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 

Abstract—Traditional rotary drilling for planetary rock 

sampling, in-situ analysis and sample return, is challenging 

because the axial force and holding torque requirements are not 

necessarily compatible with lightweight spacecraft architectures 

in low-gravity environments. This article seeks to optimize an 

ultrasonic-percussive drill tool to achieve rock penetration with 

lower reacted force requirements, with a strategic view towards 

building an Ultrasonic Planetary Core Drill (UPCD) device. The 

UPCD is a descendant of the Ultrasonic/Sonic Driller/Corer 

(USDC) technique. In these concepts, a transducer and horn 

(typically resonant at around 20kHz) is used to excite a toroidal 

free-mass which oscillates chaotically between the horn tip and 

drill base at lower frequencies (generally between 10Hz to 1kHz). 

This creates a series of stress pulses which are transferred 

through the drill-bit to the rock surface and, while the stress at the 

drill-bit tip/rock interface exceeds the compressive strength of the 

rock, cause fractures that result in fragmentation of the rock. This 

facilitates augering and downward progress. In order to ensure 

that the drill-bit tip delivers the greatest effective impulse (the 

time-integral of the drill-bit tip/rock pressure curve exceeding the 

strength of the rock), parameters such as the spring rates and the 

mass of the free-mass, drill-bit and transducer have been varied 

and compared in both computer simulation and in practical 

experiment. The most interesting findings, and those of particular 

relevance to deep drilling, indicate that increasing the mass of the 

drill-bit has a limited (or even positive) influence on the rate of 

effective impulse delivered. 

 
Index Terms—Ultrasonic drilling, percussive drilling, dynamic 

modelling, planetary sample retrieval 

 

I. INTRODUCTION 

ELIABLE and effective tools to collect rock samples, 

conduct in-situ analysis and deliver sample-return 

missions in lower gravity fields need to be developed as the 

conventional drilling technique is often associated with high 

axial forces, high holding torques and high power consumption 

[1]. A potential alternative is to use an ultrasonic transducer and 

horn to superimpose vibrations onto the cutting motion [2] in 

the longitudinal direction. However, it is still a challenge 

whether this technique is feasible to be employed for planetary 

rock drilling. Operating at 20kHz, there is perhaps insufficient 

time between percussion impact events for the drill-bit to 

release a considerable amount of energy to fracture the rock. 
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To tackle this problem, the Ultrasonic/Sonic Driller/Corer 

(USDC) was prototyped and is described in [3]. The USDC is 

driven by a piezoelectric Langevin-style transducer which 

operates at around 20kHz. This vibration is amplified by a 

resonant step horn [4] and then used to excite a percussive stack 

which consists of a free-mass and a drill-bit. 

The free-mass oscillates between tens of Hz to about 1000Hz 

[5]. The energy of multiple ultrasonic vibration cycles is thus 

accumulated and transferred to the free-mass and hence to the 

drill-bit/rock interface when an impact occurs [6]. The rate of 

progress is broadly proportional to the rate at which effective 

impulse is delivered, where this rate is equal to the growth of 

the bit/rock contact-pressure time integral exceeding the 

compressive strength of the rock [4]. 

The UPCD is based on a multi-parameter optimization 

(parameters which include compression spring rates, free-mass, 

drill mass, transducer mass, internal pre-load and external 

weight-on-bit) of this fundamental architecture, with respect to 

the rate of effective impulse, using a UPCD assembly as shown 

in Fig. 1. The ultrasonic transducer is a Sonic Systems L500 

device powered by a P100 control unit. The device is a 

half-wavelength system with piezoceramic rings located near 

the nodal point and a radiating face vibration displacement that 

can be adjusted between 2 to 12 microns peak-to-peak 

depending on the input power. The step horn attached to the 

transducer has a theoretical gain of eight, amplifying this 

amplitude. The piezoceramic rings in the transducer can be 

operated across a wide range of temperatures, depending on the 

piezoceramic rings selected [1]. 

The UPCD has three spiral compression springs on the 

longitudinal rails, opposed by a single wave spring located 

around the drill-bit, as shown in Fig. 1, which together allow 

longitudinal motions of the transducer and horn. The toroidal 

free-mass at the tip of the horn sits within a six-keyed spline 

shaft, contiguous with the lance, which is used to mate with and 

deliver impulse to the drill-bit. The spline shaft, and hence the 

lance, is rotated by a spline bush within a cog gear seated on an 

angular contact bearing and rotated by a pinion attached to a 

Maxon DC motor. This permits rotation of the lance for the drill 

string assembly [7] and ensures that the teeth of the drill-bit 

impact different regions of the rock as drilling progresses. This 

ensures that the contact area remains small, the interface 

pressures remain correspondingly high, and the rate of progress 

is sufficiently rapid for planetary drilling [8]. 

The rear springs absorb the shock associated with impacts of 

the free-mass, minimizing the loads transmitted to the drill 
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deployer. The front spring, meanwhile, also applies a static 

internal pre-load on the dynamic stack that returns the drill 

string to the free-mass [9] during zero weight-on-bit testing. 

Operationally, the front spring is also involved in separating the 

bayonet-style connections envisaged for drill string itself [7]. 

 

Fig. 1.  Cross-sectional view of the full wavelength drill tool 

It has been found in both simulation and experiment that 

specific combinations of compression spring rates, operating at 

different internal pre-loads and weights-on-bit, can cause the 

dynamic force generated in the springs to reach zero, so that 

there is a temporary separation with the result that the casing 

and the springs rattle. A significant weight-on-bit and a stiff 

front spring are likely to cause more separation of the front 

spring and casing. However, from a mechanical standpoint, 

rattling is not a major problem so long as the front spring is 

designed to remain aligned and captive.   

II. UNLOADED TRANSDUCER AND HORN MODEL 

There are three interfaces in the drill tool, which are 

horn/free-mass, free-mass/drill-bit and drill-bit/rock 

interactions. In order to analyze the dynamic behavior of these 

interactions, a simple and reliable transducer and horn model 

needs first to be established as the basis of a full model of the 

UPCD, and which can be readily validated by experimental 

ultrasonic vibration measurements of the actual transducer and 

horn.  

 

Fig. 2.  Full wavelength transducer and horn structure and simplification: (a) 
transducer and horn and waveform at resonance, (b) transducer and horn 

structure, (c) simplification, (d) a 2-DOF vibrating system 

Fig. 2 illustrates the structure of proposed full wavelength 

transducer and horn model as a mass-spring-damper system. 

Fig. 2 (a) shows a typical vibration displacement amplitude 

profile, where the length of both the back mass (hidden in blue 

casing) and front mass of the transducer are each a 

quarter-wavelength of the ultrasonic wave in the transducer’s 

titanium alloy Grade 5 Ti-6Al-4V body. A half-wavelength 

resonator (or horn) with a tapered-step diameter reduction at its 

mid-point, is connected to the transducer’s radiating face via a 

threaded stud. As a result, the overall ultrasonic stack has two 

nodal points when operating in its full-wavelength longitudinal 

mode: one near the piezoceramic rings in the transducer and 

one near the step in the horn. Fig. 2 (b) illustrates the basic 

structure of this transducer and horn. The back mass is removed 

in Fig. 2 (c), reducing the structure to a simplified two 

degree-of-freedom (DOF), one-dimensional model, shown in 

Fig. 2 (d), to represent the transducer and horn as a 

mass-spring-damper model. 

Compared to previous models of USDC/UPCD style devices 
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(including the work in [4], [6] and [10]) which compute the 

effective horn mass and then attribute the rest of the material to 

the transducer mass, this current work proposes an integrated 

modelling technique to represent the transducer and horn itself. 

This is important because the input signal is an AC voltage to 

the piezoceramic rings (which generates the modelled 

mechanical vibrations) and the output signals are then the 

piezoceramic ring vibrations, transducer radiating face 

vibrations and horn tip vibrations. In addition the control 

system, which adjusts the supplied voltage to the piezoceramic 

rings to compensate for the energy transfer due to the impacts 

of drilling, can now be modelled as part of an integrated system, 

which yields a more representative model of the device.  

The 2-DOF model has two eigen-frequencies. The 1st 

frequency corresponds to the masses vibrating in-phase, and the 

2nd frequency corresponds to anti-phase movement 

representing the operational mode of vibration. 𝑥0  is the 

absolute displacement of the piezoceramic ring, 𝑥1 represents 

the absolute displacement in the middle of the basal part of the 

horn at the location of the anti-node of the operating mode, and 

𝑥2 is the absolute displacement at the tip of the horn. 𝑚1 and 

𝑚2  are the effective masses which represent the amount of 

material that is participating in the acoustic energy transfer, 𝑘1 

and 𝑘2 are the modelled internal stiffnesses, and 𝑐1 and 𝑐2 are 

the corresponding damping coefficients. 

Taking the transducer and horn dimensions and experimental 

measurements into account, the parameters of the transducer 

and horn now can be identified. The method used here strictly 

follows the procedure presented in [11], pages 53-59. 

A. 2-stage transducer and horn model 

 

Fig. 3.  (a) Simplified 2-step transducer-horn distributed parameter model, (b) 
2-DOF lumped parameter model 

The transducer and horn used in this study is a two-stage bar, 

with different cross-sectional areas as shown in Fig. 3. 𝑥𝑐 is the 

coordinate at the step, 𝐿1 and 𝐿2 are the lengths of each stage, 

𝑆1  and 𝑆2  represent the cross-sectional areas, and 𝐿  is the 

overall length. Because the piezoceramic ring is sited near the 

nodal point, it may be temporarily removed and the left end can 

be modelled as a rigid boundary. 

In order to obtain the longitudinal wave dynamic equations, a 

thin arbitary section of length 𝑑𝑥  at coordinate 𝑥  has been 

defined. 𝐹 is the force generated at coordinate 𝑥 and the value 

is increased by 𝑑𝐹  over the section length. Therefore, the 

dynamic equation can be written as: 

𝜌
𝜕2𝐷𝑖(𝑥, 𝑡)

𝜕𝑡2
= 𝐸 

∂2𝐷𝑖(𝑥, 𝑡)

∂𝑥2
                           (1) 

where 𝜌 is the density of the bar, 𝐸 is the Young’s modulus, 

𝐷𝑖(𝑥, 𝑡) is the displacement at coordinate 𝑥 at time 𝑡, and 𝑖 =
1,2  (for the two stages). Assuming the bar vibrates 

harmonically, the displacement of the arbitrary section 𝑑𝑥 has 

an expression 𝐷(𝑥, 𝑡) = 𝐷(𝑥)sin (𝜔𝑡). Therefore equation (1) 

can be re-written as: 

𝑑2𝐷𝑖(𝑥)

𝑑𝑥2
+
𝜌𝜔2

𝐸
𝐷𝑖(𝑥) = 0                             (2) 

The general solutions to the bar’s dynamic differential 

equation (2) are: 

𝐷𝑖(𝑥) = {
𝐴1 sin(𝑘𝑥) + 𝐴2 cos(𝑘𝑥)          0 < 𝑥 < 𝑥𝑐
𝐵1 sin(𝑘𝑥) + 𝐵2 cos(𝑘𝑥)         𝑥𝑐 < 𝑥 < 𝐿

       (3) 

where 𝑘 = √
𝜌𝜔2

𝐸
 that represents the wavenumber of the 

longitudinal vibration, 𝜔 is the natural frequency of the bar. 

Since the transducer and horn is fixed at the left end, and the 

right end is freely vibrating, the boundary conditions of the bar 

can be defined as:  

𝐷1(𝑥, 𝑡)|𝑥=0 = 0

𝑑𝐷2(𝑥, 𝑡)

𝑑𝑥
|
𝑥=𝐿

= 0
                                  (4) 

Substituting the boundary conditions (4) into equation (3) 

gives: 

𝐷𝑖(𝑥) = {
𝐴 sin(𝑘𝑥)                      0 < 𝑥 < 𝑥𝑐
𝐵𝑐𝑜𝑠[𝑘(𝑥 − 𝐿)]           𝑥𝑐 < 𝑥 < 𝐿

            (5) 

where 𝐴 = 𝐴1 , 𝐵 =
𝐵1

sin (𝑘𝐿)
. Furthermore, at the point 𝑥𝑐 , 

there is a continuity of displacement for the two stages and the 

forces are equal and opposite at the connection. Hence, the 

following equations can be derived: 

𝐷1(𝑥, 𝑡)|𝑥=𝑥𝑐 = 𝐷2(𝑥, 𝑡)|𝑥=𝑥𝑐
𝜕𝐷2(𝑥, 𝑡)

𝜕𝑥
|
𝑥=𝑥𝑐

=
𝑆1
𝑆2

𝜕𝐷1(𝑥, 𝑡)

𝜕𝑥
|
𝑥=𝑥𝑐

                 (6) 

Implementing equation (6) into equation (5) gives: 

𝐴𝑠𝑖𝑛(𝑘𝑥𝑐) = 𝐵𝑐𝑜𝑠[𝑘(𝑥𝑐 − 𝐿)]

𝐴𝑆1 cos(𝑘𝑥𝑐) = −𝐵𝑆2sin [𝑘(𝑥𝑐 − 𝐿)]
               (7) 

After a re-arrangement of equation (7), it gives an expression 

of the distributed parameter model of the 2-stage transducer and 

horn: 
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tan(𝑘𝑥𝑐) tan[𝑘(𝑥𝑐 − 𝐿)] = −
𝑆1
𝑆2
                   (8) 

As discussed, a 2-DOF model, as shown in Fig. 3 (b) can 

replace the 2-stage transducer and horn for simulation 

purposes. However, the 2-DOF model excludes the damper sets 

to facilitate calculation of the stiffness and mass using the 

eigenvalue-eigenvector method [11].  

According to the Euler-Lagrange equations [12] and 

assumption of the 2-DOF system’s harmonic longitudinal 

vibration (𝑥1 = 𝑉1sin (𝜔𝑡) , 𝑥2 = 𝑉2sin (𝜔𝑡) ), the following 

dynamic equations for the 2-DOF system can be written: 

(𝑘1 + 𝑘2 −𝑚1𝜔
2)𝑉1 − 𝑘2𝑉2 = 0

−𝑘2𝑉1 + (𝑘2 −𝑚2𝜔
2)𝑉2 = 0

                  (9) 

where 𝑉1  and 𝑉2  are the vibration amplitudes of the two 

effective masses. The 𝜔  values are the eigenvalues of the 

distributed parameter model calculated in equation (8). The 

eigenvectors are the amplitude ratios between the 1st and 2nd 

stages of the 2-stage transducer and horn as measured 

experimentally at resonances. 

An additional condition to identify the stiffness and effective 

mass of the 2-DOF system is the conservation of energy. It is 

assumed that the total energy of the distributed parameter 

model is completely conserved through the 2-DOF model 

which gives the following equation: 

𝐸

2
[𝑆1∫ (

𝑑𝐷1(𝑥)

𝑑𝑥
)

2

𝑑𝑥 +

𝑥𝑐

0

𝑆2 ∫(
𝑑𝐷2(𝑥)

𝑑𝑥
)

2

𝑑𝑥

𝐿

𝑥𝑐

]             

=
1

2
𝑘1𝑉1

2 +
1

2
𝑘2(𝑉2 − 𝑉1)

2                     (10) 

The dimensions and material parameters of the 2-stage 

transducer and horn are given in TABLE I. The wavelength for 

a metal bar with a non-uniform cross-sectional area, 

representing the transducer and horn shown in Fig. 2 (a), has 

been calculated from following equation (11) [13], [14]: 

𝜆 =
1

2𝜋𝑓
√
𝐸

𝜌
√(2𝜋)2 + (ln 𝑛)2 ≈ 0.2655m          (11) 

where 𝜆 is the wavelength, 𝑓 is the natural frequency of the 

bar, √
𝐸

𝜌
 is the speed of the stress wave in the material, and 𝑛 is 

the ratio of the horn cross-sectional areas 
𝑆1

𝑆2
. 

TABLE I 
DIMENSIONS AND MATERIAL PROPERTIES OF THE TRANSDUCER AND HORN 

      1st Stage Radius (𝑅1)                           0.017m                      
      2nd Stage Radius (𝑅2)                           0.00625m 

      1st Stage Length (𝐿1)                            0.132m 

      2nd Stage Length (𝐿2)                           0.0625m 

      Young’s Modulus (𝐸)                          1.14 × 1011N/m2 

      Density (𝜌)                                           4439kg/m3 

B. Piezoelectric model 

The Sonic Systems L500 transducer uses Navy type III 

PZT-8 piezoceramic rings, suitable for high power applications 

with low a loss factor [15]. The interaction between the 

electrical and mechanical aspects of the piezoelectric behaviors 

can be described by the following relationships: 

ε = 𝑠𝐸𝜎 + 𝑑𝔼
𝔻 = 𝑑𝜎 + 𝜀𝑇𝔼

𝔼 = −𝕘𝜎 +
𝔻

𝜀𝑇

ε = 𝑠𝐷𝜎 + 𝕘𝔻

𝑑 = 𝜀𝑟𝜀0𝕘

                                    (12) 

where 𝜀  is the strain, 𝜎  is applied stress, 𝑠𝐸  is the elastic 

compliance at constant electric field, 𝑑  is the piezoelectric 

charge constant, 𝔻  is the dielectric displacement, 𝔼  is the 

electric field strength, 𝜀𝑇  is the permittivity under constant 

stress, 𝕘 is the voltage constant, 𝑠𝐷  is the elastic compliance 

with an open electrode circuit, and 𝜀0 is the permittivity of free 

space which is 8.85 × 10−12F/m . Taking into account the 

relationships 𝜎 =
𝐹0

𝑆0
, 𝔼 =

𝑈

𝑙0
 and 𝔻 =

𝑞

𝑆0
, equation (13) can be 

derived. 

𝑥0 =
𝑠33
𝐸 𝑙0
𝑆0

𝐹0 + 𝑑33𝑢

𝑞 = 𝑑33𝐹0 +
𝜀33
𝑇 𝑆0
𝑙0

𝑢

                                (13) 

These parameters for the piezoceramic rings were obtained 

from the supplier (Morgan Electro Ceramics) [15]. Here, 𝑆0 is 

the area, 𝑙0  is the thickness, 𝐹0  is the applied force, 𝑢  is the 

supplied voltage, 𝑞  is the stored electrical charge. The 

parameters that are specified for the 33 polarization direction 

are: 𝑠33
𝐸 , the elastic compliance for stress, 𝑑33 , the charge 

constant and 𝜀33
𝑇 , the permittivity. 

The properties and coefficients used in the model are shown 

in TABLE II, where these parameters are substituted into 

equation (13) for the purposes of numerical simulation. 

TABLE II 
PZT-8 RINGS PROPERTIES AND COEFFICIENTS 

Piezoceramic ring type PZT-8 
      Outer Diameter (OD)                           0.038m 
      Inner Diameter (ID)                            0.013m 

      Area (𝑆0)                               1 × 10−3m2 

      Thickness (𝑙0)                            0.0065m 

      Elastic Compliance (𝑠33
𝐸 )       13.5 × 10−12m2/N 

      Charge Constant (𝑑33)                                       225 × 10
−12C/N 

      Permittivity (𝜀33
𝑇 )          8.85 × 10−9F/m 

C. Transducer and horn model  

Using the transducer and horn described in section A and the 

piezoelectric properties described in section B in section II, the 

2-DOF model has been developed into a complete transducer 

and horn model. According to the Euler-Lagrange equations 

[12], the dynamic equations of the transducer and horn can be 

written as: 

𝑚1𝑥̈1 + 𝑘1(𝑥1 − 𝑥0) + 𝑐1(𝑥̇1 − 𝑥̇0) + 𝑘2(𝑥1 − 𝑥2) + 𝑐2(𝑥̇1
− 𝑥̇2) = 0 

𝑚2𝑥̈2 − 𝑘2(𝑥1 − 𝑥2) − 𝑐2(𝑥̇1 − 𝑥̇2) = 0   (14) 

The interaction force 𝐹0 between the piezoceramic ring and 

the 2-DOF model can be extracted as: 
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𝐹0 = 𝑘1(𝑥1 − 𝑥0) + 𝑐1(𝑥̇1 − 𝑥̇0)    (15) 

The coefficients 𝑐1  and 𝑐2  can be adjusted to tune the 

simulated ultrasonic vibrations 𝑥1  and 𝑥2  to match 

experimental measurements. For this purpose, the supplied AC 

voltage in experiments was measured by a GE 8115 differential 

probe at the piezoceramic rings to determine a relationship with 

horn displacement. 

 

Fig. 4.  Supplied voltage vs base/tip vibrations of the transducer and horn 

Fig. 4 shows a linear relationship between the supplied 

voltage and the transducer and horn vibration displacement 

amplitudes as the transducer radiating face vibration increases 

from 2.0μm to 12μm (as controlled by the P100 generator). 

The horn tip vibrations were captured using a 1-D laser 

vibrometer (Polytec OFV 303 sensor head interfaced with an 

OFV3001 vibrometer controller). 

As stated in [16], for the horn ratio of base diameter to tip 

diameter, the amplitude gain can be calculated from the 

parameters in TABLE I to be 7.42. As a verification, the gain of 

the tapered horn in the experiment can be calculated from Fig. 4 

as 7.72, a close agreement with the theoretical prediction. 

 

Fig. 5.  Steady-state vibrations of piezoceramic ring 𝑥0, 1st mass 𝑥1 and 2nd 

mass 𝑥2 of the transducer and horn 

In the following experiments, the transducer excitation 

displacement is selected to be 5μm  peak-to-peak which 

develops a 38.6μm  peak-to-peak horn tip vibration. The 

driving voltage is around 62V peak-to-peak from Fig. 4. Using 

the information of the input voltage and output vibration 

displacements from the transducer and horn in experiments, the 

transducer and horn model can be implemented to estimate 

damping coefficients by tuning the model to fit the 

experimentally measured displacements. 

Simulated results of the unloaded transducer and horn are 

illustrated in Fig. 5. Both 𝑥1  and 𝑥2  are consistent with the 

experimental measurements shown in Fig. 4 and the anti-phase 

characteristic between 𝑥1  and 𝑥2  is also consistent with 

experimental observation. The resonant frequency of the 

transducer and horn model has only a 0.1% difference from the 

distributed parameter model of the 2-stage transducer and horn. 

Therefore, the reliability and accuracy of the transducer and 

horn model is confirmed, which allows us to proceed to 

calculate the dynamic behavior of the drilling tool during 

interaction with the free-mass, drill-bit and impact plate. 

III. ULTRASONIC PLANETARY CORE DRILL (UPCD) MODEL 

Numerical model and dynamic differential equations of the 

rest of the dynamic stack are derived for integration with the 

transducer and horn model according to spring-mass-damper 

interactions set out in Fig. 6. Subsequently, a negative feedback 

control system is designed which simulates the functions of the 

P100 control unit in maintaining the ultrasonic vibrations at a 

desired level by varying the supplied voltage in response to 

variations in the applied weight-on-bit. 

Parameters including front and rear spring rates, masses of 

free-mass, drill-bit mass and transducer mass are examined 

using the model to maximize the rate of effective impulse 

transferred to the target material. The simulated results are then 

validated through experiments.  

As can be seen, the transducer is supported by the rear 

compression spring, 𝑘𝑟. A mass 𝑚𝑓𝑚 with a contact spring rate 

𝑘𝑓𝑚  and a damping coefficient 𝑐𝑓𝑚  models the free-mass, 

sitting between the horn tip and the drill-bit. Finally, a drill-bit 

mass 𝑚𝑑𝑟  is placed between the free-mass and the front 

compression spring, 𝑘𝑓. The contact stiffness of the drill-bit is 

𝑘𝑑𝑟 and damping coefficient is 𝑐𝑑𝑟 . 

Three free-masses (of mass 5g, 6g and 7g) are used to 

examine their effect on the rate of the effective impulse. More 

significantly, the drill-bit mass will change in service (as the 

drill extends) and so three drill-bit masses (of mass 80g, 160g 

and 240g) are examined, and finally the effect of transducer 

mass will be explored at 1.925kg, with additional dummy 

masses being used to reach to a 2.925kg and 3.925kg. 

Experimental tests are then carried out with the drill-bit in 

contact with a tool steel impact plate represented in simulations 

by a Kelvin-Voigt model [17], which represents the rock for 

validation of the model.  

Equation (16) shows the dynamic characteristics of the drill 

tool percussive process. For the transducer and horn, they will 

exhibit ultrasonic vibrations (around 20kHz) superimposed  
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Fig. 6.  Mass-Spring-Damper model of the UPCD assembly 

with apparently chaotic motions at sonic frequencies. In order 

to obtain the apparently chaotic behaviors, the casing’s absolute 

displacement has been defined as 𝑥𝑟 . 𝑚𝑑𝑚  represents the 

summation of the material mass of the transducer and horn and 

casing, but subtracts the effective mass of the transducer and 

horn, 𝑚1 and 𝑚2. The subscript of 𝑚𝑑𝑚  means ‘dead mass’, 

whose motion is affected by the rear spring 𝑘𝑟  but does not 

participate directly in the ultrasonic motion. 𝐹𝑟  means the 

dynamic force in the rear spring during percussion. 𝐹𝑠𝑟 is the 

static pre-load of the rear spring before percussion is activated. 

This value is prescribed in both simulation and experiments.  

𝑚𝑑𝑚𝑥̈𝑟 − 𝐹0 − 𝐹𝑟 = 0 

𝐹𝑟 = 𝐹𝑠𝑟 − 𝑘𝑟𝑥𝑟  

𝑚1𝑥̈1 + 𝑘1(𝑥1 − 𝑥0) + 𝑐1(𝑥̇1 − 𝑥̇0) + 𝑘2(𝑥1 − 𝑥2) + 𝑐2(𝑥̇1
− 𝑥̇2) = 0 

𝑚2𝑥̈2 − 𝑘2(𝑥1 − 𝑥2) − 𝑐2(𝑥̇1 − 𝑥̇2) + 𝑘𝑓𝑚(𝑥2 − 𝑥3)

+ 𝑐𝑓𝑚(𝑥̇2 − 𝑥̇3) = 0 

𝑚𝑓𝑚𝑥̈3 − 𝑘𝑓𝑚(𝑥2 − 𝑥3) − 𝑐𝑓𝑚(𝑥̇2 − 𝑥̇3) + 𝑘𝑑𝑟(𝑥3 − 𝑥4)

+ 𝑐𝑑𝑟(𝑥̇3 − 𝑥̇4) = 0 

𝑚𝑑𝑟𝑥̈4 − 𝑘𝑑𝑟(𝑥3 − 𝑥4) − 𝑐𝑑𝑟(𝑥̇3 − 𝑥̇4) + 𝑘𝑘𝑥 + 𝑐𝑘𝑥̇ + 𝐹𝑓 = 0 

𝐹𝑓 = 𝐹𝑠𝑓 − 𝑘𝑓𝑥 

{
𝑥 = 𝑥4 − ∆,        ∆> 0
𝑥 = 𝑥4,                ∆≤ 0

      (16) 

𝑥3  and 𝑥4  are the absolute displacements of the free-mass 

and drill-bit. 𝐹𝑠𝑓 is the static pre-load in the front spring before 

percussion is triggered, which has the same value as 𝐹𝑠𝑟 

because, for the experimental configuration, the drill tool is 

operated in horizontal direction. 𝐹𝑓 is the dynamic force in the 

front spring during percussion and 𝑥  is the relative 

displacement between drill-bit and target surface. ∆  is the 

initial interference/gap between the drill-bit and the steel 

impact plate.  

IV. AMPLITUDE CONTROL SYSTEM DESIGN 

As high frequency vibrations are converted to low frequency 

apparently chaotic behaviors, during the drill tool hammering 

against the rock, the ultrasonic amplitude will drop if a constant 

voltage is supplied to the piezoceramic rings. Consequently, the 

P100 control unit (from Sonic Systems Ltd., Ilminster, UK) 

locks the phase between current and voltage to the 

piezoceramic rings and compensates power during drilling [18], 

in order to ensure ultrasonic amplitude remains steady. 

The control system assumes that 𝑅𝑑 represents the desired 

root mean square (rms) ultrasonic vibration amplitude, 𝑈 is the 

control voltage amplitude for the unloaded transducer and horn, 

𝑅𝑖  is the rms ultrasonic vibration amplitude of the current 

control cycle, and 𝑈𝑖+1 is the control voltage amplitude to be 

established. 𝐺 is a gain value that must be estimated, but the 

overall vibration control algorithm can still be established: 

{
 

 𝑈𝑖+1 =
𝐺𝑈𝑅𝑑
𝑅𝑖

,                     𝑅𝑑 > 𝑅𝑖   

𝑈𝑖+1 =
𝑈𝑅𝑑
𝐺𝑅𝑖

,                         𝑅𝑑 ≤ 𝑅𝑖 

               (17) 

Due to percussion-induced waveform distortion, it is 

difficult to estimate the change in the AC signals level. As a 

result, the rms values of each ultrasonic vibration cycle are 

evaluated. 
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Fig. 7.  Predicted and measured effective impulse delivered above 100N threshold during change in (a) free-mass mass 5g, 6g and 7g, (b) drill-bit mass 80g, 160g 
and 240g, (c) transducer mass 1.925kg, 2.925kg and 3.925kg, and the percussion force frequency response with a front spring rate 5N/mm and a rear spring rate 

10N/mm  during change in (d) free-mass mass, (e) drill-bit mass and (f) transducer mass 

V. PARAMETRIC OPTIMIZATION OF THE DYNAMIC STACK 

The dynamic stack is optimized with an aim of maximizing 

the rate of effective impulse to the impact surface. The 

parameters investigated are the masses of free-mass, drill-bit, 

and transducer, as well as the compression spring rates. 

For the unloaded transducer and horn model, 𝑚1, 𝑘1, 𝑐1, 𝑚2, 

𝑘2 and 𝑐2 have been identified in section II. However, for the 

stiffness of free-mass, 𝑘𝑓𝑚 , and drill-bit, 𝑘𝑑𝑟 , estimation is 

difficult due to the apparently chaotic motions and changes in 

contact time during collisions. Nonetheless, there are a number 

of research papers dedicated to the study of collisions between 

two or multiple moving objects and as the collisions between 

horn tip, free-mass and drill-bit have been simplified as a 

mass-spring-damper model, the calculation of the contact 

stiffness of each object can follow the formula that is described 

in [19]. For instance, for the free-mass contact stiffness 𝑘𝑓𝑚 

calculation: 
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𝑘𝑓𝑚 =
𝑚𝑓𝑚

(1 + 𝜇)𝑇𝐶
2
(𝜋2 + (ln(𝑒))2)               (18) 

where 𝜇 is the mass ratio of two objects in collision, in this 

case 𝜇 =
𝑚𝑓𝑚

𝑚2
, 𝑇𝑐  is the duration of collision, and 𝑒  is the 

coefficient of the restitution of collision. 

As can be seen in equation (18), the stiffness is dominated by 

the contact time of collision but mass ratio is also an important 

factor. Therefore, for each free-mass examined, there should be 

a slight difference in stiffness values, but here this is regarded 

as insignificant. The contact stiffness of the impact plate 

(representing rock for model validation purposes), meanwhile, 

is tuned to exhibit a close match between the (peak) simulated 

force and the (peak) experimentally recorded force. 

TABLE III 
PARAMETERS OF THE DYNAMIC STACK 

      1st effective mass (𝑚1)                          0.183kg                      
      Spring rate of 𝑚1 (𝑘1)        6.48 × 108N/m 

      Damping of 𝑚1 (𝑐1)         0.05Ns/m 

      2nd effective mass (𝑚2)                          0.018kg                      
      Spring rate of 𝑚2 (𝑘2)        2.57 × 108N/m 

      Damping of 𝑚2 (𝑐2)         0.173Ns/m 

      Spring rate of 𝑚𝑓𝑚 (𝑘𝑓𝑚)                         2.71 × 108N/m                      
      Damping of 𝑚𝑓𝑚 (𝑐𝑓𝑚)        0Ns/m 

      Spring rate of 𝑚𝑑𝑟 (𝑘𝑑𝑟)                          3.25 × 108N/m                      
      Damping of 𝑚𝑑𝑟 (𝑐𝑑𝑟)        0Ns/m 

      Spring rate of impact plate (𝑘𝑘)     9 × 106N/m 
      Damping of impact plate (𝑐𝑘)      18Ns/m 

      Initial interference (∆)        0m 

The identified parameters of the dynamic stack are shown in 

TABLE III for a 5g free-mass, an 80g drill-bit and a 1.925kg 

transducer. The contact time of collision between the horn tip 

and free-mass has been estimated in [4] using finite element 

analysis, estimating a contact time of 1.2 × 10−5 seconds. As 

the free-mass and drill-bit have the same material properties as 

the horn, the contact time for the free-mass and drill-bit is also 

assumed to be 1.2 × 10−5  seconds. Calibration studies have 

shown that even if the contact time is doubled or halved, the 

delivered rate of effective impulse varies by less than 2%. 

The coefficient of the restitution 𝑒  during collision for 

titanium on titanium is assumed to be 1 (purely elastic) between 

the mechanical parts in the simulation model. 

In running the models, an internal pre-load of 10N is applied 

prior to percussion, and both spring rates are changed as 

𝑘𝑓 , 𝑘𝑟 ∈ [1 − 19]N/mm  with an increment of 2N/mm. In 

comparison, available springs in experiments are limited to 𝑘𝑓 

values of [5, 10.05, 14.95, 19.9]N/mm for the front springs and 

for the rear springs 𝑘𝑟 values of [3.84, 10, 12.24, 19.98]N/mm. 

We recall that pulverization of rock is caused by the stress 

exceeding the compressive strength of the material. Therefore, 

a 100N force threshold has been prescribed to represent a 

medium-soft rock compressive limit of 100MPa under a 1mm2 

cutting area. The impulse delivery rate above this threshold is 

the key dependent variable illustrated in Fig. 7. It should be 

mentioned that a single drill-bit of 80g and a transducer 

self-weight of 1.925kg was used during the study of changing 

the mass of the free-mass Fig. 7 (a). For changing the mass of 

the drill-bit, Fig. 7 (b), a 6g free-mass and transducer 

self-weight of 1.925kg was employed. A 6g free-mass and a 

160g drill-bit were adopted to examine the effect on the rate of 

delivered impulse during the change of the transducer mass, 

Fig. 7 (c). 

Fig. 7 (a), (b) and (c) illustrate that the rate of effective 

impulse generally increases with both 𝑘𝑓 and 𝑘𝑟. There is also 

an improvement as the drill-bit mass rises from 80g to 240g, 

both in simulation and in experiment, which is encouraging 

when considering the need to build longer and heavier drill 

strings, but there are limited effects due to the change in the 

masses of free-mass and transducer across the ranges 

considered. Fig. 7 (d), (e) and (f), meanwhile, show the 

frequency spectra of the impact force signals, based on a fixed 

front spring rate of 5N/mm and rear springs rate of 10N/mm. 

These present a different pattern, as summarized in TABLE IV. 

Given that small displacements in the rig can strongly affect the 

weight-on-bit values, some systematic error is found, but the 

trends appear consistent.  

TABLE IV 

FREQUENCY PEAKS OF SIMULATION AND EXPERIMENT 

Percussion force frequency (Hz) 

          Free-Mass     5g     6g     7g   

     Simulation     21.57    22.33    22.52 

     Experiment     27.47    28.04    30.90 

     Drill Mass     80g    160g    240g  

     Simulation     22.33    20.80    25.58 

     Experiment     28.04    28.42    28.23 

     Transducer Mass   1.925kg   2.925kg   3.925kg 

     Simulation     20.80    17.75    15.27 

     Experiment     28.42    20.03    16.98 

VI. MOTIONS WITHIN THE DYNAMIC STACK 

Thus far, all our results have been calculated from the time 

domain percussion force signals. However, the numerical 

predictions of the physical motions of the transducer and horn, 

free-mass and drill-bit must be compared to the experimental 

behaviors. Experimental validations are carried out for the drill 

operating both in free-air (a large positive value of Δ, without 

an applied load) and in contact with a target (a zero value of Δ, 

with an applied load). 

Fig. 8 illustrates the experimental setup of the test rig. (a) 

shows a 3-D model, and (b) is a photograph of the experimental 

rig, showing the additional masses used to modify the drill-bit 

mass and transducer mass. The mass of the free-mass is 

modified by a simple exchange from the free-mass holder. At 

the tip of the drill-bit, an impact plate made of tool steel is 

attached to a force sensor (Kistler 9321B), which backs onto a 

heavy stanchion. The whole assembly can be driven by a DC 

voltage controlled linear actuator (LT225-1-300P) in order to 

vary the weight-on-bit and emulate the motion control system 

[20]. The linear actuator is demobilized in this study. 

During operation, a 3-D laser vibrometer (Polytec 

CLV3000) is used to measure the velocity of the horn tip, 

free-mass and drill-bit, a differential probe (GE 8115) is used to 

record the high frequency AC supplied voltage into the 

piezoceramic rings, and a data acquisition unit (PicoScope 

4424) is employed to record the data.  
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Fig. 8.  Laboratory drill tool: (a) designed test rig in SolidWorks 2014 x64 Edition, (b) experimental test rig

 
Fig. 9.  Simulated and recorded velocities and displacements of the horn tip: (a) 

simulated velocity, (b) simulated displacement, (c) measured velocity, (d) 
measured displacement 

In this study, a 5g toroidal free-mass is used, along with a 

single drill-bit of 80g, a front spring rate of 10.05N/mm, rear 

springs rate of 10N/mm, a 10N internal pre-load and a 5μm 

peak-to-peak transducer radiating face vibration magnitude. 

The parameters of the dynamic stack are shown in TABLE III.  

A. Drill tool percussion in free-air 

Fig. 9 shows the simulated and experimental velocities and 

calculated displacements for the horn tip during percussion in 

free-air (no external applied load). 

The simulated and measured horn tip velocities both present 

peaks of ±4m/s. Both velocity-time graphs show the control 

system restoring amplitude after each impact with free-mass, 

and allow a first estimate of the free-mass oscillation frequency 

(125Hz-250Hz) to be made. In terms of the position of the horn 

tip, the simulated results show a range of -2mm to +0.3mm due 

to collisions with the free-mass. 

 
Fig. 10.  Simulated and recorded velocities and displacements of the free-mass: 
(a) simulated velocity, (b) simulated displacement, (c) measured velocity, (d) 

measured displacement 

Experimentally, a range of -1mm to +0.2mm is calculated 

based on the laser vibrometer’s output. An estimated frequency 

range (10Hz-25Hz) may also be made which represents the 

solid body mode of the transducer and horn. 

Fig. 10 presents the simulated and measured free-mass 

velocities and displacements.  

The free-mass velocities, which are crucial to the 

performance and life of the drill, are within a -6m/s to +6m/s 

range. Despite the apparently chaotic characteristics of the 

velocity response, the gross behavior of the velocity traces does 

appear to contain consistent 125Hz-250Hz oscillation. The 

simulated results estimate a displacement range of -2mm to 

+2.5mm while, experimentally, a range of -2mm to +0.5mm is 

measured. 

Fig. 11 exhibits the simulated and measured velocities and 

displacements of the drill-bit.  

The simulated and experimental velocity graphs for both 

exhibit impact velocities of approximately 1.5m/s. As 



 10 

previously, the frequency can be estimated: the drill-bit 

percussion (into free-air) is at around 100Hz-300Hz. The 

simulated displacement is about -1.5mm to +3mm and the 

experimental data lies in the -1.2mm to +1.6mm range. 

 

Fig. 11.  Simulated and recorded velocities and displacements of the drill-bit: 

(a) simulated velocity, (b) simulated displacement, (c) measured velocity, (d) 
measured displacement 

 

Fig. 12.  Spectra of simulated and measured displacements: (a) simulated horn 

tip, (b) measured horn tip, (c) simulated free-mass, (d) measured free-mass, (e) 
simulated drill-bit, (f) measured drill-bit 

In order to improve on the frequency accuracy estimated 

from the previous three figures, their displacements frequency 

spectra are presented in Fig. 12. Peaks are highlighted in red 

circles and TABLE V is created accordingly. 

TABLE V 
FREQUENCY PEAKS OF SIMULATION AND EXPERIMENT 

     Part      Simulated resonant frequency (Hz) 

          Horn Tip    14.7   136.7   9120   20010   

     Free-Mass   14.7   133.8         -           -  

     Drill-Bit    14.7   136.5         -            - 

     Part      Measured resonant frequency (Hz) 

          Horn Tip    15.8   139   10400   19840  

     Free-Mass   16.6   143.8       -        -  

     Drill-Bit    13.7   142.1      -        - 

The dominant behaviors are clearly at around 15Hz 

(transducer and horn solid body motion) and  140Hz (free-mass 

and drill-bit percussion). Other peaks are associated with the 

ultrasonic vibration, its harmonics, and other bending and 

torsional modes. 

 

Fig. 13.  Simulated and measured voltage to piezoceramic rings: (a) simulated 

AC voltage, (b) measured AC voltage, (c) simulated rms voltage, (d) measured 

rms voltage 

Turning to the electrical behavior, Fig. 13 illustrates the 

voltage across the piezoceramic rings estimated from the 

simulation and measured using a differential probe. Both 

graphs show the alternating voltage signal of -500V to +500V, 

with the rms voltages climbing to approximately 150V as the 

drill system stabilizes in the first two seconds of operation. 

Note that these figures show a start-up transient, while the 

previous figures have been taken from the steady-state 

behaviors. A saturation function is introduced in the simulation 

to limit the level of supplied voltage to the piezoceramic rings, 

in order to be consistent with experimental measurements. 

B. Drill tool percussion against a steel impact plate 

The simulations and experiments reported in section A in 

section VI were repeated, but for percussion against a steel 

impact plate (with an external applied load). 

 

Fig. 14.  Simulated and measured velocities and displacements of the horn tip: 
(a) simulated velocity, (b) simulated displacement, (c) measured velocity, (d) 

measured displacement 
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The simulated and measured velocities and displacements of 

the horn tip are presented in Fig. 14. The velocity of the horn tip 

during percussion is estimated to be ±2.5m/s  from the 

simulation, which is slightly lower than the measured velocity 

of ±3.2m/s. In both cases, the velocity is lower than for the 

drill tool percussion in free-air, but both graphs still exhibit the 

restoration of velocity after each impact with free-mass. The 

free-mass oscillation frequency is still estimated from the 

graphs to be in the range of 125Hz-250Hz. The displacement of 

the horn tip shows a reasonably good agreement between 

simulation and experiment, with ranges of -2mm to 0mm and 

-1.5mm to 0mm. An estimate of the transducer and horn solid 

body motion frequency from these results is 20Hz-30Hz, a little 

higher than for the percussion in free-air case. 

 

Fig. 15.  Simulated and measured velocities and displacements of the 

free-mass: (a) simulated velocity, (b) simulated displacement, (c) measured 

velocity, (d) measured displacement 

Fig. 15 presents the simulated and measured free-mass 

velocities and displacements for percussion against a steel 

impact plate. 

In this case, the free-mass velocity has dropped to a -5m/s to 

+5m/s range. The oscillation frequency estimated from the 

graphs is slightly higher, at approximately 150Hz-300Hz. With 

regards to the calculated displacements, the results of both the 

simulation and experiment are consistently in the -2.5mm to 

0.8mm range. 

The predicted and measured velocities and displacements of 

the drill-bit are shown in Fig. 16. Both simulated and measured 

velocities present an impact value of around 1m/s, which is 

lower than seen during percussion in free-air, and the frequency 

is higher at around 200Hz-400Hz. With regards to the 

displacement, the simulation value ranges from -1.5mm to 

around +0.2mm. In contrast, the measurement value ranges 

from -0.7mm to +0.3mm. The causes to this mismatch are the 

noisy velocity signals of the experimental measurement, which 

gives rise to different values in displacement during integration, 

and friction between mechanical parts.  

Once again, the estimated frequency analysis carried out on 

the previous three figures may be improved by calculating the 

associated spectra, shown in Fig. 17. Peaks are highlighted in 

red, from which TABLE VI is created. In comparison with the 

drill tool percussion in free-air case, Fig. 12, the peaks in Fig. 

17 seem less prominent due to the introduction of a steel impact 

plate which is affecting the behaviour of the component. 

However, the trend can still be identified. 

 

Fig. 16.  Simulated and measured velocities and displacements of the drill-bit: 

(a) simulated velocity, (b) simulated displacement, (c) measured velocity, (d) 

measured displacement 

 

Fig. 17.  Spectra of simulated and measured displacements: (a) simulated horn 

tip, (b) measured horn tip, (c) simulated free-mass, (d) measured free-mass, (e) 
simulated drill-bit, (f) measured drill-bit 

TABLE VI 

FREQUENCY PEAKS OF SIMULATION AND EXPERIMENT 

     Part      Simulated resonant frequency (Hz) 

          Horn Tip    26.9       -   9129   20010   

     Free-Mass   26.9   177.7      -        -  

     Drill-Bit    26.9   177.3         -            - 

     Part      Measured resonant frequency (Hz) 

          Horn Tip    22.5       -   10400   19850  

     Free-Mass   22.1   157.2       -        -  

     Drill-Bit    27.9   175.5      -        - 

The transducer and horn solid body mode, that is 

superimposed on the ultrasonic motion, and the motions of all 

other parts of the drill stack, increase in frequency during 

percussion against a steel impact plate (the transducer and horn 

solid-body movement now exceeds 25Hz). However, the peaks 

are less prominent than in Fig. 12, especially for the 

displacements spectrum of  the free-mass and drill-bit where, 

instead, apparently chaotic motions predominate. 
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Fig. 18.  Simulated and measured supplied voltage to piezoceramic rings: (a) 

simulated AC voltage, (b) measured AC voltage, (c) simulated rms voltage, (d) 

measured rms voltage 

The electrical behavior, as shown in Fig. 18, illustrates that 

the system stabilizes over a few seconds, as before. However, 

due to energy being transferred into the steel impact plate 

during percussion, the steady-state rms voltage is now closer to 

180V. Again, in order to be consistent with the measured 

supplied voltage to the piezoceramic rings, a saturation 

function is used in the simulation to limit the voltage levels. 

C. Investigation of change in pre-load 

 

Fig. 19.  Supplied voltage rms and rate of effective impulse delivered above 

100N threshold during change of pre-load in springs: (a) voltage rms, (b) rate of 

effective impulse 

Throughout this study, the internal pre-load (the 

compression force between the springs) has been set at around 

10N to suppress springs rattling. By varying the pre-load in 

experiments, it is possible to compare the demand on voltage 

for percussion in free-air and hammering against a steel impact 

plate. It is apparent that a greater pre-load increases the required 

voltage, which is used to overcome a higher dynamic force in 

the springs during percussion. Furthermore, for pre-load values 

higher than about 25N, there is a significant reduction in the 

rate of the effective impulse delivery.  

VII. CONCLUSION 

This paper presents the results of an integrated 

electrical/mechanical model of an ultrasonic-percussive stack, 

which has been used to obtain some overall design rules (such 

as the advantage of stiffer internal springs under light pre-load).  

In the parameters space considered, free-masses ranging 

from 5g to 7g perform equally well in the delivered effective 

impulse. A drill-bit mass increasing from 80g to 240g hardly 

affects the delivered effective impulse, showing a slight 

ascending trend which is encouraging for deeper drilling 

applications necessitating multiple drillstring sections. A drop 

in the solid body motion frequency is observed for an increase 

in the transducer mass. However, the effective impulse is 

slightly increased, due to a higher percussion force generated 

against the steel impact plate. Nonetheless, a significant 

increase in the assembly mass is generally undesirable as it 

dissatisfies the lighter mass and lower power budget 

requirements for space missions.  

From the investigation of the applied pre-load, experiments 

suggest that the value should not exceed 25N because of the 

increase in power consumption, decrease in the effective 

impulse delivered, and increase in the pressure between horn 

tip, free-mass and drill-bit, which is likely to accelerate wear 

and damage of parts and deteriorate the percussion 

performance. 
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