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Abstract—With the proliferating development of heuristic 

methods, it has become challenging to choose the most suitable 

ones for an application at hand. This paper evaluates the 

performance of these algorithms available in Matlab, as it is 

problem dependent and parameter sensitive. Further, the paper 

attempts to address the challenge that there exists no satisfied 

benchmarks to evaluation all the algorithms at the same 

standard. The paper tests five heuristic algorithms in Matlab, the 

Nelder-Mead simplex search, the Genetic Algorithm, the Genetic 

Algorithm with elitism, Simulated Annealing and Particle Swarm 

Optimization, with four widely adopted benchmark problems. 

The Genetic Algorithm has an overall best performance at 

optimality and accuracy, while PSO has fast convergence speed 

when facing unimodal problem.  

Keywords—benchmarks; evolutionary algorithms; numerical 

optimization; single-objective 

I.  INTRODUCTION  

During the past four decades, many heuristic algorithms 
have been developed. They are applicable to a wide range of 
real-world problems and are made available conveniently in 
Matlab, which is used daily by a significant number of 
practising engineers and scientists. With the development of 
these tools, it has become challenging to choose the most 
suitable ones for an engineer’s application at hand. To provide 
a practical review of these tools, this paper conducts and 
reports their benchmarking tests. 

Benchmarks used in this paper are consistent with but 
exceed those used in measuring conventional optimisation 
algorithms [1]. The tested algorithms from Matlab are the 
Nelder-Mead simplex method, the Genetic Algorithm (GA), a 
Genetic Algorithm with elitism (GAE), Simulated Annealing 
(SA) and Particle Swarm Optimization (PSO), which are the 
most representative and popular. 

Section II of this paper presents the aforementioned 
benchmarks and Section III introduces the test functions. 
Benchmarking results are presented and analysed in Section 
IV. Conclusions are drawn in Section V.  

II. UNIFORM BENCHMARKS FOR HEURISTIC TESTING 

A. Optimisality 

For an optimization problem with single objective, 
suppose that its objective function (performance index, cost 
function, or fitness function) is: 

𝑓(𝒙): 𝑿 → 𝐹 
where 𝑿 ⊆ 𝑹𝑛 spans the entire search or possible solution 
space in n dimensions, 𝒙 ∈ 𝑿 represents the n collective 

variables or parameters to be optimised, 𝐹 ∈ 𝑹  represents 
the space of all possible objective values.  

The theoretical solve is usually reach at the minimum or 
maximum value of the objective function as: 

𝑓0 = 𝑚𝑖𝑛 𝑜𝑟 𝑚𝑎𝑥 {𝑓(𝒙)}  ∈ 𝐹  (1) 

An 𝒙𝟎  ∈ 𝑿 that satisfies: 

𝑓(𝒙𝟎) =  𝑓𝟎 (2) 

is said to be a corresponding theoretical solution to the 
optimisation problem. 

The uniform benchmarks used in this paper are defined as 
in [1]. Optimality represents the relative closeness (or, 

inversely, distance) of an objective found, 𝑓0, to the theoretical 
objective, 𝑓0. It is defined as: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦|𝑎 = 1 −
‖𝑓0−�̂�0‖𝑎

‖𝑓−𝑓‖
𝑎

 ∈ [0, 1]  (3) 

where 𝑓 and 𝑓 are the lower and upper bounds of 𝑓. 

B. Accuracy 

Accuracy represents the relative closeness of a solution 
found, x0 , to the theoretical solution, x0. This may be 

particularly useful if the solution space is noisy, there exist 
multiple optima or “niching” is used.  It may be defined as [1]:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝑎 = 1 −
‖𝒙𝟎−�̂�𝟎‖𝑎

‖𝒙−𝒙‖
𝑎

 ∈ [0, 1]  (4) 

where x  is the lower bound of x and x  is the upper bound, 

representing the search range.  

C. Convergence 

a) Reach-time 

The most frequently used benchmark for convergence is 
the number of evaluation times of function. The stop condition 
is usually set to when there is little change, less than 1e-6. But 
it could convergence very quickly ending at local extreme 
point. Hence the optimality is also evaluated in convergence 
as reach-time [1]. 

𝑅𝑒𝑎𝑐ℎ − 𝑡𝑖𝑚𝑒|𝑏 = 𝐶
𝑏  (6) 

Wuqiao Luo is grateful to the China Scholarship Council and the 

University of Glasgow for a CSC scholarship. 

In Proceedings of the 22
nd

 IEEE International Conference on Automation & 
Computing, University of Essex,Colchester city, UK, 7-8 September 2016 

DOI: 10.1109/IConAC.2016.7604927 

http://dx.doi.org/10.1109/IConAC.2016.7604927


where represent the total number of ‘function evaluations’ 
conducted by which the optimality of the best individual first 
reaches 𝑏 ∈ [0, 1].  

To estimate the order of the polynomial, 
999999.0C  may be 

plotted against the number of parameters being optimized, n, 
as revised in: 

𝑁𝑃 − 𝑡𝑖𝑚𝑒(𝑛) = 𝐶0.999999(𝑛)  (7) 
b) Total number of evaluations 

min {𝐶0.999999(𝑛), 400𝑛2)  (8) 
which implies that a benchmark test should terminate either 
when the goal has been reached or 20n generations with a size 
of 20nm have been evolved.  

D. Optimizer overhead 

Alternative to or in addition to the ‘total number of 
evaluations’, the ‘total CPU time’ may be used in a benchmark 
test. More quantitatively, the optimizer overhead may be 
calculated by [1]: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =  
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛−𝑇𝑃𝐹𝐸

𝑇𝑃𝐹𝐸
  (9) 

where 𝑇𝑃𝐹𝐸 is the time taken for pure function evaluations. 

III. BENCHMARK TESTING FUNCTIONS 

A. Experimental set-up 

In this experiments, we investigated the performance of 
Simplex, GA, GAE, SA and PSO which are all searching 
methods provided in Matlab Toolbox.  

Each experiment was repeated 10 times to get a mean 
value of benchmarks. For NM Simplex and SA, initial point is 
needs. A random starting point is given for all 10 runs in these 
two algorithms. In all runs, we kept a same criterial of stop 
searching as description in equation 8 to provide a fair 
performance comparison.  

In order to get 𝑇𝑃𝐹𝐸 for each tested function, all the 
benchmark functions (as in Table 2) are run 400n2 time and 
the time is takes as average value from 10 runs in Matlab. 
These data are given in Section IV as theoretical value of 
optimizer overhead. 

B. Algorithmic settings 

All the algorithms are tested in Matlab. For NM Simplex, 
reflection coefficient is 1, the expansion coefficient is 2, the 
contraction coefficient is 0.5 and the shrink coefficient is 0.5. 
For GA, the population size is set as 20n, which n is the 
dimension number. The max generation times is 20n, so that 
the maximum function evaluation is 400n2 as described in 
Section II about reach-time. The crossover function is using 
scattered which creates a random binary vector and selects the 
genes from two parents based on that binary vector. Crossover 
fraction is set as 0.8. Probability rate of mutation is 0.01. For 
GA with elitism, 5 out of 100 population are guaranteed to 
survive to the next generation. For SA, the initial temperature 
is set to 100, and the temperature is lowered following 
function of 𝑇 = 𝑇0 × 0.95

50. For PSO, swarm size is 10n, and 

maximum iteration is set as 40n so that the maximum function 
evaluations is 400n2. 

C. Benchmark functions 

For comparison, four non-linear functions used in [2, 3] 
are used here in Table 1. All the functions are tested in 10 and 
30 dimensions.Difference types of tested function are chosen 
for a comprehensive comparison. The first function is Quadric 
function, which is a unimodal function. The rest three 
functions are multimodal ones. The n-D Varying Lanscape 
problem, which is also the only maximization problem in the 
four tested functions, that was introduced by Michalewicz [4] 
and further studied by Renders and Bersini [5]. 

The objective function f2(x) is, in effect, de-coupled in 

every dimension represented by 𝑓𝑖(𝑥𝑖) =  sin (𝑥𝑖)𝑠𝑖𝑛
2𝑚(

𝑖𝑥𝑖
2

𝜋
) . 

Every such member function is independent. The larger the 
product mn is, the sharper the landscape becomes. There are n! 

local maxima within the search space [0, ]n. The theoretical 
benchmark solution to this n-dimensional optimization 
problem may be obtained by maximizing n independent uni-
dimensional functions, 𝑓𝑖(𝑥𝑖), the fact of which is however 
unknown to an optimization algorithm being tested.  

The third is Scaffer F6 function with minimum at zero. 
And the last one is a composition function of Schwefel’s 
function, Rastrigin’s function and High Conditioned Elliptic 
Function. The composition rate is 0.3, 0.3 and 0.4 
respectively. 

IV. BENCHMARKING RESULTS AND ANALYSIS 

A. Compare among algorithms 

The results reported in this section are summarized in from 
Table 2 to Table 5 based on different tested function. All the 
theoretical values are given at the bottom of each table for 
comparison.  

First function 

The first test function is a unimodal function with only one 
minimum point in the search area [-1.28 1.28]D. The searching 
results are shown in Table 2, Fig.1 and Fig.2. The algorithms 
are running for different dimension of 10 and 30. 

All five tested algorithms had optimality up to 0.9999. In 
lower dimension of 10, NM Simplex and PSO showed better 
performance with lower optimization overhead and better 
accuracy. In 30 dimension problem, the optimizer overhead of 
GA and GAE decreased to the same level of Simplex, while the 
PSO had the best with 32.49%. SA has the most optimizer 
overhead for both 10-D and 30-D tests. Fig.1 and Fig.2 shows 
convergence trace for each algorithms. For f1, all the 
algorithms show a fast and relatively uniformed speed. Overall, 
all the algorithms performant well for unimodal function. 
Simplex and PSO are most suitable for this kind of problem. 

 

TABLE 1 TESTED FUNCTIONS 

 Name of 

function 
Test function Search Space Minimum/ Maximum 
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Quadric [6, 

7] 

 
min 𝑓1(𝑥) =  ∑𝑖𝑥𝑖

4

𝐷

𝑖=1

  [-1.28,1.28]D D=10, 𝑦 ∈ [0, 147.6395]  
D=30, 𝑦 ∈ [0, 1248.2] 

M
u
lt

im
o
d

al
 

n-D 

Varying 

Landscape 

[5, 8]  

𝑚𝑎𝑥 𝑓2(𝒙) =∑𝑓(𝑥𝑖) =∑sin (𝑥𝑖)𝑠𝑖𝑛
2𝑚(

𝑖𝑥𝑖
2

𝜋
)

𝑛

𝑖=1

𝑛

𝑖=1

 
x  [0, pi]D 

 

D=10, 𝑦 ∈ [0, 9.6547]  
D=30, 𝑦 ∈ [0, 29.6252] 

Scaffer’s 

F6 

Function 

[2, 3] 

𝑚𝑖𝑛𝑓3(𝒙)=g(𝑥1, 𝑥2) + g(𝑥2, 𝑥3) + … + g(𝑥𝐷−1, 𝑥𝐷) + g(𝑥𝐷, 𝑥1) 

222

222

))(001.01(

)5.0)((sin
5.0),(

yx
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x  [-100,100]D 
D=10, 𝑦 ∈ [0, 9.9760]  
D=30, 𝑦 ∈ [0, 29.9280] 

Compositi

on 

Functions 

[2, 3] 

 

min 𝑓4 = 0.3 × 𝑓41 + 0.3 × 𝑓42 + 0.4 × 𝑓43 

𝑓41 = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

 

𝑚 = 𝑚𝑜𝑑(|𝑧𝑖|, 500) 

𝑔(𝑧𝑖) =

{
 
 

 
 

𝑧𝑖sin (|𝑧𝑖|)
1/2 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚) sin (√|500 − 𝑚)|) −
(500 − 𝑧𝑖)

2

10000𝐷
𝑖𝑓 𝑧𝑖 > 500

(𝑚 − 500) sin (√|500 − 𝑚)|) −
(500 + 𝑧𝑖)

2

10000𝐷
𝑖𝑓 𝑧𝑖 < −500

 

𝑓42 =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

 

𝑓43 =∑(106
𝐷

𝑖=1

)
𝑖−1
𝐷−1𝑥𝑖

2 

x  [-100,100]D D=10, 𝑦 ∈ [0, 5.5424𝑒 + 08]  
D=30, 𝑦 ∈ [0, 1.2208𝑒 + 09] 

 

Second function 

The problem described in second function has multiple 
extremes in [0, pi]D. The objective is to maximum the function 
value, which is different from the other three tested function.  

From Table 3, NM Simplex performance are not 
satisfactory. It stalled at local maximum point. GA and GAE, 
on the other hand, showed steady performance, though it took 
much more time to reach the maximum point than NM 
Simplex. Also, GA with elitism shows a little faster than GA to 
reach to the stop criterial. But both GA and GA with elitism 
stop at local maximum point. Fig.3 and Fig.4 shows 
convergence trace for each algorithms. For f2, Simplex and SA 
shows faster convergence speed at the beginning, but stall at 
local extremes. GA, GAE and PSO can get closer to global 
extreme with more iterations. 

None of the tested algorithms can reach to 0.999999 
optimality in N times of function evaluations. GA and GAE 
have provided relatively better results than other. Though PSO 
has a faster convergence speed.   

Third function 

Like the first and second functions, GA and PSO shows 
consistence better performance than other two algorithms. 
Fig.5 and Fig.6 shows convergence trace for each algorithms. 
For f3, similar to the tests in f2, Simplex and SA have quick 
convergence speed but soon stop at local extremes. PSO has a 
slower convergence speed than GA and GAE, but can reach to 
the same level of extreme point. 

However, all the algorithms shows great overhead at this 
tested functions, which suggested that optimizer overhead is 

not only related to algorithms itself, but also related to the 
fitness function. 

Fourth function 

The hybrid function is complex which should be expected 
more optimizer overhead. However, except for Simplex and 
SA, the overhead of other three algorithms are less than 100%. 
The optimality all can reach to 0.9999, while the accuracy in 
Simplex is 64.48% in 30-D. Overall, all the five algorithms can 
locate the global extreme in the last tested function. Fig.5 and 
Fig.6 shows convergence trace for each algorithms. Fig.7 and 
Fig.7 shows convergence trace for each algorithms. For 
f4,.convergence speed of SA is the slowest. Also because the 
random value for initial point, initial value of Simplex is quite 
large, while for GA and PSO, there are relative better point in 
the first population. Hence in this tested function, NM shows 
slower convergence speed than GA and PSO. Overall, GAE 
has a relative better performance. 

Fig. 9 gives the average of three benchmarks, optimality, 
accuracy and optimizer overhead, between five algorithms. GA 
and GA with elitism have an overall steady and good 
performance. For optimality and accuracy, GA with elitism 
didn’t show distinguished improvement. But it show steady 
improvement in optimizer overhead. 

B. Compare between functions 

Because f1 is a unimodal function. All the algorithms are 
performing well. In 30-D, the optimizer overhead of PSO is 
only 32.49% because it only took less than 6% of set times of 
function evaluations to reach to stop point. For multimodal 
functions, heuristic methods have an overall better performance 
than deterministic method as NM Simplex.  



From the theoretical time of pure running of fixed function 
evaluations, f4 took most long time and f3 is the shortest. 
However, the optimizer overhead of all the algorithms in f3 is 
the biggest while small in f1 and f4. Moreover, for NM Simplex, 
the overhead is relatively stable in both 10-D and 30-D, while 
the optimizer overhead decreased at 30-D for heuristic 
methods. It is make sense that because GA and PSO are 
imitation of group activating in nature, which depends on big 
population to keep diversity. When the dimension increase, the 
population size is also increased. 

C. Evaluations of benchmarks 

The mean optimality and mean accuracy represent relative 
closeness to the theoretical value. It would lost meaning when 
the range for x and y become very big. The relative value 
would be too small to show difference between compared 
algorithms.  

The minimum value for function is 0, however, the 
maximum value is increased expontially with dimension of n. 
In this case, the benchmark of optimality can’t reflect the 
distant of searching result to theoretical value. When the 
distance between fmax and fmin

  is too big, the optimality could 

be very close to 1 even the absolute distance between 0f̂  and 

0f . As it is shown in Table 9 and Table 10. All the optimality 

can reach to 0.9998, but the mean function value is up to 105 
scale in SA and Simple. 

Though reach-Time or N evaluations of functions also has 
disadvantages, it gave a convergence speed reflected both 
convergence and optimality. But because of large range of f in 
f4, PSO and GA stops before it reaches to its best solutions. 
Though the optimizer overhead in this test is very small, it is 
not the actual overhead time because algorithms stops early. 
For example, in Table 10, the times for function evaluation of 

PSO is only 45780, compare to N=360000. The results could 
be better if the search continue. But PSO stops search based on 
the reach time setting. Thus it compromised its performance to 
fit the testing standard.  

Benchmarks of optimization, accuracy, convergence and 
optimizer overhead have shown some advantages for a 
uniformed standard to compare. Its application still has limits. 

V. CONCLUSION 

Using 4 commonly adopted tested functions, we have 
compared 5 algorithms available in the Matlab Optimization 
Toolbox. The Simplex has shown good performance for 
unimodal problems, but has not delivered satisfactory 
performance for multimodal and high dimension problems. The 
GA and GAE have shown overall consistently performance 
with all kinds of problems. The PSO has offered the highest 
convergence speed and relatively lower optimizer overhead, 
though the optimality and accuracy were not as good as the GA 
and GAE. If we mark the best one in each benchmarks in green 
in Table 2-7, the highest score in multimodal problems goes to 
GA and GAE. But for unimodal function, PSO has the best 
performance. 

We have also evaluated the benchmarks and tested how 
good the benchmarks can reflect the search performance. 
Based on the analysis, discussions and examples shown in 
Sections 5 and 6, it is evident that more work is required on 
improving the existing benchmark measures. Whether it is 
possible to have such a set of benchmark measures that gives 
an accurate or distinguishable evaluation is still unknown. It is 
important to note that without proper and widely accepted 
benchmark measures, quantifying performance of heuristic 
algorithms is challenging.  

 

TABLE 2 BENCHMARK TEST RESULTS ON THE 10-D AND 30-D QUADRIC PROBLEMS 

Algorithms 

tested 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Score 

(green) 

10-D 30-D - 

Simplex 100% 100% 5766.6 118.09% 99.98% 94.80% 93779 104.84% 3 

GA 100% 99.88% 19800 946.16% 100% 99.74% 134100 113.34% 2 

GA with 

Elitism 
100% 99.86% 18480 833.43% 100% 99.71% 122040 100.46% 

2 

SA 99.98% 94.49% 8871 9378.15% 99.88% 91.32% 30709 1315.49% 0 

PSO 99.99% 97.34% 4400 77.86% 99.99% 96.62% 19860 32.49% 4 

Theoretical 

value 
100% 100% 40000 Max 0.0691 sec 100% 100% 360000 Max 1.6532 sec 

- 

TABLE 3 BENCHMARK TEST RESULTS ON THE 10-D AND 30-D VARYING LANDSCAPE FUNCTIONS  

Algorithms 

tested 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Score 

(green) 

10-D 30-D - 

Simplex 20.70% 69.22% 40000 342.49% 22.99% 69.71% 360000 169.96% 5 

GA 95.38% 87.58% 40000 1684.73% 93.81% 87.59% 360000 734.99% 6 

GA with 

Elitism 
95.29% 86.73% 40000 1618.96% 92.61% 86.69% 360000 704.96% 

2 

SA 33.62% 77.02% 40000 18206.36% 19.02% 75.61% 360000 2304.87% 2 

PSO 86.10% 83.53% 40000 612.21% 72.80% 78.12% 360000 493.67% 2 

Theoretical 

value 
100% 100% 40000 Max 0.0786sec 100% 100% 360000 Max 2.0406sec 

- 



TABLE 4 BENCHMARK TEST RESULTS ON THE 10-D AND 30-D SCAFFER FUNCTION 

Algorithms 

tested 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Score 

(green) 

10-D 30-D  

Simplex 55.78% 72.42% 40000 809.26% 53.06% 73.07% 360000 878.64% 4 

GA 89.21% 95.79% 40000 3804.32% 87.18% 94.03% 360000 1835.67% 6 

GA with 

Elitism 
88.74% 95.26% 40000 3532.41% 83.68% 91.07% 360000 1712.33% 

2 

SA 62.26% 74.95% 40000 45367.90% 54.47% 68.36% 360000 2961.18% 2 

PSO 84.01% 89.91% 40000 1386.73% 70.73% 82.18% 360000 1138.23% 2 

Theoretical 

value 
100% 100% 40000  Max 0.0324 sec 100% 100% 360000 Max 0.7300 sec 

 

TABLE 5 BENCHMARK TEST RESULTS ON THE 10-D  AND 30-D HYBRID FUNCTION 

Algorithms 

tested 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Mean 

Optimality 

Mean 

Accuracy 

N or  

Reach-Time 

Optimizer 

Overhead 

Score 

(green) 

10-D 30-D  

Simplex 99.99% 77.03% 10816 93.15% 99.98% 64.48% 360000 209.35% 0 

GA 100% 99.88% 10400 170.76% 100% 99.62% 35700 35.85% 2 

GA with 

Elitism 
100% 99.98% 11680 186.20% 100% 99.79% 32460 32.19% 

5 

SA 99.99% 85.59% 27019 10573.30% 99.99% 86.09% 275690 6236.73% 0 

PSO 99.99% 91.33% 6560 49.84% 99.99% 94.17% 45780 41.50% 2 

Theoretical 

value 
100% 100% 40000  Max 0.2131 sec 100% 100% 360000 Max 4.4989 sec 

 

 

 

Figure 1 Convergence traces of tested algorithms in f1, 10-D 
 

Figure 2 Convergence traces of tested algorithms in f1, 30-D 



 
Figure 3 Convergence traces of tested algorithms in f2, 10-D 

 

Figure 4 Convergence traces of tested algorithms in f2, 30-D 

 

Figure 5 Convergence traces of tested algorithms in f3, 10-D 

 

Figure 6 Convergence traces of tested algorithms in f3, 30-D 

 

Figure 7 Convergence traces of tested algorithms in f4, 10-D 

 

Figure 8 Convergence traces of tested algorithms in f4, 30-D 



 
Figure 9 Average of optimality, accuracy and optimizer overhead of 4 tested 

functions. 
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