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Abstract

Plague is an infectious disease caused by the bacterium Yersinia pestis, which, during
the fourteenth century, caused the deaths of an estimated 75 to 200 million people in
Europe. Plague epidemics still occur in Africa, Asia and South America. Madagascar
is today one of the most endemic countries, reporting nearly one third of the human
cases worldwide from 2004 to 2009. The persistence of plague in Madagascar is associ-
ated with environmental and climatic conditions. In this paper we present a case study
of the spatio-temporal analysis of plague incidence in Madagascar from 1980 to 2007.
We study the relationship of plague with temperature and precipitation anomalies, and
with elevation. A joint spatio-temporal analysis of the data proves to be computationally
intractable. We therefore develop a spatio-temporal log-Gaussian Cox process model,
but then carry out marginal temporal and spatial analyses. We also introduce a spa-
tially discrete approximation for Gaussian processes, whose parameters retain a spatially
continuous interpretation. We find evidence of a cumulative effect, over time, of temper-
ature anomalies on plague incidence, and of a very high relative risk of plague occurrence
for locations above 800 meters in elevation. Our approach provides a useful modelling
framework to assess the relationship between exposures and plague risk, irrespective of
the spatial resolution at which the latter has been recorded.

Keywords: Cox process; distributed lag-model; Gaussian process; plague; spatio-
temporal point pattern.
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1 Background

Plague, also known as the “Black Death” during the fourteenth century, is a vector-borne
disease caused by the zoonotic bacterium Yersinia pestis, usually found in small mammals,
especially rodents. It can be transmitted to humans through the bite of an infected flea or,
in some cases, through direct contact, inhalation or digestion of infected material. Three
different forms of plague can be distinguished: bubonic plague, which is the most common
form and characterized by swollen lymph nodes, called “buboes”; septicaemic plague, when
the infection spreads from the buboes through the bloodstream; pneumonic plague, the most
virulent form, that occurs when the infection, usually from advanced bubonic plague, spreads
to the lungs. If diagnosed in time, plague can be effectively treated with antibiotics. If
untreated, it can be rapidly fatal.

Today, plague is mainly present in South America, Asia and Africa. Madagascar is one of the
most endemic countries, accounting for almost one third of the human cases worldwide from
2004 to 2009 (WHO, 2009). Plague reached the coast of Madagascar in 1898 with steamboats
from India (Brygoo, 1966), following the third pandemic that originated in China in 1855. It
then spread to the Central Highlands in 1921 where it became endemic. The main host for
plague on the island is the black rat, with its fleas acting as the vector. The persistence of
plague foci in Madagascar is associated with climatic, environmental and sociological factors
(Ben Ari et al., 2011) all of which affect the distribution of flea and rodent populations, and
their contact with humans. Among the climatic factors, temperature, rainfall and relative
humidity are considered to affect the disease dynamics, mostly through their effects on the
survival and reproduction of host and vector (Stenseth et al., 2006). In Madagascar, plague
is mainly found in rural areas that provide the preferred habitat of the main host for Y.
pestis, the black rat Rattus rattus. Traditional burial customs and lack of access to affordable
health care also impact on the spread and persistence of the disease, but data on these factors
is currently lacking. Understanding how all these factors interact and jointly affect human
plague incidence requires the use of appropriate multivariate statistical methods.

In this paper we analyse monthly data on district-level plague incidence in Madagascar from
January 1980 to December 2007. Motivated by Diggle et al. (2013), we model monthly district-
level plague incidence as an aggregated outcome of a spatio-temporally continuous process.
The objective of our analysis is to quantify the effects of temperature and precipitation anoma-
lies (henceforth TAs and PAs), and of elevation, on plague incidence whilst accounting for
unexplained spatio-temporally structured variation. One of the main features of the analysed
data is that temporal variation in incidence dominates its spatial variation, making the joint
spatio-temporal analysis of the data computationally cumbersome. To address this issue, we
carry out marginal temporal and spatial analyses based on a spatio-temporal log-Gaussian
Cox process model. For the spatial analysis, we also introduce a spatially discrete approxi-
mation to the underlying continuous Gaussian process, for which inference is computationally
more feasible, but whose parameters retain a spatially continuous interpretation.

Kreppel et al. (2014) have previously analysed country-level plague incidence anomalies from
1960 to 2007. They used wavelet analysis to study the relationship between plague and climatic
anomalies caused by the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole
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(IOD). They found evidence of a temporally varying relationship between plague incidence
anomalies and TAs, PAs, ENSO and IOD. However, one of the main limitations of their
approach is that only marginal associations between plague and climatic risk factors were
investigated. Additionally, in their analysis plague incidence was treated as a continuous
outcome, which is questionable in view of the low case-counts that are observed throughout
the time series. In the review paper by Andrianaivoarimanana et al. (2013), maps of empirical
plague incidence show its restriction mainly to the Central Highlands districts. Based on
summary descriptive statistics, the authors also mention a threshold of 800 meters in elevation
as critical in determining the geographical limits of plague foci. The modelling approach we
propose in this paper overcomes the inherent limits of the analysis by Kreppel et al. (2014),
and also allows us to validate the statement by Andrianaivoarimanana et al. (2013) on the
effect of elevation, in a statistically rigorous fashion.

The structure of the paper is as follows. In Section 2, we briefly describe the different data
sources for plague incidence, elevation, TAs, PAs and population density. In Section 3, we
first carry out an exploratory analysis to highlight the main features of the data, then develop
a spatio-temporal log-Gaussian Cox process for plague incidence and fit the model using
Bayesian inference. In Section 4, we report the results of our analysis and check the validity
of the modelling assumptions. Section 5 is a concluding discussion.

2 Data

We use the following data sources, including climatic, environmental and demographic datasets,
to obtain the relevant explanatory variables and offset quantities.

• Plague cases. We use data on all cases of human plague confirmed by a bacteriological
test from January 1980 to December 2007. These data were made available by the
World Health Organisation Plague Reference Laboratory of the Institut Pasteur de
Madagascar.

• Population density. Spatial population density estimates for Madagascar for the year
2010 were derived from the GPWv4 dataset, released by the Center for International
Earth Science Information Network, Columbia University (Doxsey-Whitfield et al., 2015).
We use 5-yearly country-level human population growth estimates from the United Na-
tions to estimate the total population of Madagascar from 1980 to 2007, based on the
latest population census conducted in 1993.

• Temperature and precipitation. Monthly average values of temperature and precipitation
were obtained from the NCEP-NCAR reanalysis (Kalnay et al., 1996). These were avail-
able as averaged values over a large domain including Madagascar [42.18◦ E−49.68◦E;
24.76◦S−11.42◦S].

• Elevation. Spatial estimates of elevation were obtained from the ETOP01 dataset made
available by the National Oceanic and Atmospheric Administration (Amante & Eakins,
2009).
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3 Model formulation

3.1 Exploratory analysis

In Madagascar, plague is mainly found on the Central Highlands but, as with all infectious
diseases, it can also travel to non-endemic areas with its host. Cases of disease may be
recorded, therefore, outside of plague’s natural (endemic) range. In Figure 1, the average
annual incidence of plague, from 1980 to 2007, is shown for each district, where the purple
line encompasses regions with elevation 800 meters or more. At least one case was reported
in only 44 of the 110 districts, of which only two lie completely below 800 meters. These
districts are Mahajanga Rural and Mahajanga Urban on the west coast with a total of 410
cases occurring between August 1991 and November 1999.

Figure 2 shows the boxplots of Madagascar-wide plague incidence by month (left panel) and
by year (right panel). The presence of a strong seasonal component is evident, with most
plague cases occurring during the warm and wet austral summer season between October and
March. An increasing trend in incidence, with an associated increase in variation, is observed
until around 1997 after which incidence decreased.

We generate TAs and PAs by subtracting from each datum the mean for the month in question
over the years, from 1979 to 2007. The resulting TA and PA time series are shown in Figure
3.

3.2 Spatio-temporal log-Gaussian Cox process

A spatio-temporal Cox process (Cox, 1955) is defined by the two following postulates.

P1 Let Λ̃ = {Λ̃(x, t), x ∈ R2, t ∈ R} denote a non-negative valued stochastic process.

P2 Conditionally on Λ̃(x, t), x ∈ R2, t ∈ R, the point process is an inhomogenous Poisson
process with intensity Λ̃(x, t).

Following the modelling framework developed by Diggle et al. (2013), we then model the
district-level plague counts as an aggregated outcome of the spatio-temporal process Λ̃. More
specifically, let Yit denote the number of plague cases in the i-th district at time t, for i =
1, . . . , d = 110 and t = 1, . . . , T = 306, where t = 1 indicates January 1980. We assume that,
conditionally on Λ̃(x, t), the Yit are mutually independent Poisson variables with means

µit =

∫
Ri

∫ t

t−1
Λ̃(u, v) dudv

=

∫
Ri

∫ t

t−1
λ0n(u, v)Λ(u, v) dudv, (1)

where Ri is the area encompassed by the boundaries of the i-th district, n(x, t) is an offset
representing the number of susceptibles and λ0 is an unknown positive constant. The intensity
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Figure 1: Map of the observed average annual incidence per 100,000 people in each district.
The purple line corresponds to the contour of 800 meters in elevation.

Figure 2: Boxplots of average human plague incidence in Madagascar per 100,000 by month
(left panel) and year (right panel).
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Figure 3: Monthly temperature (upper panel) and precipitation (lower panel) anomalies from
January 1979 to December 2007. The dashed line corresponds to a zero anomaly value.
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of the inhomogenous Poisson process, given by Λ̃(x, t) = λ0n(x, t)Λ(x, t), is defined on M×
[0, T ], with M =

⋃d
i=1Ri. We calculated the number of susceptibles as

n(x, t) =
N(t)p(x)∫
M p(u) du

where p(x) is the population density at location x and the N(t) are five-yearly population
estimates for the country of Madagascar at time t. Annual district-level population counts
were not available; see Section 2 for more details on the data sources.

We then assume that
Λ(x, t) = a(x)b(t)V (x, t) (2)

where V (x, t) is a stationary and isotropic log-Gaussian process, a(x) and b(t) are deterministic
functions specified as regressions on observed spatial and temporal covariates, respectively.
The spatial regression on elevation is defined as follows

log{a(x)} =

{
γ if elevation at x is greater than 800 meters,

0 otherwise
.

We specify three different regression models for b(t) as follows.

• Model 1.

log{b(t)} =
12∑
l=0

alPA(t− l) +
12∑
l=0

blTA(t− l) +

β1t+ β2t
2 + β3 cos{2πt/12}+ β4 sin{2πt/12}.

• Model 2. As Model 1 but with no effect of PAs, i.e. al = 0 for l = 0, . . . , 12.

• Model 3. As Model 2 but with bl = b0 exp(−l/r), r > 0 for l = 0, . . . , 12.

In Model 1, PAs and TAs modulate, through the lagged effects al and bl, the yearly cycle of
plague incidence as defined by the linear combination of sine and cosine functions. Model 2
is nested within Model 1 and assumes no effect of PAs on plague incidence. Finally, Model 3
constraints the lagged coefficients bl, in Model 2, to follow an exponentially decaying function
at rate 1/r. The removal of PAs in Model 2 and Model 3 allows us to assess the importance
of PAs effects on plague incidence. This is motivated by the findings of Kreppel et al. (2014)
who found a higher degree of association between plague and temperature.

The spatio-temporal stochastic component is modelled as V (x, t) = exp{S(x) + U(t)} where
S(x) and U(t) are stationary zero-mean Gaussian processes. Since the main goal of our
analysis is to make inference on the regression parameters of a(x) and b(t) while accounting
for unmeasured spatio-temporal risk factors, we conduct separate marginal temporal and

7



spatial analyses as follows. Let p̃(x) = p(x)/
∫
M p(u) du, then the marginal spatial intensity

function of the Poisson process is given by∫ T

0

λ0n(x, v)Λ(x, v) dv = λ0p̃(x)a(x) exp{S(x)}
∫ T

0

N(v)b(v) exp{U(v)} dv

= α1p̃(x)a(x) exp{S(x)}, (3)

where α1 = λ0
∫ T
0
N(v)b(v) exp{U(v)} dv. Similarly the marginal temporal intensity is∫

M
λ0n(u, t)Λ(u, t) du = λ0N(t)b(t) exp{U(t)}

∫
M
p̃(u)a(u) exp{S(u)} du

= α2N(t)b(t) exp{U(t)}, (4)

where α2 = λ0
∫
M p̃(u)a(u) exp{S(u)} du. We assume exponential covariance functions

cov{S(x), S(x′)} = σ2 exp{−‖x− x′‖/φ},

where ‖ · ‖ denotes the Euclidean distance, and

cov{U(t), U(t′)} = ν2 exp{−|t− t′|/ψ}.

As a consequence of this approach, we do not need to fully specify the joint distribution of S(x)
and U(t), thus we do not make any assumption about their dependence or otherwise. This
implies that, whilst V (x, t) is defined as a separable process in S(x) and U(t), its correlation
function is not necessarily separable. However, we do not pursue prediction of the process
V (x, t), in which case additional assumptions have to be made about the joint distribution of
S(x) and U(t).

3.3 Inference

We carry out parameter estimation using Bayesian inference. Prior specifications are given in
the Appendix.

For the temporal analysis, we developed a Markov Chain Monte Carlo (MCMC) algorithm in
which covariance parameters, regression coefficients and random effects are updated separately
using a random walk Metropolis-Hasting algorithm, a Gibbs sampler and a Hamiltonian Monte
Carlo procedure, respectively.

For the spatial analysis, inference on the continuous process S(x) is computationally unwieldy,
especially within districts where no case of human plague has ever been reported. For this
reason we approximate S(x) with its district-wide average, i.e.

S(x) ≈ Si =
1

|Ri|

∫
Ri

S(u) du, x ∈ Ri, (5)

where |Ri| is the area of Ri. Since the integral of a Gaussian process is still a Gaussian
process, the joint distribution of (S1, . . . , Sd) is multivariate Gaussian with mean zero and
covariance matrix with (h, k)-th entry

σ2

|Rh||Rk|

∫
Rh

∫
Rk

exp

(
−‖u− u

′‖
φ

)
dudu′.
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We approximate the above integral using a quadrature procedure based on a 7 by 7 km
regular grid covering the whole of Madagascar. We then developed an MCMC algorithm in
which (σ2, φ) and (logα1, γ, S1, . . . , Sd) are updated separately. The posterior of (σ2, φ) is
approximated over a discrete set of points that are identified using an INLA procedure (Rue,
Martino & Chopin, 2009). The main reason for this is that it allows us to pre-compute all
the required quantities for a significantly faster update of our MCMC algorithm and, also,
propose new values for (σ2, φ) in regions of high posterior density. We use a random walk
Metropolis-Hastings algorithm for (logα1, γ, S1, . . . , Sd) by proposing a new value, at each
iteration, from a multivariate Gaussian with covariance matrix given by the inverse of the
negative Hessian computed at the mode, for given (σ2, φ).

Details of the MCMC algorithms are given in the Appendix.

4 Results

4.1 Temporal analysis

For each of the three models, we simulated 35,000 samples and retained every 6-th sample
after a burn-in of 5,000. Trace-plots and other diagnostic checks show good mixing of the
MCMC with nearly independent samples for the regression parameters and temporal random
effects. Table 1 shows posterior summaries for the three models.

Table 1: Posterior mean, standard deviation (SD) and 95% credible intervals (CI) for each of
the parameters in Model 1, 2 and 3, excluding PAs and TAs effects. The deviance information
criterion (DIC) is also reported for each of the three models.

Model 1 Model 2 Model 3
Term Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI
β1 0.023 0.004 (0.015, 0.032) 0.023 0.004 (0.014, 0.031) 0.023 0.004 (0.015, 0.031)
β2 × 104 -5.306 1.199 (-7.731, -2.901) -5.033 1.180 (-7.376, -2.687) -5.087 1.125 (-7.327, -2.851)
β3 0.108 0.099 (-0.083, 0.305) 0.098 0.092 (-0.082, 0.279) 0.105 0.080 (-0.050, 0.263)
β4 1.367 0.105 (1.169, 1.576) 1.351 0.092 (1.175, 1.535) 1.408 0.086 (1.241, 1.577)
ν2 0.496 0.090 (0.348, 0.697) 0.492 0.093 (0.342, 0.704) 0.472 0.087 (0.336, 0.673)
ψ 2.913 0.693 (1.840, 4.508) 2.974 0.724 (1.899, 4.732) 2.904 0.713 (1.879, 4.528)
r - - - - - - 2.482 2.199 (0.211, 7.108)
DIC 139404.6 139402.2 139403.9

Figure 4 shows the plots of the posterior means for al and bl against l. In the case of PAs, the
al coefficients appear to follow an erratic pattern around zero, suggesting a weak association
between plague incidence and PAs. In the case of TAs, the unconstrained bl, from Model 2,
follow an approximately increasing pattern that seems to level off for l ≥ 3. The difference in
DIC amongst the models is modest, with Model 2 having the lowest value in DIC. However,
in the right panel of Figure 4, we do not observe strong evidence against the exponential fit to
the unconstrained bl, and we adopt this as our preferred model. Significant departures from
the exponential curve are only observed at lags 1 and 10.
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Figure 4: Plots of the posterior mean of al (left panel) and bl (right panel) against l, for each
of the fitted models. In the right panel the black solid line corresponds to the posterior mean
of the unconstrained bl from Model 2, whilst the red solid line corresponds to the posterior
mean of bl = b0 exp{−l/r} from Model 3. The dashed lines in each panel are 95% credible
intervals.
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Figure 5: Plots of the observed (solid line) and predicted (dashed red line) incidence per
100,000 people from Model 3, with 95% predictive intervals (dotted lines).
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Figure 5 shows the predicted incidence from Model 3. The corresponding autocorrelogram for
the residuals, computed as the difference between predicted and observed incidence, shows no
residual temporal correlation.

4.2 Spatial analysis

We iterated the MCMC algorithm 1,100,000 times, retaining every 100-th sample after a burn-
in of 100,000 samples. The resulting 10,000 posterior samples show good mixing, with almost
coincident empirical cumulative density functions for the first and second 5000 samples for
each of the model components.

Table 2: Posterior mean, standard deviation (SD) and 95% credible intervals (CI) for the
model parameters of the spatial analysis.

Term Mean SD 95% CI
γ 6.594 1.515 (4.073, 10.068)
σ2 21.748 11.465 (10.084, 53.493)
φ 134.192 85.695 (50.083, 357.317)

Table 2 shows posterior summaries of the model parameters. We estimate that locations above
800 meters in altitude have a risk of plague occurrence about e6.594 ≈ 731 times higher than
those below. The incidence of vector-borne diseases often declines with increasing elevation, as
cooler conditions tend to be less favourable for the vectors themselves, and also extend the time
required for development of the disease-causing pathogen within them. Plague in Madagascar
is unusual, therefore, in that it is most prevalent in the cool highland areas of the country,
and is largely absent (with the exception of the coastal town on Mahajanga) in the warm,
low-lying and coastal regions (Andrianaivoarimanana et al., 2013). The explanation may lie
in the interactions of the two flea vector species in Madagascar. The endemic flea species,
Synopsyllus fonquerniei, is considered to be a better plague vector than the exotic species,
Xenopsylla cheopis. The exotic X. cheopis has been shown, under laboratory conditions, to
survive better at warmer conditions than S. fonquerniei (Kreppel et al., 2016). It is possible,
therefore, that plague is transmitted most readily in Madagascar only in the cool, highland
areas which are climatically suitable for the endemic S. fonquerniei.

The estimated range of the spatial correlation, defined as the distance at which the spatial
correlation function takes the value 0.05, is about 401 km. Figure 6 shows the predicted
number of cases, obtained from the posterior samples, against the observed number of cases
for each district. There is a very high concordance between predicted and observed counts,
except for the counts reported in Antananarivo-North and Antananarivo Renivohitra. These
two contiguous districts are the major conurbation in the country where plague risk is likely
to be affected by socio-economic factors, which are not necessarily spatially structured. Both
districts are within the capital city boundaries where living conditions range from affluent
areas to poverty-stricken areas with cramped living conditions.

Figure 7 shows the posterior mean of the spatial residuals Si and the predictive probabilities
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Figure 6: Scatter plot of the predicted against observed number of plague cases in each district.
The predicted cases are obtained from the posterior distribution of the model. The solid line
corresponds to the identity line.
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Figure 7: Maps of the posterior mean of the spatial residuals Si (left panel) and the predictive
probabilities of Si exceeding 4 (right panel).
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of Si exceeding 4, for all i. Districts coloured in red are highly likely associated with a relative
risk no less than e4 ≈ 54.60. Among these districts, we also find Mahajanga Rural and
Mahajanga Urban on the west coast, which lie well below 800 meters. However, due to the
higher population density in Mahajanga Urban than in Mahajanga Rural, about 404 plague
cases are predicted in the former and only 5 in latter.

4.3 Model diagnostics

In Section 3.2, we made the assumption that V (x, t) = exp{S(x)} exp{U(t)}, i.e. that V (x, t)
is separable into the processes S(x) and U(t). If this assumption does not hold, the main con-
sequence, in the context of our analysis, would be that the purely spatial and temporal corre-
lation functions cannot be freely defined. More specifically, if V (x, t) 6= exp{S(x)} exp{U(t)},
equations (3) and (4) are then replaced by∫ T

0

λ0n(x, v)Λ(x, v) dv = λ0p̃(x)a(x)

∫ T

0

N(v)b(v)V (x, v) dv

= λ0p̃(x)a(x)V1(x) (6)

and ∫
M
λ0n(u, t)Λ(u, t) du = λ0N(t)b(t)

∫
M
p̃(u)a(u)V (u, t) du

= λ0N(t)b(t)V2(t). (7)

In this case, the specification of a stochastic model for V1(x) would then impose constraints
on the set of valid correlation functions that can be used for V2(t), and vice-versa. More
importantly, assuming exponential correlation functions for both log{V1(x)} and log{V2(t)}
would be an invalid modelling choice, unless V (x, t) is separable into a purely spatial and
purely temporal processes.

In this section we test the validity of the adopted correlation functions as follows. We use η̂ and
ŝ to denote the mean and standard deviation of the predicted counts, based on the explanatory
variables only. To simplify the notation, we omit any reference to time and space, as we apply
the same procedure in both cases. More specifically, in the temporal analysis η̂ corresponds
to the point-wise posterior estimate of α2

∫ t
t−1N(u)b(u) du, for a given time t, with b(·) as

defined in Model 3 of Section 3, whilst in the spatial analysis η̂ estimates α1

∫
R p̃(v)a(v) dv,

for a given district R. We then compute the residuals,

e =
y − η̂
ŝ

, (8)

where y is an observed count (for a single month, in the temporal analysis, and for a single
district in the spatial analysis).

We then carry out simulations under the fitted models as follows. For each posterior sample,
we first simulate the structured random effects, say E, using the fitted covariance function,
then simulate counts, say ỹ, from a Poisson distribution with mean η̂ exp{E}. For each ỹ, we
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Figure 8: Semi-variograms based on the observed (solid line) and simulated residuals (dotted
line) under the assumed temporal (left panel) and spatial (right panel) structure of the model.
In each panel, the dashed lines corresponds to the 95% credible intervals obtained from the
semi-variograms of the simulated residuals. To facilitate the display of the semi-variograms,
these are plotted on the log-scale.

obtain the simulated residuals ẽ = (ỹ− η̂)/ŝ and compute the semi-variogram based on these.
For the spatial analysis, distances are computed using the centroids of the districts.

Figure 8 shows the 95% credible intervals (dashed lines) and the median (dotted lines) semi-
variograms based on ẽ, and the observed (solid lines) semi-variogram. The results are com-
patible with the assumption of exponential correlation functions for both the temporal and
spatial stochastic components. We also note that in the spatial analysis the uncertainty in
the simulated semi-variograms is very high, as shown by the very wide credible intervals.

5 Discussion

We developed a log-Gaussian Cox process model in order to quantify the association of plague
incidence with PAs, TAs and elevation. Since fitting the joint spatio-temporal model was
computationally intractable, we then carried out marginal temporal and spatial analyses. Us-
ing distributed-lag models with unconstrained and constrained coefficients, we found evidence
of a cumulative effect of temperature anomalies. Also, the results support the findings of
Andrianaivoarimanana et al. (2013), denoting plague endemic regions as largely restricted to
areas with elevation over 800 meters.

Our approach provides a useful modelling technique for applications where the scientific fo-
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cus is more on the relationship of disease incidence with spatial and temporal risk factors,
rather than on testing mechanistic hypotheses. In particular, it also allows us to model both
exposures and disease risk as spatially continuous processes, irrespective of the resolution at
which incidence data have been recorded. This has the main benefit that assessment of the
regression relationships is not affected by the bias induced by the ecological fallacy (Wakefield
& Lyons, 2010), thus overcoming the limits of other approaches based on Markov structures
(e.g. Held et al. (2005)). Also, in our approach the correlation structure between districts is
derived from a spatially continuous stochastic process. In our view, this is a more realistic
assumption than a Markov field structure, whereby the distribution of the relative risk of an
area is simplistically defined conditionally on its neighbours.

Our analysis has some limitations due to the lack of detailed climatic and demographic data for
the time period considered. Climatic anomalies could only be used as risk factors if uniformly
applied to the whole of Madagascar. The susceptible population is estimated by allowing the
total population to change only every five years (due to the frequency of the demographic
census) and assuming a constant spatial distribution of relative population density. Finally,
all the explanatory variables used in the model are the output of either mathematical models
or spatial smoothing techniques.

We modelled the residual stochastic component of the model as a separable process, V (x, t) =
exp{S(x)} exp{U(t)}, with each of S(x) and U(t) having an exponentially decaying correla-
tion function. The diagnostic checks reported in Section 4.3 did not find evidence against
this assumption, although they were restricted to checking the marginal spatial and temporal
properties of V (x, t). We made the separability of residual the spatio-temporal process as-
sumption for pragmatic reasons, to avoid the computational complexity that would have been
involved in a model including spatio-temporal interaction, and on which the data are poorly
informative due to the very low counts observed throughout the time-series. Note, however,
that our analysis of the marginal spatial and temporal component processes makes no assump-
tion about the dependence or otherwise of S(x) and U(t). Additionally, our objective was in
the estimation of the regression coefficients which regulate the effects of purely spatial and
temporal explanatory variables. For these reasons, we do not expect residual spatio-temporal
interaction to affect our inferences.

Spatio-temporal mapping of plague incidence was not part of the objectives of the present
analysis. However, the fitted model could be used to conduct predictive inference for the
spatially continuous process S(x) by first sampling from the joint predictive distribution of
the district-wide averages Si and then from the distribution of S(x) at a set of prediction
locations x, conditional on Si. It would then be interesting to compare the accuracy of this
approximate procedure with a different approximation used by Kelsall & Wakefield (2002)
and with the exact method used by Diggle et al. (2013).
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A Computational details

In this section we give more details on the MCMC algorithms that were developed for the
marginal temporal and spatial analyses of the data.

A.1 Priors

We use the following set of independent priors.

• logα1 ∼ N(0, 103), logα2 ∼ N(0, 103).

• al ∼ N(0, 103), bl ∼ N(0, 103) for l = 0, . . . , 12.

• βi ∼ N(0, 103) for i = 1, . . . , 4.

• log ν2 ∼ N(0, 25).

• logψ ∼ N(1, 25).

• log r ∼ N(0, 2.25).

• γ ∼ N(0, 103).

• log σ2 ∼ N(2.3, 1).

• log φ ∼ N(4.6, 1.2).

A.2 Temporal analysis

Use η(t) to denote the linear predictor given by

logα2 + log b(t) + U(t).
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Let η> = (η(1), . . . , η(T )), ξ> = (logα2, a0, . . . , a12, b0, . . . , b12, β1, . . . , β4) and, finally, use ω
to denote all the positive model parameters on the log-scale. At the j-th iteration of the
MCMC algorithm, we update each of the three blocks ω, ξ and η separately as follows.

1. Use independent random walk Metropolis-Hastings algorithms to update each of the
element of ω, say ωi. A new value ωi(j), is proposed from a Gaussian distribution with
mean ωi(j−1) and variance h2i(j) which is adaptively tuned as

hi(j) = hi(j−1) + c1j
c2(αj − 0.45),

where c1, c2 are pre-defined constants, αj is the acceptance rate at iteration j and 0.45
is the acceptance rate suggested by Gelman et al. (1996) under the assumption of a
Gaussian posterior for ωi.

2. Let V denote the inverse correlation matrix for the random effects η. Then, update ξ
using a Gibbs sampling scheme. The full conditional distribution of ξ is Gaussian with
covariance matrix

Ωξ = (10−3I +D>V D/ν2)−1,

where D is a matrix of covariates, and mean

µξ = ΩξD
>V η/ν2.

3. Update η using a Hamiltonian Monte Carlo algorithm (Neal, 2011). Specifically, let
H(η, w) be the Hamiltonian function

H(η, w) = w>w/2− log π(η|θ, y),

where w ∈ RT is the momentum variables vector. The partial derivatives of H(η, w)
determines how η and w change over time j according the the Hamiltonian equations

dη(i)

dj
=

∂H

∂wi
dwi
dj

= − ∂H

∂η(i)
,

for i = 1, . . . , T . In order to implement the Hamiltonian dynamic, the above differen-
tial equations are discretized using the leapfrog method (Neal, 2011, pp. 120-121) and
approximate solutions are then found.

A.3 Spatial analysis

Let ω>s = (log σ2, log φ) and W> = (logα1, γ, S1, . . . , Sd). To obtain posterior samples for ωs
and W , we use the following MCMC algorithm which updates ωs and W separately.
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Figure 9: The set of points ωs,j ∈ H over which the posterior for ωs is approximated; the
larger point represents the mode ω̂s.
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1. To update ωs, we use a proposal distribution obtained through the INLA procedure
(Rue, Martino & Chopin, 2009). Let ys denote the vector of counts at each district; the
proposal distribution for ωs is then given by

π(ωs|ys) ≈ πINLA(ωs|ys) =
π(ωs, Ŵ (ωs)|ys)
πG(Ŵ (ωs)|ωs, ys)

,

where πG(W |ωs, ys) is the Gaussian approximation to the full conditional of W and
Ŵ (ωs) is the mode of the full conditional for W , for a given ωs. More details on how
πG(W |ωs, ys) is obtained can be found in Section 2.2 of Rue, Martino & Chopin (2009).

After computing the mode of πINLA(ωs|ys), say ω̂s, we further approximate π(ωs|ys) by
restricting its computation over a discrete set of points, shown in Figure 9, defined as

H = {ωs,j : log{πINLA(ω̂s|ys)} − log{πINLA(ωs,j|ys)} < 10} .

At each iteration of the MCMC, we propose a new value for ωs by simulating from the
discrete bivariate distribution in Figure 9 where each point ωs,j has probability mass

πINLA(ωs,j|ys)∑
ωs,h∈H πINLA(ωs,h|ys)

.

2. A new value for W is proposed using a random walk Metropolis-Hastings algorithm. The
proposal distribution is given by a multivariate Gaussian with zero-mean and covariance
matrix h2Σ(ωs,j). The parameter h is tuned to obtain an acceptance rate of 0.234 using
the same adaptive scheme in the first step of the previous section. Finally, Σ(ωs,j)
corresponds to the inverse of the negative Hessian of the full-conditional of W , computed
at Ŵ (ωs,j). Note that the matrices Σ(ωs,j) are all pre-computed and stored in the
previous step.
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