collaborative 

efforts have demonstrated that anti-GM1 and anti-GQ1b antibodies bind to peripheral nerve and 

neuromuscular junctions64,65, and anti-GD1a antibodies bind to the nodes of Ranvier, paranodal 

myelin and neuromuscular junction66,67,68. Upon binding, the antibodies activate the complement 

cascade, resulting in formation of the membrane attack complex, disruption of sodium channel 

clusters at the node of Ranvier with disruption of nodal architecture69, and calcium influx and 

calpain-dependent neuronal and glial injury at the neuromuscular junction70,71.This injury can be 

ameliorated with complement inhibitors72,73. 

Taken together, these studies have revealed a likely pathogenic pathway for C. jejuni-associated 

GBS, at least in AMAN (Figure 2). The relationship between anti-ganglioside antibodies and AIDP is 

not as clear because less evidence indicates associations of anti-ganglioside antibodies with this 

form of GBS. Notable exceptions, however, include evidence of molecular mimicry between 

Mycoplasma pneumoniae, production of anti-galactocerebroside antibodies and AIDP74. 

[H1] GBS and Zika virus 

GBS is triggered by various viruses, and in 2016, it became clear that the viral triggers include Zika 

virus. Since the 1950s, Zika virus has been reported as circulating sporadically in Africa and southeast 

Asia, but in 2016, has been declared a Public Health Emergency of International Concern by the 

WHO owing to rapid spread of the virus across Central and South America and elsewhere. Numerous 

neurological complications have been associated with Zika virus infection, and a case–control study 

from a localized outbreak in French Polynesia in 2013–2014 demonstrated an association and likely 

causative relationship between Zika virus infection and GBS75.The estimated incidence was 0.24 

cases of GBS per 1,000 Zika virus infections; although a rare complication, in the context of an 

emerging epidemic or pandemic, this incidence of GBS could easily overwhelm the hospital and 

intensive care resources of even the best-equipped and well prepared of healthcare services.  

Additional case control studies are emerging from other geographical areas, notably in Latin 

America, that are also reporting a very high incidence of Zika-associated GBS76-78. It therefore seems 

inevitable that this emergent form of GBS will continue to occur throughout Zika-affected regions in 

Asia and Africa.  

 

[H1] Therapy 

In parallel with all the aforementioned studies, a small number of trials have established the current 

standard treatments for GBS. In combination with meticulous medical and intensive care and long-

term rehabilitation therapy, plasma exchange and intravenous immunoglobulin (IVIg) have been 

shown to improve outcomes for patients with GBS. 

In 1984, two small clinical trials showed some positive effects of plasma exchange in GBS79,80, and in 

1985, a larger study confirmed the effect and demonstrated that plasma exchange in patients who 

were unable to walk hastened recovery, especially when started within 2 weeks of GBS onset81.A 



subsequent study obtained similar results82. Plasma exchange consequently became the first proven 

therapy for GBS, but the treatment is not always straightforward and carries particular risks for 

patients with autonomic disturbance, which is common in GBS. 

Largely owing to their difficulty in performing plasma exchange in the late 1980s, a group in the 

Netherlands sought an alternative therapy and used fresh frozen plasma and then, in subsequent 

patients, IVIg for GBS or chronic inflammatory demyelinating polyneuropathy83-85. This work led to a 

clinical trial in the late 1980s in which plasma exchange and IVIg were compared86. The results 

showed that IVIg was a practical and effective alternative to plasma exchange: the proportion of 

patients who showed improvement after 4 weeks was higher among patients who received IVIg than 

among those who received plasma exchange. There was initial debate about whether IVIg was as 

effective as plasma exchange, and whether treatment-related fluctuations in symptoms in patients 

who receive IVIg would require re-treatment. However, the consensus became that IVIg is as 

effective as plasma exchange, and far more straightforward to administer87. IVIg has, therefore, 

become the first-line treatment for GBS in most countries, unless a clinical indication favours plasma 

exchange, or the expense of IVIg limits its availability in resource-poor settings. 

Outcomes of GBS are improved with plasma exchange or IVIg, but many patients remain 

substantially disabled and experience ongoing fatigue or chronic pain, and mortality remains at 2–

3%88. Trials have examined whether combined plasma exchange and IVIg89, combined IVIg and 

steroids90 or steroids alone91 are more effective treatments. Disappointingly, none of these 

approaches have been superior to standard therapy in the long term, although a possible minor 

short-term benefit was seen with intravenous methylprednisone in addition to IVIg.92These negative 

results leave us with only two partially effective treatments. Currently, a randomized placebo-

controlled trial (SID-GBS) is assessing whether GBS patients with a poor prognosis benefit from a 

second course of IVIg (trialregister.nl NTR2224). The effect of a second course of IVIg is also being 

studied in a nonrandomized fashion in the International GBS Outcome Study (Box 1). 

A growing body of evidence supports the theory that antibody-mediated complement-dependent 

mechanisms underlie the pathogenesis of GBS,93and ongoing clinical trials are exploring whether 

specific complement inhibition can improve outcomes of GBS. One drug currently in trials is 

eculizumab, an anti-C5 monoclonal antibody that is licensed for the treatment of paroxysmal 

nocturnal haemoglobinuria. In a mouse model of GBS, eculizumab has been shown to prevent 

complement-mediated injury94, and in a pilot study in patients with multifocal motor neuropathy, it 

proved safe and tolerable95. At present, eculizumab is being tested in two randomized, blinded, 

placebo-controlled trials: the Inhibition of Complement Activation in GBS study (ICA-GBS) 

(ClinicalTrials.gov NCT02029378) and the Japanese Eculizumab Trial for GBS (JET-GBS) 

(ClinicalTrials.gov NCT02493725). In both studies, patients receive standard therapy with IVIg or 

plasma exchange with either eculizumab or placebo. Both trials have now completed and are due to 

report their results shortly.  

[H1] Conclusions and outstanding questions 

In the 100 years since the first landmark description of GBS, we have made considerable progress in 

understanding the nature of the disease and the mechanisms that lead to its development (Figure 

3). In particular, our understanding of the pathology and pathogenesis of AMAN has increased 

considerably in recent decades, with a detailed picture now emerging of antibody-mediated and 



complement-mediated disruption of the neuronal membrane. Nevertheless, many uncertainties 

remain.  

The relative contributions of T cells, macrophages and antibodies in AIDP remain unclear, as most 

patients with this condition remain seronegative for anti-ganglioside antibodies with the use of 

traditional antibody detection methods. We do not know whether these patients express an as yet 

unidentified autoantibody, or whether the immunopathogenesis is fundamentally different in this 

pathological subtype. Similarly, we do not yet know whether complement inhibition will prove to be 

an effective therapy for GBS and, if so, whether it will benefit only patients with AMAN, in whom 

there is considerable evidence for the role of complement in pathogenesis, or also patients with 

AIDP.  

One reason GBS has proven difficult to study is that it is a heterogenous disorder, and even 

interested clinicians and centres see relatively few cases each year. Global collaboration through 

initiatives such as the International Guillain–Barré Outcome Study (Box 1) is likely to enable 

development of biomarkers, prognostic tools and personalized therapy, and provide a clearer 

understanding of the aetiology and pathogenesis of GBS so that we can answer the remaining, long-

standing questions. 

In the 100th anniversary year of GBS, a new challenge has also come to the fore in the association of 

Zika virus infection with GBS. An immediate and pressing question is how countries that are 

experiencing or anticipating a Zika virus outbreak can prepare for the expected increase in cases of 

GBS, which threaten to overwhelm hospital and intensive care services. The immediacy of the 

challenge also highlights to importance of building on our progress so far, and gaining an even 

greater understanding of GBS in the years to come. 
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Box 1 | The International Guillain-Barré Outcome Study 

The International Guillain-Barré Outcome Study is an international, multicentre, prospective 

observational study coordinated by B. C. Jacobs at Erasmus MC in Rotterdam, Netherlands. Through 

this massive international effort, every patient with GBS at participating centres will be entered into 

an observational study in which clinical, electrophysiological, cerebrospinal fluid, serum, treatment 

and outcome data are collected in order to define biomarkers for disease activity and recovery, and 

to develop prognostic models (https://gbsstudies.erasmusmc.nl/home). Recruitment for the study 

began in May 2012, with an original intention to collect data from 1,000 patients. Already, the target 

has been surpassed, with >1,250 patients from 18 countries included to date, and continues to 

recruit patients in many countries from all continents throughout the world. 

 

Figure 1. Immune-mediated attack on Schwann cells and axons in Guillain–Barré syndrome. a | 
Deposition of the complement product C3d (black) on the outer surface of two fibres (asterisks) 
from a patient with autoimmune demyelinating acute inflammatory demyelinating polyneuropathy 
(AIDP). b | Extensive vesiculation of the myelin sheath in the same patient with AIDP (black arrows 
indicate normal compacted myelin; white arrows indicate abnormal vesiculation of myelin). c | 
Macrophages containing fatty myelin debris are seen associated with a demyelinated fibre from the 
same patient with AIDP, highlighting the central role inflammatory cells play in the pathogenesis of 
AIDP. (Asterisks label the axon; macrophages labelled with m) d |Schematic illustrating antibody, 
complement and macrophage (labelled m) attack directed against the outer surface of the myelin 
sheath in AIDP. e | C3d deposition (arrow) at the node of Ranvier in ventral root in a patient with 
acute motor axon neuropathy (AMAN) f | Node of Ranvier (arrow) on the ventral root, with visible 
nodal lengthening and two overlying macrophages (arrowheads) in a patient with AMAN. a, b and c 
are adapted with permission from45. d, e and h adapted from46. 
 
Figure 2. Proposed mechanism of Guillain-Barré syndrome pathogenesis mediated by 
Campylobacter jejuni. A molecular mimic of gangliosides in C.jejuni leads to the production of anti-
ganglioside antibodies that bind to gangliosides in the axonal membrane at the node of Ranvier. 
Consequent activation of complement leads to disruption of voltage-gates sodium channel (Nav) 
clusters, disruption of the nodal architecture, and formation of the membrane attack complex, 
which leads to calcium influx. These changes cause axonal injury and attract macrophages, which can 
then migrate between the axon and myelin. 
 



Figure 3. Timeline showing the major milestones in Guillain-Barré syndrome (GBS).  CSF, 
cerebrospinal fluid; EAN, experimental autoimmune neuritis; IVIg, intravenous immunoglobulin. 
 
 

]Table 1: Brighton criteria for Guillain-Barré syndrome 

 Level of diagnostic certainty 

Diagnostic criteria 1 2 3 4 

Bilateral and flaccid 
weakness of limbs 

+ + + +/- 

Decreased or absent 
deep tendon reflexes in 
weak limbs 

+ + + +/- 

Monophasic course and 
time between onset-
nadir 12 h to 28 days 

+ + + +/- 

CSF cell count <50/μl + +a - +/- 

CSF protein 
concentration > normal 
value 

+ +/-a - +/- 

NCS findings consistent 
with one of the subtypes 
of GBS 

+ +/- - +/- 

Absence of alternative 
diagnosis for weakness 

+ + + + 

+ present; − absent; +/− present or absent;. 
NCS = nerve conduction studies; GBS = Guillain-Barré syndrome. 
aIf CSF is not collected or results not available, nerve electrophysiology results must be consistent 
with the diagnosis Guillain-Barré syndrome.  

Level 1 – Highest level of diagnostic certainty; Level 4 – Lowest level of diagnostic certainty 

 

Box 2. GBS100 

To celebrate the progress made in the 100 years since Guillain, Barré and Strohl’s case report, an 
international symposium was held in Glasgow, UK in June 2016. To mark the event, the Peripheral 
Nerve Society published a free multi-author textbook summarising the landmark studies and events 
in the history of GBS research. This is freely available as an E-book from their website 
www.pnsociety.com.  








