
Eukaryotic Evolutionary Transitions Are Associated with
Extreme Codon Bias in Functionally-Related Proteins
Nicholas J. Hudson1*, Quan Gu1,2, Shivashankar H. Nagaraj1, Yong-Sheng Ding2, Brian P. Dalrymple1,

Antonio Reverter1

1 Computational and Systems Biology, CSIRO Livestock Industries, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia, 2 College of Information

Sciences and Technology, Donghua University, Shanghai, China

Abstract

Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA
translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species
differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore
this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree
of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in
each organism and explored the output for relationships between codon bias and protein function, both within- and
between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits
considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-
binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal
proteins – perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species
examined possessed extreme codon bias in genes relating to hair – a tissue unique to mammals. Thirdly, Arabidopsis
thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function – which are unique
to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins –
perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome
had extreme codon bias for the Ciliary Neurotrophic Factor – which may help to explain their spontaneous recovery from
deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-
level energetic explanation.
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Introduction

With fully sequenced genomes now available for organisms of

differing complexity, there is greater opportunity to explore

genome to phenome relationships. For example, it has become

clear that protein coding sequence contains far more information

than merely the encoding of amino acids. This is well illustrated by

the phenomenon of codon bias [1], which arises when a given

amino acid is preferentially encoded by one of various ‘synony-

mous’ codons.

Studies on codon bias have typically focused on measuring the

extent of codon bias in coding sequence of interest and using this

information to make predictions about, or influence, the

expression levels of proteins. For example, as a consequence of

codon bias the amount of a specific protein produced by an

organism can be reduced or increased by the introduction of that

organism’s un-preferred or preferred codons, respectively, into the

corresponding protein coding sequence [2–4]. Such studies have

generated a suite of tools including the general codon usage

analysis (GCUA) [2], the codon adaptation index (CAI) [3] and

the interactive codon usage analysis (INCA) [4].

The pathological [5] and evolutionary [6,7,8] implications of

codon bias have also been explored, although to a much lesser

extent than the implications for protein expression. This may be

because the genome-wide functional data and accompanying

statistical enrichment tools–such as GOrilla analysis [9]–have only

become available in the recent post-genomics era.

Apparently silent, synonymous codon changes can clearly affect

the speed and efficiency of translation [10] and the abundance of

proteins [11]. Translation rate constants play a dominant role in

control of protein levels, and protein synthesis consumes more

than 90% of cellular energy [12]. Thus it is certainly conceivable

that natural selection for codon bias in influential biological

processes may have substantial macro evolutionary implications.

Perhaps such selection could account for many fundamental

changes in phenotype that have not yielded to alternative

explanations. Indeed, the explanation for increased phenotypic

complexity in eukaryote evolution remains elusive. It does not
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appear to be attributable to simple measures of genome size–the

so-called c-value enigma e.g. [13], or to the total number of

proteins–which are as numerous, for example, in the unicellular

organism, Chlamydomonas reinhardtii, as in the 2,000 cell organism,

Volvox carteri [14].

To explore the possibility that codon bias may play a role in

macroevolution, we set out to characterize the patterns of codon

bias on a genome-wide scale and to associate the observations with

the phylogenetic position of the organisms on the Eukaryotic Tree

of Life. Seeking to shed light on the protein-based origins of

multicellularity, emergence of the vertebrates, the evolution of

mammals and of cognition, we analyzed the following represen-

tative organisms: A. thaliana (Arabidopsis), S. cerevisiae (a yeast),

Caenorhabditis elegans (roundworm), G. gallus (chicken), Pan troglodytes

(chimpanzee) and H. sapiens (human).

We identified a number of new relationships that are challeng-

ing to rationalize at the level of the individual gene, given that

(with the exception of multigene families) individual genes are

generally presumed to have long independent evolutionary

histories and yield mRNAs with different biophysical properties.

Our observations therefore beg an explanation at the level of

whole pathways, and here we propose an energetic explanation.

That is, patterns of codon bias in genes encoding functionally-

related proteins influence translational efficiency in multiple

components of a given pathway, thus increasing or decreasing

the efficiency of translation across that pathway.

Methods

Datasets and the concept of Differential Entropy
Using Ensembl BioMart (http://www.biomart.org/), we ac-

quired the entire protein coding sequences (CDS) for six organisms

that occupy vital positions in the tree of life: S. cerevisiae S288C

(March 2010), simple unicellularity, basal eukaryote; A. thaliana

TAIR 10 (April 2011) transition to multicellularity, Plant

Kingdom; C. elegans WS210 (November 2010), transition to simple

multicellularity, Animal Kingdom; G. gallus 2.1 (May 2006), non-

mammalian vertebrate, complex multicellularity; P. troglodytes 2.1

(March 2006), mammalian vertebrate, complex multicellularity;

and H. sapiens HG19 (February 2009), highly complex multicel-

lularity, including cognitive function.

Then, for every CDS (of which there are ,55,000 in the human

genome) we generated 20 random sequences that encode the

identical amino acid sequence. This allowed us to accurately

characterize the entropy that could be expected in the absence of

codon bias (Table S1 contains the entropy data for every sequence

in each species). We followed the randomization procedure of

Itzkovitz et al. [15], who demonstrated that 20 realizations is more

than adequate in this context. In passing, we wish to point out that

this approach-in the absence of the downstream statistic described

below-may be useful in determining ‘neutral’ rates of codon usage

for molecular evolutionary studies.

We devised a new codon bias statistic–DIfferential Codon usage

Entropy (DICE) by subtracting the entropy of the observed

sequence from that of the expected:

DICE~ EntOBS { EntEXP: ð1Þ

The analysis is performed strictly at the codon level, which

means that any increase in regularity (detected by a reduction in

information entropy) can be exclusively attributed to codon usage

bias. Under this definition, coding sequences with high regularity

imposed by codon bias will be awarded a strong negative value of

DICE. It also means that regularities imposed by 1) repetitive

tracts of amino acids, 2) disproportionate representation of low-

redundancy amino acids and 3) short sequence length [16] do not

distort interpretation. Because the concept of entropy is irreducible

and only has meaning in the context of the sequence taken as a

whole, this novel approach for measuring codon bias is in the spirit

of the modern integrative systems biology paradigm.

In making the cross-species comparisons we identified orthologs

(i.e. presumed similar or same function) by gene symbol. This is a

relaxed criterion and may contain false positives. As a second level

of quality control, when assessing the genes at the extremes of the

statistical output we determined whether they were true orthologs

through targeted Pubmed searches on a case-by-case basis.

Additionally, the human data contain a number of coding

sequences per gene. In making direct cross-species comparisons

between presumed orthologs we used the human gene variant that

most closely matched the gene in the compared species, as

determined by sequence length.

Shannon’s Entropy and Approximate Entropy
To quantify the amount of regularity in a certain CDS, we

explored two entropy metrics: Shannon’s entropy and approxi-

mate entropy.

Shannon entropy provides a scientific method to express the

degree of uncertainty of a probabilistic event [17]. The entropy is

calculated as a product of probability and the logarithm of

probability for each possible state of the targeted variable (one of

four nucleic acids in our case), defined as follows [17]:

S~{
Xn

i~1

p xið Þ lg p xið Þ½ � ð2Þ

where n is the length of sequence series and p(xi) is the probability

of every component in the signal, satisfying the constraint

Sp(xi) = 1. In the DNA ‘alphabet’, xi only has four states: Adenine,

Cytosine, Guanine, and Thymine; so n = 4 [18]. Notably,

assuming equal proportions of nucleotide usage (i.e., p(xi) = JY
xi) it can be shown that S = 2.0 and any deviation from equal

proportions implies S,2.0.

Approximate entropy (ApEn) is a non-negative number, which

denotes the complexity of a sequence by measuring the likelihood

of pattern occurrence [19]. Given a sequence containing N data

points {u(i): 1#i#N}, the algorithm to compute ApEn proceeds as

follows:

N Step 1: Compose the m-D (dimensional) vector X(i) with

sequence u(i) according to its order:

X m
i ~ u ið Þ,u iz1ð Þ, . . . ,u izm{1ð Þ½ � for 1ƒiƒN{mz1 ð3Þ

where X m
i represents m consecutive u values, commencing with the

i-th point.

N Step 2: Define the distance dm
ij between X m

i and X m
j as:

N

dm
ij ~d X m

i ,X m
j

h i
~ max

k[ 0,m{1ð Þ
u izkð Þ{u jzkð Þj j ð4Þ

Step 3: For each vector X m
i , construct a measure that

describes the similarity between the vectors X m
i and X m

j :
N
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Cm
r ið Þ~ 1

N{mz1

XN{mz1

j~1,j=i

H dm
ij {r

� �
ð5Þ

where r represents a predetermined tolerance value, and Hdenotes

the Heaviside unit step function defined as follows [20]:

H zð Þ~
1 zƒ0ð Þ
0 zw0ð Þ

�
ð6Þ

N Step 4: Calculate the logarithmic average over all the vectors

of Cm
r ið Þprobability:

N

wm rð Þ~ 1

N{mz1

XN{mz1

i~1

ln Cm
r ið Þ

�� �� ð7Þ

Step 5: The ApEn value is given by:

ApEn m,rð Þ~wm rð Þ{wmz1 rð Þ ð8Þ

Thus, ApEn of a sequence measures the likelihood that runs of

patterns of length m that are close to each other will remain close

in the next incremental comparison, m+1. A greater likelihood of

remaining close (high regularity) produces more extreme negative

ApEn values, and vice-versa. To compute entropy the data stream

must be numeric. In the present study, the value u(i) was assigned

to numbers 1, 2, 3 and 4 for nucleotide bases Adenine, Cytosine,

Guanine, and Thymine, respectively. This choice of numeric is

admittedly arbitrary but in fact has no impact on the downstream

computations so long as the notation is consistent, for reasons of

location and scale invariance. For example, we have performed

the entropy calculations after assigning the nucleotides their molar

mass in place of 1, 2, 3 and 4-and derived exactly the same results.

The two parameters, m and r, must be fixed to compute appro-

ximate entropy. The values m = 2 and r = 0.15 or 0.2 are recom-

mended [21]. In the present study, r was set as 0.2. However, other

values did not affect the results when the DICE of a given CDS

was compared with other sequences and across genomes.

Sampling distribution of Differential Entropy
To increase our understanding of the numerical behavior that

could be expected in applying DICE to real CDS, we devised a

simulation schema by which six ‘master’ sequences were randomly

generated with varying lengths of 300, 900, 1500, 3000, 4500 and

9000 amino acids. Then, for each ‘master’ sequence we produced

20 ‘synonymous’ DNA sequences that would code for the same

sequence of amino acids yet using synonymous codons at random.

The entropy, both Shannon’s and ApEn, of each ‘master’ and

‘synonymous’ sequences was computed. The value of DICE was

derived from the difference between the entropy of the ‘master’

sequence and the average entropy of its corresponding ‘synony-

mous’ sequences. Finally, the whole process was repeated 1,000

times.

For each set of ‘master’ versus ‘synonymous’ simulated

sequences, we computed the percentage error rate as follows:

%Error~ 100 |
EntSYNONYMOUS { EntMASTER

EntMASTER

����
���� ð9Þ

The resulting %Error at various sequence lengths was analyzed

to identify the threshold that should be employed for a DICE

corresponding to an empirical statistical significance of P-

value,0.01. After ranking all the %Error, the 10th ranked value,

out of 1,000 simulations, was used as threshold.

Functional Enrichment Analysis
To assess the biological relevance of the output we ranked

DICE on a within-lineage basis, then pasted each list in turn into

the GOrilla web tool [9]. GOrilla uses hypergeometric statistics of

gene ontology terms to identify coordinated patterns of functional

enrichment at the top of the list. The difference in differential

codon bias – contrasting the same gene between lineages – was

also explored by plotting each organism versus human and

manually identifying coordinated patterns of bias favoring one of

the lineages.

Results

Simulation results
Table 1 provides a summary of the results from the simulated

datasets. Regardless of the measure of entropy used (Shannon’s or

ApEn), we observed a decrease in DICE as the length of the

sequence increased. Because neither the ‘master’ nor the

‘synonymous’ sequences were simulated with codon bias, the

decrease in DICE as the length of the sequence increased

indicated that DICE provides a consistent estimate of the codon

bias because its own bias tends to zero as sample size increases.

The smaller variation observed for Shannon compared with ApEn

can be deemed an artifact imposed by the bounded upper limit of

2.0 for Shannon’s. ApEn does not suffer from such bounds.

Similarly, ApEn showed an increased power to detect a significant

DICE at a pre-defined statistical significance level (last two

columns and last row of Table 1). These results favor the use of

ApEn when computing DICE, and consequently our analysis and

Table 1. Differential Entropy, measured using either Shannon
or Approximate Entropy (ApEn), as a function of simulated
coding sequences of varying lengths.

Length, bp Range (max – min)A 1% Significance ThresholdB

Shannon ApEn Shannon ApEn

300 0.047 0.115 0.818 3.746

900 0.018 0.039 0.340 1.155

1,500 0.012 0.029 0.231 0.759

3,000 0.006 0.014 0.145 0.395

4,500 0.005 0.010 0.097 0.292

9,000 0.004 0.006 0.059 0.166

Equation for Best FitC: 65.95x20.77 618.40x20.91

AIn all cases, the average Differential Entropy was within three decimal digits
from zero.

BPercentage error rate threshold corresponding to empirical P-value,0.01
CPrediction equations (both with R2.99%) to identify coding sequences with

statistically significant Differential Entropy (P-value,0.01).
doi:10.1371/journal.pone.0025457.t001
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discussion is based on ApEn. We should point out that the two

entropy measures are so highly related that the application of

Shannon’s entropy would highlight the same genes and biological

pathways, but may assign them slightly different p-values.

Genome-wide and lineage-specific Differential Entropy
Table 2 provides summary statistics for the real versus the

random entropy for the six species. Most of the sequences for these

species possess lower entropy than random. Figure 1 illustrates the

genome-wide DICE for the six species under consideration. For

shorter noisier sequences the real sequence might have higher

entropy (i.e. more disorder) than the simulated random sequences

through chance alone. This effect disappeared with increasing

sequence length as the entropy measurement of both the real and

the random sequences became more robust. The distribution of

the data points around the line, and the far greater mass below the

line, suggests the statistic is independent of sequence length.

The within-lineage functional enrichments are summarized in

Table 3. Notable among these enrichments are ‘translation’ for

yeast, ‘cell wall’ and ‘chloroplast’ for A. thaliana, ‘keratinization’ for

chimp and ‘sequence-specific DNA binding’ for human.

In specifically comparing the genes encoding the equivalent

proteins in humans versus yeast (Figure 2A), humans versus

chicken (Figure 2B) and humans versus chimps (Figure 2C) we

noticed coordinated differences in sequences coding for function-

ally-related proteins. The yeast genes had a more extreme codon

bias in sequences coding for ribosomal proteins (hypergeometric

test P-value = 4.26 6 10290), whereas the human genes had a

more extreme codon bias for DNA binding transcription factors

(hypergeometric test P-value = 3.68 6 10211) (Table 3). The

chicken genes had a more extreme codon bias in sequences cod-

ing for mitochondrial proteins (hypergeometric test P-value =

1.8861024), whereas the human genes had a more extreme codon

bias in sequences coding for G-protein receptors (hypergeometric

test P-value = 6.7661026) (Figure 2B). Human and chimp genes

both possessed extreme codon bias in the sequences coding for the

KRTAP family of proteins (Figure 2C).

Codon bias shifts from translation to transcription
The comparison between the codon bias of the genes encoding

the ,600 orthologous proteins common to humans and yeast

yielded dramatic and divergent patterns of codon bias, favoring

ribosomal proteins in yeast and transcription factors in humans

(Figure. 2A).

This is further illustrated in Table 4, which provides a detailed

dissection of the differential codon usage between two genes in

humans and yeast, encoding the proteins RFX1 and RPS3. The

transcription factor RFX1 is a member of the regulatory factor X

gene family known to be conserved throughout evolution from

yeast to humans [22]. The ribosomal protein S3 (RPS3), originally

identified as a component of the small ribosomal subunit where it

is involved in protein synthesis [23], has subsequently been shown

to participate in many processes including the oxidative stress

pathway [24], NF-kappab complex [25] and the maintenance of

genomic integrity [26].

The evolutionary conservation of RFX1 contrasts with the

differential codon bias observed between humans and yeast, with a

much larger codon bias observed in the human gene (Table 4). For

instance, phenylalanine (Phe), for which two synonymous codons

exist (TTT and TTC), is preferentially encoded by TTC in

humans in 18 out of 20 instances (binomial P-value = 2.0061025)

while no codon preference was seen in yeast (49% TTT and 51%

TTC).

Similarly, the multi-functionality and ubiquitous role of RPS3 in

protein synthesis makes the codon bias observed in the

corresponding yeast gene most remarkable. For instance, Phe,

shows a preferential codon usage with TTC used in 7 out of 8

occasions in yeast (binomial P-value = 3.9161023), while no

significant codon bias was observed in humans.

Although human and yeast RFX1 are considered orthologous

[27] the human sequence is actually more regular at the amino

acid level, possessing regions of biased amino acid composition.

DICE does account for differences in amino acid sequence

composition, however it might be argued that RFX1 could be

misrepresentative of our approach.

Table 2. Average Shannon and Approximate entropy (ApEn) of real and random coding sequences (CDS), and percentage of CDS
where the entropy of the real sequence is less than expected by chance across the six species.

Yeast C. elegans A. thaliana Chicken Chimp Human

Number of CDS 6,413 27,974 32,936 18,536 30,973 56,323

Entropy of real CDS

Shannon 1.954 1.970 1.976 1.971 1.968 1.965

ApEn 1.300 1.294 1.303 1.290 1.287 1.276

Entropy of random CDSA

Shannon 1.979 1.983 1.986 1.986 1.986 1.984

ApEn 1.331 1.336 1.337 1.339 1.340 1.330

% Observed,Random

Shannon 93.44 78.22 84.64 79.97 82.10 82.28

ApEn 97.47 99.12 98.61 99.28 99.37 98.75

% with Significant (P,0.01)
Differential Entropy

Shannon 82.55 65.28 62.01 60.86 65.18 63.43

ApEn 61.02 77.66 68.54 83.67 85.03 79.82

AFor every CDS, we generated 20 random sequences that encode the identical amino acid sequence to compute average entropies.
doi:10.1371/journal.pone.0025457.t002
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Figure 1. Differential Entropy: Regularity in coding sequences expressed as the difference between the observed and the randomly
expected entropy. Negative values indicate sequences more regular than expected for a given amino acid sequence. The horizontal red line is
positioned at zero on the y axis. All sequences below this line possess codon bias.
doi:10.1371/journal.pone.0025457.g001
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A better illustration of the power of DICE to quantify codon

bias irrespective of amino acid bias is our comparison of the

human and chicken coding sequences for Ciliary Neurotrophic

Factor (CNTF), a hormone and nerve growth factor that promotes

neurotransmitter release and neurite outgrowth. In this compar-

ison (Table 5), the two species had much more similar amino acid

sequence composition, and the extreme DICE in the chicken was

evidently driven by stronger patterns of codon bias in chickens

than in humans. For example, in chicken CNTF, 10 of the 20

amino acids are exclusively encoded by a single codon, as opposed

to only three of 20 in the human ortholog.

The bias towards keratinization in humans and chimps
The comparison between the genes encoding the ,14,000

orthologous proteins common to humans and chimps revealed

that genes relating to keratinization, well represented by the LCE

family of proteins, possessed extreme codon bias in both humans

(P = 1.79610219) and chimps (P = 4.68610218; Table 3). Manual

inspection of the ranked list determined that keratin-associated

proteins (KRTAP) were also highly enriched near the top of both

lists, but for unknown reasons were not identified by GOrilla (blue

dots in Figure 2C). Consequently, the true hypergeometric

enrichment for ‘keratinization’ is likely to be much stronger than

the P-values reported above.

Although the KRTAP proteins are high in the amino acid

cysteine and possess a (albeit weak) repeating structure, this does

not drive the DICE output, as the alpha keratins also possess large

repeating blocks of amino acids (in this case glycine) yet were not

awarded an extreme score.

Discussion

In this report we describe and implement a new approach for

measuring differential codon bias. Codon bias has previously been

measured using bioinformatics methods such as the frequency of

optimal codons [28] and the codon adaptation index [29], which

are used to predict protein expression levels. Methods from

information theory such as the effective number of codons [30]

and Shannon entropy [17] have been used to measure codon

usage evenness. However, these approaches are influenced by the

length of the coding region analyzed [31], which complicates

attempts to fairly compare genes and gene families.

Our approach provides differential codon bias measurements

for each gene from each of a number of organisms in a manner

that allows direct comparisons between genes and sets of genes,

both within and between species and lineages. On a within-

species basis, the output can be ranked and objectively assessed

for functional enrichment. In the analyses where we directly

compared the orthologs from two species (Figure 2), we were in

effect computing the difference in the differential codon bias, or

the ‘differential differential codon bias’ (from now on referred to

as the difference in the differential codon bias). This is an

important distinction, because while the codon bias in the

ortholog from each species may not be particularly pronounced

or noteworthy when compared to other genes within that lineage,

the difference in its properties between the two species can still be

substantial. The discussion that follows relates to the combination

of these analyses.

Unsurprisingly, we found that the vast majority of CDS in all

species were more regular than random (Table 2; Figure. 1),

reflecting the ubiquitous presence of codon bias documented

previously by many authors. More unexpected, however, were the

outputs of the pathway enrichment analyses. These analyses-built

on hypergeometric-based considerations of Gene Ontology

annotations - have only become available in the post-genomic

era. After ranking the differential codon bias output on a within-

lineage basis, we detected very strong signals suggesting that entire

batteries of functionally-related genes have been subject to

selection for extreme differential codon bias in a lineage-specific

manner.

In ascending the scale of phenotypic complexity from yeast

through roundworm to humans, we found enormous enrichment

of first translation (P = 4.26610290), then DNA packing (P,1.55

610217), through to regulation of transcription (P,3.68610211)

(Table 3). We speculate that the observed decrease in functional

enrichment as one ascends phenotypic complexity may reflect the

greater number of competing demands imposed by selection on

those more complex lineages, such that the strength of selection for

translational efficiency on any one biological pathway or process is

diluted by pressure on other pathways. This reasoning implies that

the evolution of phenotypic complexity involves greater interde-

Table 3. The 5 most extreme functional enrichments for each
species on a within-lineage basis.

Species Biological process P-valueA

Yeast Translation 4.26E-90

Regulation of Translation 4.70E-51

Posttranscriptional regulation of gene expression 6.86E-48

Ribosome assembly 4.74E-14

rRNA processing 2.32E-13

C. elegans Nucleosome organization and assembly 1.55E-17

Protein-DNA complex organization and assembly 1.11E-16

Body morphogenesis 1.77E-13

Translation 5.54E-13

Chromatin organization 2.07E-8

A. thaliana Structural constituent of cell wall 7.75E-14

Translational elongation 6.62E-10

Plant-type cell wall organization 1.37E-7

Structural constituent of ribosome 7.63E-7

Chloroplast ribulose bisphosphate carboxylase complex 1.46E-4

Chicken Regulation of multicellular organismal process 1.95E-7

Sex determination 2.31E-6

Regulation of transcription, DNA dependent 4.67E-6

Regulation of cell differentiation 5.28E-6

Regulation of developmental process 7.68E-6

Chimpanzee

Keratinization 2.67E-18

Feeding behavior 5.93E-7

Epidermal cell differentiation 2.56E-5

Regulation of transcription, DNA-dependent 6.59E-5

Pigment accumulation in tissues 5.47E-4

Human Sequence-specific DNA binding activity 3.68E-11

Hormone activity 4.24E-8

Regulation of transcription, DNA-dependent 8.99E-7

RNA polymerase II transcription factor activity 5.41E-6

Epidermal cell differentiation 6.99E-5

AAdjusted P-values for the hypergeometric test obtained using the GOrilla tool
(Eden et al., 2009), http://cbl-gorilla.cs.technion.ac.il/.

doi:10.1371/journal.pone.0025457.t003
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pendence of different pathways and processes, which seems

logically correct but perhaps difficult to prove.

Our comparison between the codon bias of the ,600

orthologous proteins common to humans and yeast yielded

dramatic and divergent patterns of codon bias, favoring relatively

more bias in genes encoding ribosomal proteins in yeast, and

relatively more bias in genes encoding transcription factors in

humans (Figure. 2A). We hypothesize that the relative bias in

transcription factors in humans versus yeast either 1) underscores

the importance of transcriptional control in the evolution of more

complex eukaryotes or 2) underscores selection in humans for

transcriptional speed and efficiency. Further investigations based

on these findings may shed light on macro scale genome-to-

phenome relationships, including a possible contribution to the

debate on the c-value enigma.

In analyzing A. thaliana, our sole representative of the Plant

Kingdom, we noted that two of the top five functional enrichments

related to cell wall formation and chloroplast function, both of

which are unique and diagnostic of plant anatomy and physiology.

Similarly, the comparison between the genes encoding the

,14,000 orthologous proteins common to humans and chimps

revealed extreme codon bias in both species for the LCE and

KRTAP families of proteins, which drive the formation of hair

(Figure. 2C). Hair is a tissue unique to the mammalian lineage

[32], plays a crucial role in the retention of endothermic heat and

contributed to the rapid rise of mammals as the dominant

terrestrial vertebrate [33]. Previous research has classified the

KRTAP by their amino acid composition [32,34]. However, none

have documented the extreme codon bias existing for these

proteins relative to the rest of the proteins and even the alpha

keratins, the other major component of hair [35].

Neither transcription factors nor the hair-related genes have

previously been documented as possessing extreme codon bias

characteristics in humans. These observations are consistent with

our hypothesis that extreme codon bias is particularly associated

with processes unique to – or diagnostic of – a given lineage in the

eukaryotic tree of life.

Along the same lines, the comparison of orthologous proteins in

humans and chicken identified a particular subset of mitochondrial

proteins (TXNDC17, NDUFS5, NOX1, GSR, NQO2 and four

sub-components of NADH1, which is the ‘gate-keeping’ enzyme of

oxidative phosphorylation: NDUFB6, NDUFA2, NDUFB2 and

Figure 2. Differential Entropy in sequences from 609 orthologous proteins in humans and yeast (A). Highlighted are the ribosomal
proteins (N = 23; blue), the transcription factors (N = 47; red), RFX1 (green) and RPS3 (pink). Differential Entropy in sequences from 7,902 orthologous
proteins in humans and chicken (B). Highlighted are mitochondrial proteins (N = 14; red), G-protein receptors (N = 14; blue) and CNTF (Table 5).
Differential Entropy in sequences from 14,182 orthologous proteins in humans and chimps (C). Highlighted are the keratin associated proteins
(N = 46; blue). The diagonal red lines are 45 degree bisectors that have been placed to show the point at which there is no difference in bias between
species. The perpendicular distance from the diagonal represents the extent of the difference in bias.
doi:10.1371/journal.pone.0025457.g002

Table 4. Codon usage in transcription factor RFX1 and ribosomal protein RPS3 in humans and yeastA.

RFX1 RPS3

Human Yeast Human Yeast

AA Syn. N PC Prop. N PC Prop. N PC Prop. N PC Prop.

Phe 2 20 TTC 0.900 39 TTC 0.513 7 TTT 0.714 8 TTC 0.875

Leu 6 86 CTG 0.640 81 TTA 0.370 21 CTG 0.524 19 TTG 0.632

Ile 3 22 ATC 0.909 57 ATT 0.386 15 ATC 0.533 13 ATC 0.539

Trp 1 9 TGG 1.000 4 TGG 1.000 1 TGG 1.000 0 TGG 0

Val 4 81 GTG 0.630 33 GTT 0.333 25 GTG 0.560 25 GTC 0.520

Ser 6 91 AGC 0.451 116 TCA 0.259 10 TCT 0.300 9 TCT 0.556

Pro 4 89 CCC 0.494 62 CCA 0.323 17 CCC 0.412 11 CCA 1.000

Thr 4 64 ACC 0.563 43 ACA 0.395 13 ACT 0.385 13 ACT 0.616

Ala 4 96 GCC 0.573 31 GCA 0.387 18 GCT 0.444 28 GCT 0.964

Tyr 2 33 TAC 0.818 21 TAC 0.524 6 TAC 0.667 7 TAC 0.858

Cys 2 6 TGC 0.667 13 TGT 0.538 3 TGC 0.667 1 TGT 1.000

His 2 18 CAC 0.889 15 CAT 0.667 3 CAC 1.000 2 CAC 1.000

Gln 2 105 CAG 0.905 33 CAA 0.697 8 CAG 0.875 7 CAA 1.000

Asn 2 20 AAC 0.950 75 AAT 0.587 3 AAT 0.667 5 AAC 1.000

Lys 2 29 AAG 0.828 58 AAA 0.672 20 AAG 0.700 18 AAG 0.667

Arg 6 36 CGG 0.417 24 AGA 0.500 18 CGG 0.333 20 AGA 0.900

Asp 2 25 GAC 0.920 29 GAT 0.621 8 GAC 0.500 9 GAC 0.778

Glu 2 52 GAG 0.885 39 GAA 0.741 18 GAG 0.611 22 GAA 1.000

Gly 4 79 GGC 0.684 22 GGC 0.364 23 GGC 0.391 17 GGT 1.000

Met 1 18 ATG 1.000 16 ATG 1.000 16 ATG 1.000 6 ATG 1.000

AFor each amino acid (AA) the number of synonymous (Syn.) codons is given. For each protein sequence, three values are given: the number (N) of occurrences of each
AA, the preferred codon (PC) and the proportion (Prop.) in which the PC is used.

doi:10.1371/journal.pone.0025457.t004
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NDUFAB1) as possessing relatively extreme codon bias in chicken

(Figure 2B). Mitochondria are considered to be under extreme

selective pressure in birds because of the energetic and

aerodynamic demands associated with flight [36]–a process that

has led to various adaptations at the physiological level such as an

increase in respiratory efficiency and reduced free radical leakage

[36]. We hypothesize that the DNA sequence characteristics we

have identified here may similarly reflect the flight-based energetic

adaptations in the avian lineage, but manifest at the molecular (i.e.

translational) rather than physiological level.

Although we have focused our analysis on statistical enrichment

of groups of genes and are wary of inferring meaning to isolated

cases, we do wish to draw attention to one gene, as an interesting

case in point. Ciliary Neurotrophic Factor (CNTF) shows the

greatest difference in differential codon bias out of the 7902

orthologous sequences that are common to chicken and humans

(Figure 2B). According to the White Paper outlining the scientific

rationale for sequencing the chicken [37] ‘‘chickens have a

remarkable capacity for hair cell regeneration that results in

spontaneous recovery from forms of deafness…that are permanent

when they occur in humans…’’ Intriguingly, experimental CNTF

infusion has been shown capable of restoring auditory function

following chemically-induced deafness in guinea pigs [38]. While

the control of the expression of the CNTF protein is presumably

multi-faceted, we hypothesize that the predicted reduced energetic

demands for translating CNTF protein in chicken – as a

consequence of extreme codon bias – facilitates translation of

the protein in the key chicken tissues at the key times, thereby

contributing to the species’ unusual regenerative capacities.

In addition to extreme differential codon bias (within a species),

and extreme differences in differential codon bias (between

species), we were also interested in exploring whether there were

any protein coding sequences in the data that did not show

differences in differential codon bias between the various lineages.

That is, have some sequences been impervious to (evolutionary)

modulation in codon bias, for whatever reason? To home in on

this question, we focused on the human, chimp and chicken data,

thereby exploring the issue in the specific context of vertebrates.

The exclusion of yeast, Arabidopsis and roundworm enabled a

high enough density of data to make the comparison statistically

meaningful. We discovered that this approach strongly enriched

for ribosomal proteins and a large number of mitochondrial

proteins. This implies that while codon bias is apparent in these

sequences, the bias is not variable within the vertebrates – that is,

they are similarly biased. This is perhaps consistent with the

observations that ribosomal and mitochondrial proteins are

coordinately and constitutively highly expressed across a range

of species and circumstances.

Nevertheless, there is also an implication that certain aspects of

the mitochondrial energy transfer process are more amenable to

modulation than others. The codon bias data from this analysis

showed that in a representative from a phylogenetic group

possessing high-performance energetics (the avian lineage), the

DNA sequences coding for most mitochondrial proteins have

similar codon bias to those in other vertebrates. But at the same

time we observed that a specific subset of genes coding for

mitochondrial proteins possess an extreme differential codon bias

in the chicken compared with humans. These genes – particularly

those encoding the various subunits of the NADH1 complex that

catalyzes the entry point to oxidative phosphorylation – arguably

represent possible targets for rational attempts to increase

energetic efficiency in other organisms. Further insights might be

gained by examining the DNA sequence encoding the mitochon-

drial machinery in an elite avian flight performance model, such as

the hummingbird.

Our method for assessing codon bias (DICE) has not been

formally tested against competing codon bias metrics. We presume

that existing metrics would identify exactly the same macro

evolutionary patterns documented herein, and it is not clear to us

why they have remained undetected. One explanation could relate

to previous emphasis on prediction of protein expression levels

rather than genome-wide functional enrichments, especially as the

latter have only recently become available.

Caveats
We wish to flag a couple of caveats associated with this analysis

and its biological interpretation. Firstly, while we have interpreted

extreme differential codon bias in energetic terms, codon bias can

also arise for other reasons – some of which are adaptive and some

of which are neutral. For example, codon bias may arise as a simple

artifact of history, following duplication or some other expansion

events from a smaller piece of ancestral sequence. Such expansion

processes will duplicate the codon bias of the original sequence

which necessarily enforces sequence regularity, in the absence of

any energetic reasoning. Other possible non-energetic explanations

include impact on amino acid hydrophilicity [39], nucleotide

mutation bias and regional differences in nucleotide composition

across the genome [40], impact on splicing [41], impact on mRNA

folding [42] and the impact of random genetic drift [43].

Table 5. Codon usage in the protein CNTF in chicken and
humansA.

CNTF

Chicken Human

AA Syn. N PC Prop. N PC Prop.

Phe 2 2 TTC 0.667 4 TTC 0.571

Leu 6 25 CTG 0.807 8 CTG 0.307

Ile 3 3 ATC 1.000 5 ATC 0.417

Trp 1 2 TGG 1.000 4 TGG 1.000

Val 4 7 GTG 0.636 4 GTG 0.500

Ser 6 6 AGC 0.462 4 TCT 0.308

Pro 4 4 CCC 0.400 3 CCA 0.429

Thr 4 4 ACC 0.500 6 ACC 0.500

Ala 4 12 GCC 0.462 7 GCT 0.467

Tyr 2 3 TAC 1.000 3 TAT 0.600

Cys 2 1 TGC 1.000 1 TGT 1.000

His 2 4 CAC 1.000 9 CAT 0.900

Gln 2 10 CAG 1.000 8 CAG 0.667

Asn 2 1 AAC 1.000 6 AAC 0.750

Lys 2 3 AAG 1.000 8 AAG 0.889

Arg 6 9 CGG 0.474 5 CGT 0.417

Asp 2 9 GAC 0.819 6 GAC 0.600

Glu 2 17 GAG 1.000 10 GAG 0.714

Gly 4 9 GGC 0.692 4 GGG 0.400

Met 1 4 ATG 1.000 5 ATG 1.000

AFor each amino acid (AA) the number of synonymous (Syn.) codons is given.
For each protein sequence, three values are given: the number (N) of
occurrences of each AA, the preferred codon (PC) and the proportion (Prop.) in
which the PC is used.

doi:10.1371/journal.pone.0025457.t005
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Fundamentally, however, it seems unlikely that these alternative

explanations can adequately account for the consistent functional

enrichment scores detected. Our explanation rests on the observed

enrichment for whole pathways or processes, not individual molecules.

For example, non-energetic hypotheses could potentially explain

why the LCE proteins possess extreme codon bias in mammals.

But it stretches credibility that these same non-energetic

hypotheses also explain the KRTAP gene sequences, given the

two groups of sequences have an independent evolutionary

trajectory: a PHI-BLAST search (http://www.ebi.ac.uk/Tools/

sss/psiblast/) failed to find any significant relationship between the

KRTAP and the LCE family of proteins. In addition, they occupy

a different part of the genome and the physical and chemical

behaviour of the messenger RNAs is quite different. What binds

the observation is that they encode proteins that represent different

components of the same biological pathway, that of ‘keratinisa-

tion.’ The implication is clear: the pathway itself must have been

selected for.

Our current belief is that approaches based on comparisons of

genome-wide codon bias lend themselves to macro evolutionary

analyses. This is because the larger the phylogenetic distance

between comparison species, the more robust the numerical signal

for differential codon usage. However, this presents a challenge to

functional interpretation. As the distance between the compared

species increases so too does the extent and number of phenotypic

differences. This makes it difficult to functionally interpret the

output.

Conclusions
We have systematically quantified codon bias in several key

eukaryotes. In doing so, we have identified lineage-specific

patterns of codon bias that have not previously been reported.

Some of these only became apparent through comparisons

between species. Our working hypothesis is that patterns of

extreme codon bias highlight molecules and pathways from a

particular lineage that have been given energetic priority

(assuming bias towards preferred codons) through natural

selection. These patterns identify genes and gene families unique

to, or having particular relevance in, a given lineage (such as hair

in mammals, and cell walls in plants). Our hypothesis is supported

by functional enrichments for entire pathways or processes, not

merely individual molecules. These enrichments are built on

observations of cohorts of DNA sequences that possess indepen-

dent evolutionary histories and quite different messenger RNA

characteristics.

Supporting Information

Table S1 For all coding sequences for the six species
explored, this file provides the entropy of real sequences
and the average entropy of 20 random sequences coding
for the same amino acids. These data allow for the

reconstruction of all the analyses.

(XLS)
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