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Abstract
Search behavior is often used as a proxy for foraging effort within studies of animal 
movement, despite it being only one part of the foraging process, which also includes 
prey capture. While methods for validating prey capture exist, many studies rely solely 
on behavioral annotation of animal movement data to identify search and infer prey 
capture attempts. However, the degree to which search correlates with prey capture 
is largely untested. This study applied seven behavioral annotation methods to identify 
search behavior from GPS tracks of northern gannets (Morus bassanus), and compared 
outputs to the occurrence of dives recorded by simultaneously deployed time–depth 
recorders. We tested how behavioral annotation methods vary in their ability to iden-
tify search behavior leading to dive events. There was considerable variation in the 
number of dives occurring within search areas across methods. Hidden Markov mod-
els proved to be the most successful, with 81% of all dives occurring within areas 
identified as search. k-Means clustering and first passage time had the highest rates of 
dives occurring outside identified search behavior. First passage time and hidden 
Markov models had the lowest rates of false positives, identifying fewer search areas 
with no dives. All behavioral annotation methods had advantages and drawbacks in 
terms of the complexity of analysis and ability to reflect prey capture events while 
minimizing the number of false positives and false negatives. We used these results, 
with consideration of analytical difficulty, to provide advice on the most appropriate 
methods for use where prey capture behavior is not available. This study highlights a 
need to critically assess and carefully choose a behavioral annotation method suitable 
for the research question being addressed, or resulting species management frame-
works established.
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1  | INTRODUCTION

Movement is major part of a species’ ecology. The underlying pro-
cesses driving the movement of individuals and populations are stud-
ied widely; however, it is often unfeasible to directly observe animals 
through constant effort. As a result, movement studies have focussed 
on remote detection of animals through technologies such as GPS and 
satellite tracking. The development, miniaturization, and reduction 
of cost in remote tracking technologies have enabled its widespread 
use in ecological studies (Cagnacci, Boitani, Powell, & Boyce, 2010). 
Remote tracking enables behaviors to be inferred from an animals’ 
trajectory (Buchin, Driemel, Kreveld, & Sacristán, 2010), and has led 
to rapid advances in the understanding of species’ ecology (Nathan 
et al., 2008).

While movement patterns are often used to distinguish active 
phases from rest, or search behavior from traveling (van Beest & Milner, 
2013; Dzialak, Olson, Webb, Harju, & Winstead, 2015), identifying 
these behavioral states typically relies on more complicated modeling 
procedures to detect potential underlying mechanisms within behav-
ior identification (Jonsen, Myers, & James, 2006; Kerk et al., 2015). 
Considerable progress has been made in developing methods that can 
categorize behaviors based on simple movement metrics (Edelhoff, 
Signer, & Balkenhol, 2016). These methods commonly identify mul-
tiple states and ascribe these to predefined behaviors such as search, 
rest, or travel (Evans, Dall, Bolton, Owen, & Votier, 2015; Guilford 
et al., 2008; Hamer, Phillips, Wanless, Harris, & Wood, 2000; King, 
Glahn, & Andrews, 1995; Palmer & Woinarski, 1999; Shepard, Ross, 
& Portugal, 2016; Weimerskirch et al., 2006). However, Gurarie et al. 
(2016) argued for closer and more detailed exploratory analysis of 
movement data to prevent mis-specification of behavior, suggesting 
that the strengths of particular methods need to be more carefully 
considered so they are suitably attuned to the specific questions being 
asked by researchers.

Within conservation management, there is an increasing reliance 
on identifying space use by species of conservation concern (Allen 
& Singh, 2016). For example, within the marine environment, forag-
ing areas could be considered for the protection and management of 
seabird species (Lascelles et al., 2016). The use of these approaches 
may contribute to the establishment of conservation measures includ-
ing designation of marine protected areas (Grüss, Kaplan, Guénette, 
Roberts, & Botsford, 2011). Foraging activity is a key component in 
an animal’s time and energy budget, and it is well established that an-
imals in environments with patchy resources must engage in search 
behavior to optimize their foraging effort in terms of maximizing prey 
encounters (MacArthur & Pianka, 1966). Therefore, foraging can be 
considered a two-part system, containing both search and prey cap-
ture attempts (Charnov, 1976). Understanding the interaction between 
search and prey capture is a key component in optimal foraging theory 
(Pyke, 1984). For example, while there has been much work identifying 
area-restricted search (Knell & Codling, 2012), there is little informa-
tion on the relationship between search and prey capture. Validation 
of search behavior is difficult particularly in animals where direct ob-
servation is challenging, such as those in many biotelemetry studies. 

Many movement studies use path segmentation techniques to detect 
search behavior; however, many of these are unvalidated estimates of 
search due to the lack of a second data stream for ground-truthing. 
Validation of prey capture attempts has been achieved using animal-
borne cameras (Bicknell, Godley, Sheehan, Votier, & Witt, 2016; Moll, 
Millspaugh, Beringer, Sartwell, & He, 2007), time–depth recorders 
(Dean et al., 2012; Shoji et al., 2015; Tinker, Costa, Estes, & Wieringa, 
2007), stomach loggers (Weimerskirch, Gault, & Cherel, 2005), and 
accelerometers (Hansen, Lascelles, Keene, Adams, & Thomson, 2007; 
Sato et al., 2007) among others. However, many of these technologies 
are either expensive resulting in small sample sizes or are too large 
to deploy on animals in combination with location loggers without 
significant adverse impacts (Barron, Brawn, & Weatherhead, 2010; 
Hammerschlag, Gallagher, & Lazarre, 2011; Vandenabeele, Shepard, 
Grogan, & Wilson, 2012). As a result, many studies still rely on the 
sole use of location data and path segmentation approaches to iden-
tify behavior. The determination of behavior from movement data 
is an active area of research and the subject of many reviews (Allen, 
Metaxas, & Snelgrove, 2017; Edelhoff et al., 2016; Hays et al., 2016; 
Jacoby, Brooks, Croft, & Sims, 2012). There are several different meth-
ods for undertaking behavioral annotation or detecting important 
areas of high use by animals. Frequently used are movement pattern 
description and process identification. Methods based around move-
ment pattern description are often aimed at trying to split between 
different behavioral periods or to locate changes in behavior (Edelhoff 
et al., 2016). Process identification aims to take things a step further 
and concentrates on methods that are focussed toward being able to 
describe the underlying processes, whether extrinsic or intrinsic, and 
describe how these inform behavior.

Northern gannets (Morus bassanus), hereafter gannets, are a well-
studied species that occur principally in the temperate shelf seas of 
the North Atlantic during the breeding season. Gannets are visual 
predators (Cronin, 2012) and undertake plunge-diving from height, 
entering the water at speeds of up to 24 m/s (Chang et al., 2016). 
Prior to diving, gannets typically slow their flight and increase their 
path sinuosity (Wakefield et al., 2013; Bodey et al., 2014; Patrick et al., 
2014; Warwick-Evans et al., 2015). The relationship between slow 
speed during search and prey capture attempts has been established 
both theoretically (Bartoń & Hovestadt, 2013; Benhamou, 2004) 
and empirically in a variety of mobile marine and terrestrial species 
(Anderson & Lindzey, 2003; Byrne & Chamberlain, 2012; Edwards, 
Quinn, Wakefield, Miller, & Thompson, 2013; McCarthy, Heppell, 
Royer, Freitas, & Dellinger, 2010; Towner et al., 2016; Wakefield et al., 
2013; Williams et al., 2014). Such changes in movement and clearly 
identifiable prey capture attempts in the form of dives (Cleasby et al., 
2015; Garthe, Benvenuti, & Montevecchi, 2000), as well as their ability 
to carry multiple devices and ease of recapture, make gannets a suit-
able model species to explore the ability of movement-based analysis 
to identify search behavior and prey capture attempts.

In this study, we apply and compare seven methodologies covering 
movement pattern description and process identification, to predict 
search behavior in gannets using GPS location data. If search behavior 
is a precursor to prey capture attempts, dives will occur primarily within 
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areas identified as search. With consideration given to opportunistic 
foraging, we hypothesize that more successful methods of search clas-
sification will contain more true positives (dive events occurring within 
identified search), fewer false positives (search containing no dives), 
and fewer false negatives (dives occurring outside identified search 
behavior). Using this framework, we will also provide recommenda-
tions on the appropriate use of methodological approaches.

2  | MATERIALS AND METHODS

2.1 | Data collection

Breeding adults at two island colonies, Great Saltee, Co. Wexford, 
Ireland (52.11286, −6.62189) and Bass Rock, Scotland, UK (56.07672,  
−2.64139), were tracked while attending 2 to 7-week-old chicks over 
a 38-day period from late June to early August 2011. Nine birds at 
Great Saltee and eight birds at Bass Rock were caught using a metal 
crook or wire noose fitted to a 4 to 6-m pole and fitted with GPS log-
gers coupled with time–depth recorders (TDRs). GPS loggers (i-gotU 
GT-200, Mobile Action Technology Inc., Taipei, Taiwan, 37 g), sealed 
in heatshrink plastic, recorded locations every 2 min. CEFAS G5 TDRs 
(CEFAS Technology, Lowestoft, UK, 2.5 g) were deployed using the 
fast-log dive sensor at 4 Hz and used to identify dive events based 
on a 1 m depth threshold being exceeded, hereafter TDR dives. This 
was to ensure dives reflected prey capture attempts (median dive 
depth of 4.6 m in plunge-diving gannets and 8 m when pursuit div-
ing (Garthe et al., 2000) rather than other surface-related activities 
such as resting, washing, or preening. Devices were attached follow-
ing (Grémillet et al., 2004), and involved affixing loggers ventrally 
to 2–4 central tail feathers using strips of waterproof Tesa© tape. 
Total instrument mass was ≤2% of body mass, below the maximum 
recommended for seabird biologging studies (Phillips, Xavier, & 
Croxall, 2003), and tag position was considered to minimally impede 
gannets aerodynamically or hydrodynamically (Vandenabeele et al., 
2012). Deployment and retrieval handling times were approximately  
10 min.

2.2 | Data processing

GPS tracks were processed using the AdehabitatLT package (Calenge, 
2011) in the R statistical Framework. Location data were transformed 
into Cartesian coordinates using a Universal Transverse Mercator 
(UTM) 30N projection before calculating step length and turning an-
gles. Although GPS tags were programmed to take locations every 
2 min, if there was no available GPS signal (because a bird was div-
ing for example), locations may not have been exactly two minutes 
apart, and so tracks were standardized through linear interpolation to 
a two-minute interval. Speed, step length, turning angle, and distance 
from colony were calculated for every point along a bird’s track. Points 
within 5 km of the colony were removed to avoid potential locations 
associated with colony rafting and bathing (Carter et al., 2016), as 
were those occurring at night (between civil sunset and sunrise) be-
cause gannets are visual diurnal foragers (Nelson, 2002). TDR dives 
were split into dive events and produced a single timestamp point rep-
resenting the start of any dive event over 1 m for appending to tracks 
following behavioral classification.

We applied a suite of methods commonly used to identify search-
ing or infer foraging behaviors from movement data, summarized in 
Table 1. The methods are not considered exhaustive, but represent 
a range of approaches covering movement pattern description and 
process identification (Edelhoff et al., 2016). Movement pattern de-
scription approaches include kernel density, first passage time (FPT), 
and speed/tortuosity thresholds, while process identification tech-
niques applied covered k-means clustering and two state-space mod-
els, hidden Markov models (HMM) and effective maximization binary 
clustering (EMbC). The two forms of state-space models were used 
to represent diverging classes of state-space model; maximum likeli-
hood methods (EMbC), and Bayesian Monte Carlo methods (HMM) 
(Patterson, Thomas, Wilcox, Ovaskainen, & Matthiopoulos, 2008). 
While not predicting/identifying search behavior directly, we also 
applied machine learning (generalized boosted regression models) to 
predict dives from track metrics rather than search behavior. We fol-
lowed the standard methodology for each technique outlined in the 

TABLE  1 Summary of common 
methodological approaches to identifying 
search and foraging behavior in movement 
data. While all methods require validation 
data to assess how well the method works, 
it is not necessarily required to implement 
the method

Method
Analysis 
complexity

Requires 
validation 
data

Suitable for investigating 
relationships with 
environmental variables

Immediately 
applicable to 
other species/
locations

Machine 
learning

High & large data 
requirement

Yes Yes No

k-Means Low No Yes Yes

Thresholds Medium Yes Yes No

FPT Medium No Yes Yes

HMM Medium Noa Yes Yes

Kernel 
density

Low No Dependent on scale Yes

EMbC Low No Yes Yes

aHMM do not require validation data in this context, but can employ if desired.
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published literature, and provide references for detailed guidance on 
applying each approach.

Methods of predicting search behavior routinely identify chains of 
search in successive locations. Chains can be a single point in length 
or may include multiple consecutive points along a movement track 
(see Figure 1). Given that in gannets, individual prey capture attempts 
(dives) occur at discrete locations/times, we extracted metrics of dives 
occurring within search, dives outside of search, and search containing 
no dive. Data from the two colonies were processed independently to 
account for potential differences in movement metrics associated with 
differences in local habitat and prey availability.

2.3 | Kernel density

Time in space is considered to be a good proxy for foraging effort 
(Warwick-Evans et al., 2015). GPS locations (excluding locations 
within 5 km of the colony and locations at night) were used to esti-
mate kernel densities in ArcMap 10.2, which uses a kernel smoothing 
function based on the quartic kernel function by Silverman (1986), and 
had a bandwidth/search distance of 10 km. This was used to create a 
kernel density square grid with sides of 10 km. The method produces 
a 10 km2 grid with relative intensity of both TDR dives and GPS tracks. 
Dutilleul’s modified spatial t test (Dutilleul, Clifford, Richardson, & 
Hemon, 1993) was used to determine the spatial correlation between 
the intensity of dives and intensity of tracks, accounting for spatial 
autocorrelation in the data.

2.4 | First passage time

First passage time (FPT) analysis was undertaken following Fauchald 
and Tveraa (2003). Although tracks were rediscretized in time for 
all other analysis, FPT requires tracks to be redistributed in space to 
account for changes in bird speed, and so tracks were redistributed 
using linear interpolation to 500-m distances. Analysis was under-
taken using the AdehabitatLT package in R (Calenge, 2011). Based on 
the behavioral response ranges reported by Bodey et al. (2014) for 
gannets, circles of radii ranging from 50 m to 12,000 m were used to 
construct first passage time values. The maximum log-variance of first 
passage time values was then used to determine appropriate search 

radii for each individual bird. The slowest sextile of passage times was 
considered to be relatively higher intensity search behavior as used 
by Nordstrom, Battaile, Cotte, and Trites (2013), and also indicated 
in work by Hamer et al. (2009) following Fauchald and Tveraa (2003). 
Search radii were used to create an amalgamated area of search along 
an individual bird’s track, with GPS points along this track treated as 
“search” points. Although FPT can be used to determine nested lev-
els of area-restricted search (Hamer et al., 2009), we have considered 
only the highest levels of search behavior to maximize the number of 
dives potentially occurring within search.

2.5 | k-Means clustering

k-Means clustering is a method of vector quantization that aims to 
partition n observations into k clusters, and has been used to clus-
ter data points consistent with different behaviors (Jain, 2010). k-
Means clustering was undertaken using the MacQueen algorithm 
(MacQueen, 1967) on step length and turning angle between succes-
sive GPS locations. The optimum number of clusters was determined 
using the “elbow method” where the percentage of variance explained 
(the ratio of the between-group variance to the total variance) is plot-
ted as a function of the number of clusters and the point where addi-
tion of further clusters results in only marginal increases in explained 
variance (Ketchen & Shook, 1996). This resulted in three clusters, and 
these were then assigned behavioral states based on logical differ-
ences between the means of variables in each group. The cluster with 
largest step length and smallest tortuosity was defined as travel, short 
step length and intermediate tortuosity were considered consistent 
with rest, and intermediate step length and high tortuosity were con-
sidered consistent with search behavior following Zhang, O’Reilly, 
Perry, Taylor, and Dennis (2015).

2.6 | Speed–tortuosity thresholds

Speed–tortuosity thresholds from Wakefield et al. (2013) were ap-
plied to the data. These were developed based on prior knowledge 
of gannet foraging behavior and an iterative examination of plausi-
ble thresholds of movement indices from those initially suggested 
by Grémillet et al. (2004). Thresholds suggested by Wakefield et al. 
(2013) were applied as they were based on data from tracked gannets 
from a range of colonies, including the data analyzed in this study. 
Successive GPS locations were considered to represent search if they 
met any one of three conditions:

1.	 Tortuosity <0.9 and speed >1 m/s
2.	 Speed >1.5 m/s and <9 m/s
3.	 Tortuosity ≥0.9 and acceleration <−4 m/s2

Speed and acceleration were calculated between L−1 and L0 where L0 
is the focal point, while tortuosity is the ratio of the straight line to along 
the track distance between L−4 and L4. Criteria were defined based on 
GPS and TDR data from Bass Rock deployments used in this study and 
are therefore created from a priori information.

F IGURE  1 Conceptual diagram of locations through time 
identifying points of search behavior within the series that reveal 
search chains of differing lengths
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2.7 | Hidden Markov Models

Hidden Markov Models (HMM) are an example of state-space mod-
eling, where models are formed of two parts, an observable series and 
a nonobservable state sequence (Langrock et al., 2012). The observ-
able series, in this context, take the form of GPS relocations with con-
sequential step length and turning angle, while the nonobservable are 
behavioral states. HMM use a time series to determine what denotes 
the underlying states and the changes between them. The applica-
tion of state-switching models to movement data allows behavioral 
modes to be examined, while considering the high degree of autocor-
relation present in telemetry data (Patterson et al., 2008). When the 
observational error is low, hidden Markov models offer a more trac-
table approach to discretize behavioral modes from telemetry data 
than Bayesian approaches (Langrock et al., 2012). Using the R pack-
age moveHMM (Michelot, Langrock, & Patterson, 2016), the move-
ment of each individual along a foraging trip was classified into one of 
three underlying states by characterization of the distributions of step 
lengths and turning angles between consecutive locations. A three-
state model was a better fit to the data than a two-state model, and 
is consistent with previous work describing gannet movement (Bodey 
et al., 2014) as well as the identification of three states in EMbC and 
k-means clustering approaches within this study. Model iterations 
successfully converged to three states suggesting a good fit to the 
data. A gamma distribution was used to describe the step lengths, a 
von Mises distribution described the turning angles, and the Viterbi 
algorithm was used to estimate the most likely sequence of movement 
states to have generated the observations (Zucchini, MacDonald, & 
Langrock, 2016).

2.8 | Expectation–maximization binary clustering

Expectation–maximization binary clustering (EMbC) protocols are an 
unsupervised, multivariate example of a state-space modeling frame-
work that can be used for behavioral annotation of movement tra-
jectories, including search behavior (see Garriga, Palmer, Oltra, and 
Bartumeus (2016)). EMbC has been designed to be a simple method 
of analyzing movement data based on the geometry alone, and can 
behaviorally annotate movement data with minimal supervision. 
EMbC is a relatively modern technique that is gaining traction within 
movement ecology. It has previously been used in a variety of move-
ment studies, including exploring behavioral differences between dis-
tinct populations of the red-footed booby (Mendez et al., 2017) and 
coupling energy budgets with behavioral patterns under an optimal 
foraging framework (Louzao, Wiegand, Bartumeus, & Weimerskirch, 
2014). Analysis was undertaken using the EMbC package in R (Garriga 
& Bartumeus, 2015), using calculated velocities and turning angles to 
infer behavioral classifications.

2.9 | Machine learning

While the methods outlined above all identify search behavior, ma-
chine learning models are trained to specifically identify prey capture/

dive events based on track metrics. Analysis was undertaken using 
the Caret package in R (Kuhn, 2008) using generalized boosted regres-
sion models to account for zero-inflation (Elith, Leathwick, & Hastie, 
2008). Models were built using step length, speed, turning angle, hour 
of day, and tortuosity. Models were trained using 75% of the linked 
GPS/TDR dive data, with the remaining 25% of data kept for valida-
tion of predictions, and underwent cross-validation 500 times during 
the training procedure. By combining all individual animal’s data in this 
manner, we ensure that any intra-individual variation is accounted for 
in the modeling process. Receiver operator curves (ROCs) were cal-
culated (Fielding & Bell, 1997) to determine the model of best fit at 
each colony.

2.10 | Comparison of methods using TDR dives

In order to compare the predictive power of the seven methods out-
lined above in predicting areas in which dives occurred, TDR dive 
events were linked to GPS coordinates by matching the time/date 
stamps of both datasets for each individually tracked bird. To compare 
how well the methods capture dive events within areas of search, the 
proportion of dives within identified areas of search (true positive) as 
well as the number of search chains containing no dives (false posi-
tive) was calculated for FPT, k-means, thresholds, HMM, and EmbC. 
The correlation between kernel densities of GPS tracks and TDR dives 
was assessed using a Dutilleul’s modified spatial t test (Dutilleul et al., 
1993). This analysis provides a correlation coefficient across the spa-
tial extent of the tracked data to determine how well the two datasets 
correlate while accounting for spatial autocorrelation. Model perfor-
mance for machine learning was assessed using kappa values, a meas-
ure of variability explained by the model akin to R2 values, where 0 is 
equal to no relationship and 1 is equal to a perfect relationship as per 
Landis and Koch (1977). Further to this, a confusion matrix was calcu-
lated by running models on the remaining 25% test data to assess the 
number of correctly and incorrectly identified dives.

3  | RESULTS

Nine GPS & TDR combinations were deployed at Great Saltee, result-
ing in 31,716 locations after standardization to a two-minute interval. 
Eight GPS & TDR combinations were deployed at Bass Rock, resulting 
in 21,208 relocations when standardized. There were a total of 2,830 
TDR dives among the tracked birds at Great Saltee and 2,172 at Bass 
Rock. Examples of maps produced by methods and showing the loca-
tion of TDR dives can be seen in the Supplementary Materials (see 
Figs. S1–10).

FPT, k-means, EMbC, thresholds, and HMM all predict search 
rather than prey capture attempts per se. All methods predicted con-
siderable search effort across the tracking period (Table 2). FPT iden-
tified the longest contiguous chains of search behavior (mean 24.74 
locations/chain), followed by HMM (mean 8.58 locations/chain), 
speed and tortuosity thresholds (mean 4.57 locations/chain), and 
EMbC (mean 2.38 locations/chain). k-Means method identified the 
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most discrete search areas with the shortest chains (mean 3.08 loca-
tions/chain). Using Kendall’s tau correlation, there was a weak positive 
correlation between the length of search chains and the number of 
dives occurring within them (Table 3).

The performance of behavioral classification methods was as-
sessed by comparing the occurrence of TDR dives inside and outside 
of predicted search behavior (Table 2). HMM captured the highest 
proportion of TDR dives (Figure 2a) within search areas, and had the 
second lowest false-positive rate (Figure 2b). FPT had the longest 
identified search chains, but these actually captured the lowest num-
ber of dives across all methods (Table 2, Figure 2a). Despite the low 
true-positive rates, FPT had the lowest false-positive rate (Figure 2b). 
Thresholds and EMbC were comparatively similar in both the rates of 
true and false positives, while k-means clustering had the lowest true-
positive and highest false-positive rates of all methods tested.

Kernel density of GPS locations did not explicitly identify search 
behavior but identified “hot spots” of foraging corresponding to time 
spent in each 10 × 10 km grid cell, with a high proportion of time spent 
in the area surrounding colonies (Figure 3). Dutilleul’s modified spatial 
t test demonstrated a good correlation between the spatial distribu-
tion of TDR dives and time in space (Table 4), with the better correla-
tion (0.86) at Bass Rock. Machine learning models directly predicted 
the location of prey capture events. The models trained and tested 
on their own colony indicated only a fair or slight agreement within 
the data (following Landis and Koch, 1977) (Table 5). Furthermore, the 
confusion matrix (Table 6) showed that the predictive power of the 
models at both colonies was poor, only successfully predicting 22% of 
dives in the test dataset. When models built in one colony were ap-
plied to others, there was a further loss of predictive power, indicating 
that model structures and movement patterns between colonies are 
different (Table 4).

4  | DISCUSSION

Seven methods of classifying search behavior were compared to a 
validation dataset of TDR dive events in northern gannets to deter-
mine their ability to accurately capture the two components of forag-
ing activity—searching and prey encounter/capture. Across methods, 
the number of prey capture attempts (TDR dives) within search varied 
considerably, with the highest being captured by hidden Markov mod-
els (81%) and the lowest captured by first passage time and k-means 
clustering (30% and 31%, respectively). While HMM had the highest 
rate of capture of dive events, it also had one of the lowest rates of 
false positives, identifying fewer search chains where no dive was re-
corded. While this was still relatively high (60%), all methods produced 
high numbers of search chains that contained no TDR dives (range 
53%–76%). There was a weak correlation between chain length and 
number dives within a chain. While prey capture attempts will increase 
with trip and search duration (Sommerfeld, Kato, Ropert-Coudert, 
Garthe, & Hindell, 2013), the weak correlation represents some longer 
search chains containing relatively few prey capture attempts due to 
individuals searching over poor-quality areas, or simply that search T
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does not always result in prey capture attempts. These findings sug-
gests that significant effort is spent in unsuccessful search behavior, 
consistent with low prey encounter rates associated with foraging on 
spatially and temporally patchy prey resources (Weimerskirch, 2007).

While the spatial distribution of tracked gannets will encompass a 
variety of behaviors including foraging, travel, and rest periods, sim-
pler methodologies such as kernel density estimation of track data cor-
related well with kernel densities of TDR dive events. This supports the 
assertion that time in area is a good proxy for foraging effort (Grémillet 
et al. 2004; Warwick-Evans et al., 2015). However, this approach uti-
lizes larger areas of space beyond movement paths, and so it is not 
capable of identifying foraging in association with temporally ephem-
eral events or features that may directly change an animal’s movement 
trajectory. Within more process-driven approaches, FPT is arguably 
one of the most ubiquitous methods used to identify foraging areas in 
both terrestrial and marine systems (Battaile, Nordstrom, Liebsch, & 
Trites, 2015; Byrne & Chamberlain, 2012; Evans et al., 2015; Hamer 
et al., 2009; Le Corre, Dussault, & Côté, 2014). FPT captures search 
behavior across multiple spatial scales and is particularly noted for its 
ability to detect nested scales of area-restricted search (Hamer et al., 
2009). While we did not investigate nested scales of search, FPT, along 
with k-means clustering, had the lowest rate of dives occurring within 
broad areas of identified search. However, in contrast to k-means, 
FPT had the lowest rate of false positives (search containing no dives), 
likely as a result of identifying very large, contiguous areas of search. 
k-Means clustering and FPT had high rates of false negatives, with ap-
proximately 70% of all dives occurring outside identified search be-
havior. A certain amount of opportunistic foraging is anticipated in any 
wide-ranging predator (Montevecchi, Benvenuti, Garthe, Davoren, & 
Fifield, 2009), resulting in dive events occurring outside classical pat-
terns of search movement. However, the high rate of dives occurring 
outside search as defined by FPT and k-means suggests that either the 
majority of prey capture attempts occur opportunistically or that the 
scale of ARS changes spatially, resulting in search behavior associated 
with dives being missed.

Speed–tortuosity thresholds “captured” 68% of TDR dives within 
areas identified as search. There is evidence to suggest that humans 
are more capable than machines at pattern recognition when pre-
sented with limited data (Samal & Lyengar, 1992). It is therefore 
unsurprising that thresholds performed well considering that they 
were constructed based on prior knowledge of foraging behavior 
and iterative examination of thresholds against a validation dataset 

in gannets (Wakefield et al., 2013). The relatively high rates of false 
positives (66% of search chains containing no TDR dive) were within 
the spread of values for other methods, highlighting significant ef-
fort spent searching for prey interspersed with relatively few prey 
encounters.

The state-space modeling framework has been acknowledged as 
particularly useful in movement ecology (Patterson et al., 2008), and 
is rapidly expanding within path segmentation techniques (Michelot 
et al., 2016; Roberts & Rosenthal, 2004). Both the EMbC and HMM 
approaches model the changes in step length and turning angle 
through time and space to annotate the trajectory of an animal with 
behavioral states (Garriga et al., 2016; Michelot et al., 2016). EMbC 
protocols resulted in shorter search chains that encapsulated 49% of 
all dive events, while HMM identified longer chains of search that cap-
tured the highest number of dives (81%) of any method. While HMM 
defined the highest number of points as search across all methods, 
it also had one of the lowest rates of false positives. Less than 20% 
of dives occurred outside of search. This would be more consistent 
with opportunistic foraging and provides further empirical evidence 
of search behavior leading to prey capture attempts (Dias, Granadeiro, 
& Palmeirim, 2009; Weimerskirch, Pinaud, Pawlowski, & Bost, 2007). 
The high number of shorter search chains identified by EMbC, coupled 
with the fact that it is possible to link state transitions to environmen-
tal covariates in a HMM framework, suggests that both these meth-
ods may also be suitable for or investigating behavioral response to 
ephemeral environmental cues.

Regional differences in habitat and prey, as well as inter-  and 
intraspecific competition are likely to influence the way an animal 
forages (Huig, Buijs, & Kleyheeg, 2016; Schultz, 1983; Zach & Falls, 
1979). To account for this, the colonies were treated independently 
during analysis. Machine learning did highlight slight differences 
between colonies in the movement metrics considered to be of 
most predictive power, suggesting local differences in movement 
associated with foraging and search. Machine learning was the only 
method that directly predicted prey capture events rather than 
search behavior. While the explanatory power of the models was 
deemed to be satisfactory, the predictive ability of models was poor, 
only correctly identifying 22% of dives in the test dataset. The suc-
cess of this method may have been limited by the available sample 
size. As a powerful tool, machine learning approaches do require 
large amounts of data, are computationally complex, and require a 
priori knowledge of dive events to train the model. However, ma-
chine learning protocols are still being developed within ecological 
research, and such data mining remains a challenge for accurate 
classification (Hochachka et al., 2007).

An interesting consideration throughout the methods presented, 
here, is the ability to identify multiple behavioral states. HMM, k-
means, and EMbC are capable of identifying behavior consistent with 
rest within the tracking period (typically very low speed and a medium-
to-high tortuosity values). In this context, kernel density, FPT, speed–
tortuosity thresholds, and machine learning did not identify periods 
of rest. The majority of behavioral annotation relies on the principle 
of animals slowing down and paths becoming more tortuous when 

TABLE  3 Kendall’s tau correlation between search chain length 
and number of dives contained within each chain

Method
Correlation 
(tau) p Value Z statistic

FPT 0.43 <.01 12.67

k-Means clustering 0.30 <.01 21.76

Thresholds 0.45 <.01 33.72

HMM 0.47 <.01 23.79

EMbC 0.39 <.01 31.29
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searching (Bartoń & Hovestadt, 2013; Benhamou, 2004). However, 
slowing down and turning more could also be an indication of rest 
behavior, especially when considering potential error from closely 
positioned GPS relocations (Hurford, 2009; Jerde & Visscher, 2005). 
The ability to exclude a period that closely resembles search patterns 
could have the potential to reduce false-positive periods of search, 
and we accounted for this as much as possible by removing locations 
in proximity to the colony as well as locations occurring at night before 
comparing methods. While not directly assigning a rest period, it is 

F IGURE  2 Proportion of (a) TDR dives 
occurring within ‘search” behavior (true 
positives) and (b) search chains containing 
no TDR dives (false positives) using EMbC, 
FPT, HMM, k-means, and speed–tortuosity 
thresholds

F IGURE  3 Kernel densities of gannet 
tracks at both Great Saltee and Bass Rock 
for (a) dive locations and (b) individual bird 
tracks. Scale is of relative time in space 
across the spatial boundary of 10 km 
throughout the tracking area

(a) (b)

TABLE  4 Dutilleul’s correlation between kernel densities of all 
GPS locations and confirmed dive locations

Colony Correlation p Value F statistic
Degrees of 
freedom

Great Saltee 0.79 <.01 123.37 69.57

Bass Rock 0.87 <.01 991.88 329.90

TABLE  5 Kappa values for machine learning models where 
models developed using colony-specific data are applied at the 
colony from which training data were taken and at a different colony. 
Low values for models trained at one colony applied to the other 
colony suggest very poor model fit

Model trained

Model applied

Great Saltee Bass Rock

Great Saltee 0.2456 −0.0006757

Bass Rock 0.02792 0.1885

TABLE  6 Confusion matrix table totals of predictions made 
across machine learning models at both Great Saltee and Bass Rock

Predicted result

Reference (true value) in test 
data set

Dive No dive

Dive 222 258

No dive 779 5,332
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important to note that speed–tortuosity thresholds could be adapted 
to include the annotation of rest and travel, as well as specific search 
behavior. In a similar fashion, machine learning protocols could also be 
applied to predict behaviors other than diving.

Careful choices must be made in the selection and application 
of behavioral classification methods when inferring foraging. While 
all methods tested generally supported the hypothesis that search 
behavior leads to prey encounter and subsequent prey capture at-
tempts in a wide-ranging pelagic predator, there was considerable 
variation in the degree to which this was noted. The HMM method 
produced estimates of foraging behavior that most effectively en-
capsulated both search and prey capture components of foraging. 
As such, it would seem a sensible recommendation that HMM be 
used when identifying foraging (including both search and prey 
capture) areas is a priority. Across methods, rates of false negatives 
(dives occurring outside of search behavior) ranged from 19% to 
70%. While some of this may be attributed to opportunistic feeding 
outside of search behavior, methods with high rates of false nega-
tives suggest that care should be taken when using behavioral clas-
sification methods. That animals spend considerable time actively 
searching for prey, while prey capture occurs largely outside of this 
activity seems improbable, and poor classification of behaviors can 
have implications when considering time–energy budgets and sub-
sequent reproductive success or survival. Methods such as HMM, 
EMbC, and thresholds had the lowest rates of dives occurring out-
side of search. These methods may be more attuned to capturing 
dive events and therefore represent a more inclusive definition of 
foraging, while FPT and k-means clustering may be more general in 
their identification of search. Investigating the differences between 
methods may lead to increased understanding of the environmental 
cues used by predators to initiate search and prey capture as well as 
the scales at which these cues occur. Nevertheless, we reiterate the 
need for detailed exploratory analysis of movement data to prevent 
mis-specification of behavior (Gurarie et al. (2016)) and argue for 
methods to be used based on suitability, and the questions being 
asked by researchers.
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