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We report the first lattice QCD calculation of the form factors for the standard model tree-level decay
Bs → Klν. In combination with future measurement, this calculation will provide an alternative exclusive
semileptonic determination of jVubj. We compare our results with previous model calculations, make
predictions for differential decay rates and branching fractions, and predict the ratio of differential
branching fractions between Bs → Kτν and Bs → Kμν. We also present standard model predictions for
differential decay rate forward-backward asymmetries and polarization fractions and calculate potentially
useful ratios of Bs → K form factors with those of the fictitious Bs → ηs decay. Our lattice simulations
utilize nonrelativistic QCD b and highly improved staggered light quarks on a subset of the MILC
Collaboration 2þ 1 asqtad gauge configurations, including two lattice spacings and a range of light quark
masses.
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I. INTRODUCTION

The decay Bs → Klν occurs at tree level in the standard
model via the flavor-changing charged-current b → u
transition, making it an alternative to B → πlν in the
determination of jVubj from exclusive semileptonic decays.
The difference in these processes, a spectator strange quark
in Bs → Klν vs a spectator down quark in B → πlν, is
beneficial for lattice QCD simulations, because it improves
the ratio of signal to noise. Though this process has not yet
been observed, its measurement is planned at LHCb and is
possible during an ϒð5SÞ run at BelleII. This provides a
prediction opportunity for lattice QCD.
In addition to the calculation of form factors for Bs → K,

we also calculate their ratios with form factors for the
fictitious Bs → ηs decay. Such ratios are essentially free of
our largest systematic error, perturbative matching. In
combination with a future calculation of Bs → ηs using a
highly improved staggered (HISQ) b quark, these ratios
would yield a nonperturbative evaluation of the matching
factor for the b → u current with nonrelativistic QCD
(NRQCD) b quark. This matching factor would be appli-
cable to Bs → Klν and B → πlν simulations using
NRQCD b quarks.
To include correlations among the data for both decays,

correlation function fits must include vast amounts of
correlated data. To make such fits feasible, we have
developed a new technique, called chaining, discussed in
Appendix A. In addition, the use of marginalization
techniques developed in Ref. [1] significantly reduces
the time required for the fits.

The chiral, continuum, and kinematic extrapolations are
performed simultaneously using the modified z expansion
[2,3] with the chiral logarithmic corrections fixed by the
results of hard pion chiral perturbation theory (HPChPT)
[4,5]. The factorization of chiral corrections and kinemat-
ics, as found at one-loop order by HPChPT, suggests the
modified z expansion is a natural choice for carrying out
this simultaneous extrapolation. We refer to the combina-
tion of HPChPT chiral logarithmic corrections and the
modified z expansion as the HPChPT z expansion.

II. FORM FACTORS AND MATRIX ELEMENTS

The vector hadronic matrix element is parametrized by
the scalar and vector form factors f0;þ

hKjVμjBsi ¼ fþ

�
pμ
Bs
þ pμ

K −
M2

Bs
−M2

K

q2
qμ
�

þ f0
M2

Bs
−M2

K

q2
qμ; ð1Þ

where Vμ ¼ ūγμb and qμ ¼ pμ
Bs
− pμ

K . At intermediate
stages of the calculation we recast f0;þ in terms of the
more convenient form factors f∥;⊥,

hKjVμjBsi ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MBs

q �
pμ
Bs

MBs

f∥ þ pμ
⊥f⊥

�
; ð2Þ

where pμ
⊥ ¼ pμ

K − pμ
Bs
ðpK · pBs

Þ=M2
Bs
. In the Bs meson

rest frame, the form factors f∥;⊥ are simply related to the
temporal and spatial components of the hadronic vector
matrix elements,*bouchard.18@osu.edu
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hKjV0jBsi ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MBs

q
f∥; ð3Þ

hKjVkjBsi ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MBs

q
pk
Kf⊥: ð4Þ

The scalar and vector form factors are related to f∥;⊥ by

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MBs

p
M2

Bs
−M2

K
½ðMBs

− EKÞf∥ þ p2
Kf⊥�; ð5Þ

fþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2MBs

p ½f∥ þ ðMBs
− EKÞf⊥�; ð6Þ

where pK is the kaon three-momentum. This discussion
generalizes in a straightforward way for the Bs → ηs matrix
elements.

III. SIMULATION

Ensemble averages are performed with the MILC
Collaboration 2þ 1 asqtad gauge configurations [6] listed
in Table I. Valence quarks in our simulation are NRQCD
[7] b quarks, tuned in Ref. [8], and HISQ [9] light and s
quarks, the propagators for which were generated in
Refs. [2,3]. Valence quark masses for each ensemble used
in the simulations are collected in Table I and correspond to
pion masses ranging from, approximately, 260 to 500 MeV.
Heavy-light Bs meson bilinears Φα

Bs
are built from

NRQCD b and HISQ s quarks (for details see Ref. [8]),
and light-light kaon (and similarly for the ηs) bilinears ΦK
are built from HISQ light and s quarks (for details see
Ref. [2]). From these bilinears we build two and three point
correlation function data,

Cαβ
Bs
ðt0; tÞ ¼

1

L3

X
x;y

hΦβ
Bs
ðt; yÞΦα†

Bs
ðt0;xÞi; ð7Þ

CK;pðt0; tÞ ¼
1

L3

X
x;y

eip·ðx−yÞhΦKðt; yÞΦ†
Kðt0;xÞi; ð8Þ

Cα
J;pðt0; t; TÞ ¼

1

L3

X
x;y;z

eip·ðz−xÞ

× hΦKðt0 þ T;xÞJðt; zÞΦα†
Bs
ðt0; yÞi; ð9Þ

where indices α; β specify b-quark smearing. We generate
data for both a local and Gaussian smeared b quark, with
smearing function ϕ introduced via the replacementP

y →
P

y;y0ϕðy0 − yÞ in Eqs. (7) and (9). Three point
and daughter meson two point correlation function data are
generated at four daughter meson momenta, corresponding
to pL ∈ 2πfð000Þ; ð100Þ; ð110Þ; ð111Þg. In three point
data, these momenta are inserted at x in Fig. 1. The sum
over x in Eqs. (8) and (9) is performed using random wall
sources with U(1) phases ξ, i.e.

P
x →

P
x;x0ξðxÞξðx0Þ. In

the three point correlator a Bs meson source is inserted at
time slice t0, selected at random on each configuration to
reduce autocorrelations. The current J is inserted at time
slices t such that t0 ≤ t ≤ t0 þ T and the daughter meson is
annihilated at time slice t0 þ T. Prior to performing the fits,
all data are shifted to a common t0 ¼ 0. This three point
correlator setup is depicted in Fig. 1. Additional details
regarding the two and three point correlation function
generation can be found in Ref. [10].
The flavor-changing current J is an effective lattice

vector current Vμ corrected throughz Oðαs;ΛQCD=mb;
αs=ðambÞÞ. The lattice currents that contribute through
this order are

TABLE I. Left to right: labels for the ensembles used in this analysis; lattice volume; inverse lattice spacing in r1 units; light/strange
sea-quark masses; tadpole improvement factor u0 ¼ hplaquettei¼; number of configurations; number of time sources; valence u-quark
mass; valence s-quark mass; b-quark mass; and the spin-averaged bb̄ ground state energies used to relate our Bs meson simulation
energies to their physical values.

Ensemble L3 × Nt r1=a au0msea u0 Nconf Ntsrc amu ams amb aEsim
bb̄

C1 243 × 64 2.647(3) 0.005=0.05 0.8678 1200 2 0.0070 0.0489 2.650 0.28356(15)
C2 203 × 64 2.618(3) 0.01=0.05 0.8677 1200 2 0.0123 0.0492 2.688 0.28323(18)
C3 203 × 64 2.644(3) 0.02=0.05 0.8688 600 2 0.0246 0.0491 2.650 0.27897(20)
F1 283 × 96 3.699(3) 0.0062=0.031 0.8782 1200 4 0.00674 0.0337 1.832 0.25653(14)
F2 283 × 96 3.712(4) 0.0124=0.031 0.8788 600 4 0.01350 0.0336 1.826 0.25558(28)

FIG. 1. Setup for three point correlator data generation.
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Vð0Þ
μ ¼ Ψ̄uγμΨb; ð10Þ

Vð1Þ
μ ¼ −

1

2amb
Ψ̄uγμγ ·∇Ψb: ð11Þ

Matrix elements of the continuum vector current hVμi are
matched to those of the lattice vector current according to

hVμi ¼ ð1þ αsρ
ðVμÞ
0 ÞhVð0Þ

μ i þ hVð1Þ;sub
μ i; ð12Þ

where

hVð1Þ;sub
μ i≡ hVð1Þ

μ i − αsζ
Vμ

10 hVð0Þ
μ i: ð13Þ

The matching calculation is done to one loop using
massless HISQ lattice perturbation theory [11]. In imple-
menting the matching, we omit OðαsΛQCD=mbÞ contribu-
tions. Reference [12], which used asqtad valence quarks,
found contributions of this order to be negligible. In
Ref. [10], which used HISQ valence quarks, these con-
tributions to the temporal component of the vector current
were studied and again were found to be negligible. We
also omit OðΛQCD=mbÞ2 relativistic matching corrections.
These, and higher order, omitted contributions to the
matching result in our leading systematic error. An estimate
of this error, and its incorporation in our fit results, is
discussed in the following section.

IV. CORRELATION FUNCTION FITS

Two and three point correlation function fit Ansätze, and
the selection of priors closely follows the methods of
Ref. [10]. Two point Bs data are fit to

Cαβ
Bs
ðtÞ ¼

XN−1

n¼0

bαðnÞbβðnÞ†e−E
simðnÞ
Bs

t

þ
X~N−1

m¼0

~bαðmÞ ~bβðmÞ†ð−1Þte− ~EsimðmÞ
Bs

t; ð14Þ

where tildes denote oscillating state contributions and Esim
Bs

is the simulated Bs energy. The physical ground state Bs
mass is related to the simulation ground state energy by

Eð0Þ
Bs

¼ Esimð0Þ
Bs

þ 1

2
ðMexpt

bb̄
− Esim

bb̄
Þ; ð15Þ

whereMexpt
bb̄

¼ 9.450ð4Þ GeV [13] is adjusted from experi-
ment to remove electromagnetic, ηb annihilation, and
charmed sea effects not present in our simulations, and
Esim
bb̄

is the spin-averaged energy of bb̄ states calculated on
the ensembles used in the simulation and listed in Table I.
The b-quark smearing is indicated by indices α; β. Kaon

and ηs two point correlator data are fit to an expression of
the form1

CpðtÞ ¼
XN−1

n¼0

jdðnÞp j2ðe−EðnÞt þ e−E
ðnÞðNt−tÞÞ

þ
X~N−1

m¼0

j ~dðmÞ
p j2ð−1Þtðe− ~EðmÞt þ e− ~EðmÞðNt−tÞÞ: ð16Þ

Results of two point fits satisfy the dispersion relation and
are stable with respect to variations in ðN; ~NÞ and the range
of time slices included in the fits, as demonstrated for kaon
two point data in Ref. [10].
Three point correlation function data are described by

Cα
J;pðt; TÞ

¼
XN−1

n;m¼0

dðnÞp Aðn;mÞ
J;p bαðmÞ†e−EðnÞðT−tÞe−E

simðmÞ
Bs

t

þ
XN−1

n¼0

X~N−1

m¼0

dðnÞp Bðn;mÞ
J;p

~bαðmÞ†ð−1Þte−EðnÞðT−tÞe− ~EsimðmÞ
Bs

t

þ
X~N−1

n¼0

XN−1

m¼0

~dðnÞp Cðn;mÞ
J;p bαðmÞ†ð−1ÞT−te− ~EðnÞðT−tÞe−E

simðmÞ
Bs

t

þ
X~N−1

n;m¼0

~dðnÞp Dðn;mÞ
J;p

~bαðmÞ†ð−1ÞTe− ~EðnÞðT−tÞe− ~EsimðmÞ
Bs

t; ð17Þ

where the three point amplitudes A, B, C, and D are
proportional to the hadronic matrix elements. The ground
state hadronic matrix element is obtained from Að0;0Þ,

4ffiffiffi
2

p Að0;0Þ
J;p ¼ a3hKð0Þ

p jJjBð0Þ
s iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a3Eð0Þ
K

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3Eð0Þ

Bs

q ; ð18Þ

where the factor of 4=
ffiffiffi
2

p
accounts for numerical factors

introduced in the simulation and associated with taste
averaging and HISQ inversion. In the correlator fits we
include data for several temporal separations T between the
mother and daughter mesons. On the coarse ensembles we
include data for T ¼ 13; 14; 15, while for the fine ensem-
bles we include T ¼ 23; 24 data.
On each ensemble we perform a simultaneous fit to two

and three point correlation function data for the Bs → K
and Bs → ηs decays, at all simulated momenta, including
both spatial and temporal currents, and for the temporal
separations listed above. This ensures correlations among
these data are accounted for in the analysis. However, fits to

1The zero momentum ηs has no oscillating state contributions
due to mass degeneracy of its valence quarks.
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such large data sets produce unwieldy data covariance
matrices and are typically not convergent, or require a
prohibitively large number of iterations. This can be
partially addressed by thinning the data, e.g., by the use
of singular value decomposition (SVD) cuts, but this
reduces the accuracy of the fits.
To address this problem we introduce a technique, which

we refer to as chaining, to simplify fits to very large data
sets. Consider a data set consisting of N correlators,
data¼ðcorrelator1;correlator2;…;correlatorNÞ. Before the
fit, all fit parameters are assigned priors. Chaining first fits
correlator1 then uses the best-fit mean values and cova-
riances to replace the corresponding priors in subsequent
fits. The updated set of priors is then used in the fit to
correlator2. In this and all subsequent fits, correlations are
accounted for between the data being fit and those priors
which are best-fit results from previous fits—this is an
important step as it prevents “double counting” data. After
this second fit, the priors are again updated according to the
best-fit mean values and covariances. This process is
repeated for all correlators. The collection of best-fit mean
values and covariances following the fit to correlatorN are
the final fit results. Chaining is described in greater detail in
Appendix A.

We combine the use of Bayesian [14], marginalized
[1], and chained fitting techniques. Our final fit results
use marginalization with a total of ðN; ~NÞ ¼ ð8; 8Þ
states accounted for, of which (6,1) are explicitly fit.
We refer to such fits with the shorthand notation,
ð6; 1Þ=ð8; 8Þ. States accounted for but not explicitly fit
are marginalized in that their contributions are sub-
tracted from the data prior to the fit. This technique
reduces significantly the time required to perform the
fits. In Fig. 2 we show the stability of the fits under
variations in the numbers of states explicitly included
and the total number of states accounted for in the fit.
The Bs → K form factor results from the correlation
function fits are tabulated in Table II, and additional
details are given in Appendix B.
The form factors obtained from these fits preserve

correlations resulting from shared gauge field configura-
tions and quark propagators used in data generation. The
preservation of correlations is demonstrated in the top
panel of Fig. 3 where, e.g., significant correlations among
the Bs → K form factor fit results are seen at common
momenta and nonzero correlations among form factors for
the two decays is suggested. The bottom panel of Fig. 3
shows the distribution over all ensembles of correlations
among form factors for the two decays. Accounting for
these correlations is useful in our determination of the ratio
of form factors for the two decays. Fit results for Bs → ηs,
and the resulting form factor ratios, are presented in
Appendix D.

V. CHIRAL, CONTINUUM, AND KINEMATIC
EXTRAPOLATION

The results of HPChPT [4,5] suggest a factorization, to at
least one-loop order, of the soft physics of logarithmic
chiral corrections and the physics associated with kinemat-
ics in the form factors describing semileptonic decays of
heavy mesons,
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FIG. 2 (color online). Chained and marginalized fit results for

the ground state amplitude Að0;0Þ
Vt;ð1;0;0Þ of the Bs → K decay on

ensemble F2. Fit results are shown as a function of the number of
(top) states explicitly included in the fit and (bottom) total states
accounted for in the fit. Final results are taken from ð6; 1Þ=ð8; 8Þ
fits, represented by gray bands.

TABLE II. Fit results for the scalar and vector Bs → K form
factors on each ensemble and for each simulated momentum.

Ensemble fBsK
0 ð000Þ fBsK

0 ð100Þ fBsK
0 ð110Þ fBsK

0 ð111Þ
C1 0.8244(23) 0.7081(27) 0.6383(30) 0.5938(41)
C2 0.8427(25) 0.6927(35) 0.6036(49) 0.536(12)
C3 0.8313(29) 0.6953(33) 0.6309(30) 0.5844(46)
F1 0.8322(25) 0.6844(35) 0.5994(43) 0.5551(56)
F2 0.8316(27) 0.6915(38) 0.6119(43) 0.5563(61)

Ensemble fBsKþ ð100Þ fBsKþ ð110Þ fBsKþ ð111Þ
C1 2.087(16) 1.657(14) 1.378(13)
C2 1.880(12) 1.412(16) 1.142(33)
C3 1.773(11) 1.4212(84) 1.184(10)
F1 1.878(13) 1.385(12) 1.158(13)
F2 1.834(14) 1.396(10) 1.163(14)
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f∥;⊥ðEÞ ¼ ð1þ ½logs�ÞK∥;⊥ðEÞ: ð19Þ

The logarithmic chiral corrections, calculated in Ref. [5] for
several BðsÞ decays, are independent of E. An unspecified
function K characterizes the kinematics.
To obtain results over the full kinematic range one must

include lattice simulation data over a range of energies.
However, for any relevant physical scale Λ (e.g., ΛQCD,
1=r1;ΛChPT;…), E≳ Λ at nominal lattice momenta, and
there is no convergent expansion of the unknown function
KðEÞ in powers of E=Λ. This is an inherent limitation of
characterizing the kinematics in terms of energy. The
energy of the daughter meson is a poor variable with
which to describe the kinematics.
In contrast, the z expansion [15–17] provides a con-

vergent, model-independent characterization of the

kinematics over the entire kinematically accessible range.
Combining a z expansion on each ensemble2 with the
HPChPT inspired factorization of Eq. (19) allows a
simultaneous chiral, continuum, and kinematic extrapola-
tion of lattice data at arbitrary energies. Because the chiral
logs are the same for f∥ and f⊥, linear combinations (i.e. f0
and fþ) factorize in the same way and have the same chiral
logs. Motivated by these observations, we construct a
HPChPT-motivated modified z expansion, which we call
the “HPChPT z expansion,” and fit the lattice data of
Tables II and IX, with accompanying covariance matrix, to
fit functions of the form

P0;þðq2Þf0;þðq2Þ ¼ ð1þ ½logs�Þ
XK
k¼0

að0;þÞ
k Dð0;þÞ

k zðq2Þk;
ð20Þ

where [logs] are the continuum HPChPT logs of Ref. [5],
and generic analytic chiral and discretization effects are
accounted for by Dk. Resonances above q2max but below
the BsK production threshold, i.e. those in the range
q2max < q2 < ðMBs

þMKÞ2, are accounted for via the
Blaschke factor, P ¼ 1 − q2=M2

res. Though not observed,
we allow for the possibility of a JP ¼ 0þ state in P0, with
choice of mass guided by Ref. [13]. Our fit results are
insensitive to the presence of this state. The factorization
suggested by HPChPTmay not hold at higher order [18], so
we allow chiral analytic terms, which help parametrize
effects from omitted higher order chiral logs, to have
energy dependence (i.e. to vary with k).
We note that Eq. (20) is the modified z expansion

introduced in Refs. [2,3], with the coefficients of the chiral
logarithmic corrections fixed by the results of HPChPT. In
the chiral and continuum limits

lim
m→mphysical

a→0

ð1þ ½logs�ÞakDk ¼ bk of Ref: ½17�; ð21Þ

and Eq. (20) is equivalent to the Bourrely-Caprini-Lellouch
(BCL) parametrization [17] of the form factors.
Following Ref. [17] we impose a constraint on aðþÞ

K from
the expected scaling behavior of fþðq2Þ in the neighbor-
hood of q2max. The resulting fit function for fþ is

Pþðq2Þfþðq2;aÞ

¼ ð1þ½logs�Þ
XK−1
k¼0

aðþÞ
k DðþÞ

k ðaÞ½zðq2Þk− ð−1Þk−K k
K
zðq2ÞK�:

ð22Þ

We write fðq2; aÞ, zðq2Þ, and DkðaÞ, explicitly exposing
the dependence on q2 and a. This is useful in explaining the

FIG. 3 (color online). (top) Heat map of the correlation matrix
for ensemble C1. (bottom) Distribution of correlations among the
form factors for Bs → K and Bs → ηs for all ensembles.

2This assumes the general arguments on which the z expansion
is based hold for heavier than physical quark masses and at finite
lattice spacing.
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implementation of a second kinematic constraint we
impose on the form factors. At the kinematic endpoint
q2 ¼ 0, the continuum extrapolated form factors f0 and fþ
are equal, i.e. f0ð0; 0Þ ¼ fþð0; 0Þ. We impose this con-

straint by fixing the coefficient að0Þ0 ,

að0Þ0 Dð0Þ
0 ð0Þ ¼−

XK
k¼1

að0Þk Dð0Þ
k ð0Þzð0Þk

þ
XK−1
k¼0

aðþÞ
k DðþÞ

k ð0Þ
�
zð0Þk− ð−1Þk−K k

K
zð0ÞK

�
:

ð23Þ

Imposing this constraint results in the fit function for f0:

P0ðq2Þf0ðq2; aÞ
¼ ð1þ ½logs�Þ

×

�XK
k¼1

að0Þk

�
Dð0Þ

k ðaÞzðq2Þk −Dð0Þ
0 ðaÞ

Dð0Þ
0 ð0Þ

Dð0Þ
k ð0Þzð0Þk

�

þDð0Þ
0 ðaÞ

Dð0Þ
0 ð0Þ

XK−1
k¼0

aðþÞ
k DðþÞ

k ð0Þ
�
zð0Þk − ð−1Þk−K k

K
zð0ÞK

��
.

ð24Þ

In the fit functions for f0 and fþ, Eqs. (22) and (24), Dk
and [logs] are given by

Dk ¼ 1þ cðkÞ1 xπ þ cðkÞ2

�
1

2
δxπ þ δxK

�

þ cðkÞ3 δxηs þ dðkÞ1 ða=r1Þ2 þ dðkÞ2 ða=r1Þ4

þ eðkÞ1 ðaEKÞ2 þ eðkÞ2 ðaEKÞ4; ð25Þ

½logs� ¼ −
3

8
xπðlog xπ þ δFVÞ −

1þ 6g2

4
xK log xK

−
1þ 12g2

24
xη log xη; ð26Þ

with implicit indices in Eq. (25) specifying the scalar or
vector form factor. We account for momentum-indepen-
dent and momentum-dependent discretization effects in
Dk. The values of aEK that enter the fit are the values from
the simulation and are, of course, small. Finite volume
effects in the simulation are included via a shift δFV in the
pion log [19]. The infinite volume limit is taken by setting
this shift to zero. Equation (26) gives the HPChPT [5]
result for the chiral logarithmic correction to Bs → K form
factors. These expressions make use of the dimensionless
quantities

xπ;K;η ¼
M2

π;K;η

ð4πfπÞ2
; ð27Þ

δxπ;K ¼ ðMasqtad
π;K Þ2 − ðMHISQ

π;K Þ2
ð4πfπÞ2

; ð28Þ

δxηs ¼
ðMHISQ

ηs Þ2 − ðMphysical
ηs Þ2

ð4πfπÞ2
; ð29Þ

where M2
η ¼ ðM2

π þ 2M2
ηsÞ=3. We determine q2 and z on

each ensemble using correlator fit results for meson
masses and simulation momenta. Light and heavy quark
discretization effects are accommodated for by making the

dðkÞi mild functions of the masses, accomplished by the
replacements

dðkÞ1 → dðkÞ1 ð1þ lðkÞ1 xπ þ lðkÞ2 x2πÞð1þ hðkÞ1 δxb þ hðkÞ2 δx2bÞ;
dðkÞ2 → dðkÞ2 ð1þ lðkÞ3 xπ þ lðkÞ4 x2πÞð1þ hðkÞ3 δxb þ hðkÞ4 δx2bÞ;

ð30Þ

where δxb ¼ amb − 2.26 is chosen so that as amb varies
over the coarse and fine ensembles −0.4≲ δxb ≲ 0.4.
Lastly, we account for uncertainty associated with

the perturbative matching of Sec. III. With the
matching coefficients calculated in Ref. [11], we find
Oðαs;ΛQCD=mb;αs=ðambÞÞ contributions to be ∼4% of
the total contribution to hV0i. Of this 4% the majority,
∼3.5%, comes from the one-loop OðαsÞ correction and

< 1% from the NRQCD matching via hJð1Þ;sub0 i. For hVki
we find contributions at this order to be ∼2%, with ∼1%
coming from the OðαsÞ correction and < 1% from the
NRQCD matching. The matching error results from omit-
ted higher order corrections, the size of which we estimate
from observed leading order effects, where we conserva-
tively use the larger 4%. Following the arguments outlined
in Ref. [10] we estimate the matching error to be the same
size as the observed Oðαs;ΛQCD=mb; αs=ðambÞÞ contribu-
tions and take the matching error to be 4%. This is
equivalent to taking the Oðα2sÞ matching coefficient to
be four times larger than the OðαsÞ matching coefficient

ρðV0Þ
0 (13 times larger than ρðVkÞ

0 ). This uncertainty is
associated with the hadronic matrix elements and therefore,
by Eqs. (3) and (4), with f∥ and f⊥. To correctly
incorporate it in the results for f0 and fþ we convert
our fit functions for f0;þ into f∥;⊥; multiply by ð1þm∥;⊥Þ,
where m∥;⊥ is a coefficient representing the matching
error with a prior central value of zero and width 0.04;
then convert back to f0;þ before performing the fit.
Schematically, we modify the fit functions, defined in
Eqs. (22) and (24), by

f0; fþ → f∥; f⊥ ð31Þ

f∥; f⊥ → ð1þm∥Þf∥; ð1þm⊥Þf⊥ ð32Þ
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ð1þm∥Þf∥; ð1þm⊥Þf⊥ → fcorrected0 ; fcorrectedþ ; ð33Þ
then we use fcorrected0;þ to fit the results of the correlation
function fits of Sec. IV. Conversions between the form
factors f0;þ and f∥;⊥ are performed using Eqs. (5) and (6).

The results of a simultaneous fit to the data for fBsK
0;þ and

fBsηs
0;þ , in which the maximum order of z [specified by K in

Eqs. (22) and (24)] is 3 and χ2=d:o:f ¼ 84.0=70, are shown
relative to the data in Fig. 4 for Bs → K. Details of prior
choices and fit results are given in Appendix C.
We test the stability of this fit to the following mod-

ifications of the fit Ansätze:
(1) Truncate the z expansion at Oðz2Þ.
(2) Truncate the z expansion at Oðz4Þ.
(3) Truncate the z expansion at Oðz5Þ.
(4) Drop OðaEKÞ4 momentum-dependent and Oða4Þ

momentum-independent discretization terms in
Eq. (25).

(5) Drop the amb-dependent discretization terms in
Eq. (30).

(6) Drop the light-quark mass-dependent discretization
terms in Eq. (30).

(7) Add the following next-to-next-to-leading-order
(NNLO) chiral analytic terms to Dk as defined in
Eq. (25):

cðkÞ4 x2π þ cðkÞ5

�
1

2
δxπ þ δxK

�
2

þ cðkÞ6 δx2ηs

þ cðkÞ7 xπ

�
1

2
δxπ þ δxK

�
þ cðkÞ8 xπδxηs

þ cðkÞ9

�
1

2
δxπ þ δxK

�
δxηs þ cðkÞ10 xπða=r1Þ2

þ cðkÞ11

�
1

2
δxπ þ δxK

�
ða=r1Þ2 þ cðkÞ12 δxηsða=r1Þ2:

ð34Þ
(8) Drop the sea- and valence-quark mass difference

term ð1
2
δxπ þ δxKÞ from Eq. (25).

(9) Drop the strange-quark mistuning term δxηs
from Eq. (25).

(10) Drop finite volume effects; i.e. set δFV ¼ 0
in Eq. (26).

The stability of the Bs → K fit results to these modifica-
tions is shown in Fig. 5, where results are shown at the
extrapolated q2 ¼ 0 point. This point is furthest from the
data region where simulations are performed and therefore
is particularly sensitive to changes in the fit function. In
Fig. 5 our final fit result, as defined by Eqs. (22) and (24)
with K ¼ 3 and by Eqs. (25)–(30), is indicated by the
dashed line and gray band.
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FIG. 4 (color online). Bs → K form factor results from a
simultaneous chiral, continuum, and kinematic extrapolation
via the HPChPT z expansion are shown (top) relative to coarse
ensemble data (C1, C2, and C3) and (bottom) relative to fine
ensemble data (F1 and F2).
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FIG. 5 (color online). The stability of the HPChPT z expansion
is demonstrated by studying the fit results under various mod-
ifications, discussed in the text. The top panel shows χ2 with 70
degrees of freedom (d.o.f.) for each test fit, and the bottom panel
shows form factors extrapolated to q2 ¼ 0.
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Modifications 1, 2, and 3 vary the order of the truncation
in z and demonstrate that by Oðz3Þ fit results have
stabilized and errors have saturated. We therefore conclude
that the error of the Oðz3Þ fit adequately accounts for the
systematic error due to truncating the z expansion.
Momentum-dependent and momentum-independent dis-

cretization effects proportional to a4 are removed in
modification 4. This results in a modest increase in χ2

and a negligible shift in the fit result. This suggests our final
fit, which includes the a4 effects, adequately accounts for
all discretization effects observed in the data.
In modifications 5 and 6 we remove heavy- and light-

quark mass-dependent discretization effects with essen-
tially no impact on the fit. That our results are independent
of light-quark mass dependent discretization effects sug-
gests that staggered taste violating effects are accommo-
dated for by a generic a2 dependence.
Modification 7 tests the truncation of chiral analytic

terms after next-to-leading order (NLO) by adding the
NNLO terms listed in Eq. (34). This results in a slight
decrease in χ2 but has no noticeable effect on the fit central
value or error. From this we conclude that errors associated
with omitted higher order chiral terms are negligible.
Differences in sea- and valence-quark masses, due in part

to our use of HISQ valence and asqtad sea quarks, are
neglected in modification 8. This results in a small increase
in χ2 and a negligible change in the fit results. We account
for these small mass differences in our final fit, though this
test suggests they are unimportant in the fit.
Effects due to strange quark mass mistuning on the

ensembles are omitted in modification 9, resulting in a
modest increase in χ2 and no change in the fit central value
and error. We include these effects in our final fit.
Modification 10 results in nearly identical fit results,

suggesting that finite volume effects are negligible in our
data. We include these effects in our final fit results.

VI. FORM FACTOR RESULTS

In this section we present final results, with a complete
error budget, for the Bs → K form factors. We provide the
needed information to reconstruct the form factors and
compare our results with previous model calculations.
Figure 6 shows the results of the chiral, continuum, and

kinematic extrapolation of Sec. V, plotted over the entire
kinematic range of q2. The form factors, extrapolated to
q2 ¼ 0, have the value fBsK

0;þ ð0Þ ¼ 0.323ð63Þ.

A. Fit errors for the HPChPT z expansion

The inputs in our chiral, continuum, and kinematic
extrapolation fits are data (the correlator fit results for f0
and fþ in Tables II and IX with the accompanying
covariance matrix) and priors. The total hessian error of
the fit can be described in terms of contributions from these
inputs, as described in detail in Appendix A. We group

priors in a meaningful, though not unique, way and
discuss the error associated with the chiral, continuum,
and kinematic extrapolation based on these groupings. As
the priors are, by construction, uncorrelated with one
another, we can group them together in any way we find
meaningful. The resulting error groupings are uncorre-
lated and add in quadrature to the total error. In Fig. 7 we
plot the following relative error components as functions
of q2:

(i) experiment: This is the error in the fit due to
uncertainty of experimentally determined, and other,
input parameters. It is the sum in quadrature of the
errors due to priors for the “group I” fit parameters
listed in Table VII. This error is independent of q2

and subdominant.
(ii) kinematic: This error component is due to the priors

for the coefficients að0;þÞ
k in Eqs. (22) and (24). A

comparison of the fit results from modifications 1, 2,
and 3 in Fig. 5 shows that by Oðz3Þ the fit results
have stabilized and errors have saturated. The
kinematic error therefore includes the error associ-
ated with truncating the z expansion. The extrapo-
lation to values of q2 for which we have no
simulation data is controlled by the z expansion.
As a result, the growth in form factor errors away
from the simulation region is due almost entirely to
kinematic and statistical errors.

(iii) chiral: This error component is the sum in quad-

rature of errors associated with priors for cðkÞi in
Eq. (25). These terms are responsible for extrapo-
lating to the physical light quark mass and for
accommodating for the slight strange-quark mistun-
ing and the small mismatch in sea- and valence-
quark masses due to the mixed action used in the
simulation. As shown in Fig. 7, these errors are
subdominant and do not vary significantly with q2.
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FIG. 6 (color online). Bs → K form factor results from a
simultaneous chiral, continuum, and kinematic extrapolation
via the HPChPT z expansion. The q2 region for which lattice
simulation data exist is indicated by the shaded region.
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(iv) discretization: We account for momentum-

dependent discretization effects via the eðkÞi , and
momentum-independent discretization effects via

the dðkÞi , terms of Eq. (25). In addition we allow
for heavy- and light-quark mass-dependent discre-

tization effects via the hðkÞi and lðkÞi terms in Eq. (30).
The discretization error component, which is essen-
tially independent of q2, is the sum in quadrature of
the error due to the priors for these fit parameters.

(v) statistical: The statistical component of the error is
due to uncertainty in the data, i.e. the errors from
form factor fit results of Table II. Simulation data
exist for q2 ≳ 17 GeV2 for f0 and over the range
17 GeV2 ≲ q2 ≲ 22 GeV2 for fþ. Extrapolation
beyond these regions leads to increasing errors.

(vi) matching: The matching error is due to the
uncertainty associated with the priors for m∥;⊥
introduced in Eq. (32) and discussed in the surround-
ing text.

In addition to the largest sources of error, which we
account for directly in the fit, there are remaining system-
atic uncertainties.

We simulate with degenerate light quarks and neglect
electromagnetism. By adjusting the physical kaon mass
(MK� → MK0) used in the chiral, continuum, and kinematic
extrapolation, we estimate the “kinematic” effects of
omitting electromagnetic and isospin symmetry breaking
in our simulation to be ≲0.1%. It is more difficult to
determine the size of the full effects. However, in general
electromagnetic and isospin effects are expected to be
subpercent. We assume the error in our form factor
calculation due to these effects is negligible relative to
other sources of uncertainty.
Our simulations include up, down, and strange sea

quarks, and we assume omitted charm sea-quark effects
are negligible. This has been the case for processes in
which it has been possible and appropriate to perturbatively
estimate effects of charm quarks in the sea [20].
Our final form factor results, multiplied by the Blaschke

factor P0;þ, are shown in Fig. 8 where they are compared
with results from a model calculation using perturbative
QCD (pQCD) [21] and a relativistic quark model (RQM)
[22]. Our results provide significant clarification on the
form factors at large q2.
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FIG. 7 (color online). Bs → K (top) f0 and (bottom) fþ relative
error components. The total error (solid line) is the sum in
quadrature of the components.
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FIG. 8 (color online). Comparison of our Bs → K (top) f0 and
(bottom) fþ form factors with those from a pQCDmodel [21] and
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by multiplying the form factors by the Blaschke factor P0;þ.
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B. Reconstructing Bs → Klν form factors

In the physical limit our form factor results are para-

metrized in a BCL [17] form with coefficients bð0;þÞ
k [see

Eq. (21)]. Including the kinematic constraint and terms
through order z3, we have

P0ðq2Þf0ðq2Þ¼
X3
k¼1

bð0Þk ðzk−zð0ÞkÞ

þ
X2
k¼0

bðþÞ
k

�
zð0Þk− ð−1Þk−3 k

3
zð0Þ3

�
; ð35Þ

Pþðq2Þfþðq2Þ ¼
X2
k¼0

bðþÞ
k

�
zk − ð−1Þk−3 k

3
z3
�
; ð36Þ

where

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð37Þ

tþ ¼ ðMBs
þMKÞ2; ð38Þ

t0 ¼ ðMBs
þMKÞð

ffiffiffiffiffiffiffiffiffi
MBs

p
−

ffiffiffiffiffiffiffiffi
MK

p
Þ2; ð39Þ

P0;þðq2Þ ¼ 1 − q2=M2
0;þ; ð40Þ

and the resonance masses are M0 ¼ 5.6794ð10Þ GeV and
Mþ ¼ 5.32520ð48Þ GeV. The values of the coefficients

bð0;þÞ
k , derived from the extrapolation fit results of Sec. V,

and the associated covariance matrix, are given in Table III.

Note that it is necessary to take into account the correlations
among the coefficients to correctly reproduce the form
factor errors.

VII. PHENOMENOLOGY

With the benefit of ab initio form factors from lattice
QCD, we explore the standard model implications of our
results. In this section we make standard model predictions
for several observables related to the Bs → Klν decay for
l ¼ μ and τ.
The standard model Bs → Klν differential decay rate is

related to the form factors by

dΓ
dq2

¼ G2
FjVubj2

24π3M2
Bs

�
1 −

m2
l

q2

�
2

jpKj
��

1þ m2
l

2q2

�
M2

Bs
p2
Kjfþj2

þ 3m2
l

8q2
ðM2

Bs
−M2

KÞ2jf0j2
�
: ð41Þ

In Fig. 9 we plot predicted differential decay rates for Bs →
Kμν and Bs → Kτν, divided by jVubj2, over the full
kinematic range of q2. The ratio Γ=jVubj2 can be combined
with experimental results for the decay rates, typically
differential decay rates integrated over q2 bins, to allow the
determination of jVubj. In Eqs. (42) and (43) we give
numerical results for dΓ=dq2, integrated over the kinemat-
ically accessible regions of q2,

ΓðBs → KμνÞ=jVubj2 ¼ 7.75ð1.52Þ ps−1; ð42Þ

ΓðBs → KτνÞ=jVubj2 ¼ 4.92ð0.60Þ ps−1: ð43Þ

TABLE III. (Top) Physical extrapolated coefficients of the HPChPT z expansion for the Bs → K form factors,
defined in Eqs. (35) and (36) and (bottom) the associated covariance matrix.

Coefficient Value

bð0Þ1
0.315(129)

bð0Þ2
0.945(1.305)

bð0Þ3
2.391(4.671)

bðþÞ
0

0.3680(214)

bðþÞ
1

−0.750ð193Þ
bðþÞ
2

2.720(1.458)

bð0Þ1 bð0Þ2 bð0Þ3 bðþÞ
0 bðþÞ

1 bðþÞ
2

bð0Þ1
1.676 × 10−2 1.462 × 10−1 4.453 × 10−1 1.165 × 10−3 2.140 × 10−2 1.434 × 10−1

bð0Þ2
1.702 5.852 9.481 × 10−3 2.255 × 10−1 1.539

bð0Þ3
2.181 × 101 2.963 × 10−2 7.472 × 10−1 5.325

bðþÞ
0

4.577 × 10−4 1.157 × 10−3 −1.309 × 10−3

bðþÞ
1

3.721 × 10−2 1.858 × 10−1

bðþÞ
2

2.124
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Combining our form factor results with the current3

inclusive and exclusive semileptonic determinations of
jVubj,

exclusive jVubj ¼ 3.47ð22Þ × 10−3; ð44Þ

inclusive jVubj ¼ 4.41ð22Þ × 10−3; ð45Þ

we demonstrate in Fig. 10 the potential of this decay to shed
light on this ∼3σ discrepancy. In this and subsequent
figures, dark interior bands represent the error in the
differential branching fractions omitting the error associ-
ated with jVubj. Experimental errors commensurate with
these predictions, especially for the Bs → Kτν decay or at
large q2 for the Bs → Kμν decay, would allow differ-
entiation between the current inclusive and exclusive values
of jVubj.

Decays that couple to the τ have increased dependence
on the scalar form factor and to new physics models with
scalar states (see, e.g., Refs. [25,26] for a discussion of new
physics in the closely related decay B → πτν). The ratio of
the Bs → Kτν differential branching fraction to that for
Bs → Kμν,

Rτ
μðq2low; q2highÞ ¼

R q2high
q2low

dq2dB=dq2ðBs → KτνÞ
R q2high
q2low

dq2dB=dq2ðBs → KμνÞ
; ð46Þ

is therefore a potentially sensitive probe of new physics.
Integrating over the full kinematic range, we find

Rτ
μðm2

μ; q2maxÞ ¼ 0.695ð50Þ; ð47Þ

where q2max ¼ ðMBs
−MKÞ2. We plot the standard model

prediction for this ratio, as a function of q2 ¼
ðq2low þ q2highÞ=2, over the full kinematic range in Fig. 11.
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FIG. 9 (color online). Predicted differential decay rates, divided
by jVubj2, for (top) Bs → Kμν and (bottom) Bs → Kτν.
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FIG. 10 (color online). Predicted differential branching frac-
tions for the (top) Bs → Kμν and (bottom) Bs → Kτν decays
using inclusive and exclusive semileptonic determinations of
jVubj. In each band, the light outer band includes all sources of
error, and the dark interior band neglects the uncertainty in jVubj.

3For inclusive jVubj we take the value from the Particle
Data Group [23]. For the exclusive determination we use
the “global lattice þ Belle” results reported by the FLAG-2
collaboration [24].
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The angular dependence of the differential decay rate,
neglecting final state electromagnetic interactions, is
given by

d2Γ
dq2d cos θl

¼ G2
FjVubj2

128π3M2
Bs

�
1 −

m2
l

q2

�
2

jpKj

×

�
4M2

Bs
jpKj2

�
sin2θl þ

m2
l

q2
cos2θl

�
f2þ

þ 4m2
l

q2
ðM2

Bs
−M2

KÞMBs
jpKj cos θlf0fþ

þm2
l

q2
ðM2

Bs
−M2

KÞ2f20
�
; ð48Þ

where θl is defined, in the q2 rest frame (i.e. where pl þ pν

is zero), as the angle between the final state lepton and the
Bs meson. From this angular dependence we can extract a
forward-backward asymmetry [27],

Al
FBðq2Þ ¼

�Z
1

0

−
Z

0

−1

�
d cos θl

d2Γ
dq2d cos θl

ð49Þ

¼ G2
FjVubj2

32π3MBs

�
1 −

m2
l

q2

�
2

jpKj2

×
m2

l

q2
ðM2

Bs
−M2

KÞf0fþ; ð50Þ

which is suppressed in the standard model by a factor of
m2

l=q
2. In Fig. 12 we show standard model predictions for

the forward-backward asymmetry using the inclusive and
exclusive values for jVubj. Integrating over the full kin-
ematic range of q2 gives

Z
q2max

m2
μ

dq2Aμ
FBðq2Þ=jVubj2 ¼ 0.052ð17Þ ps−1; ð51Þ

Z
q2max

m2
τ

dq2Aτ
FBðq2Þ=jVubj2 ¼ 1.40ð20Þ ps−1: ð52Þ

Normalizing the forward-backward asymmetry by the
differential decay rate removes jVubj ambiguity and most
hadronic uncertainties,

Āl
FBðq2low; q2highÞ ¼

R q2high
q2low

dq2Al
FBðq2ÞR q2high

q2low
dq2dΓ=dq2

; ð53Þ

and represents the probability the lepton will have a
momentum component, in this frame, in the direction
of motion of the parent Bs meson. Integrating over q2

yields

Āμ
FBðm2

μ; q2maxÞ ¼ 0.0066ð10Þ; ð54Þ

Āτ
FBðm2

τ ; q2maxÞ ¼ 0.284ð17Þ; ð55Þ

q2 [GeV2]

Rτ
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FIG. 11 (color online). Predicted differential branching fraction
ratio.

FIG. 12 (color online). Differential decay rate forward-back-
ward asymmetries for the (top) Bs → Kμν and (bottom) Bs →
Kτν decays using inclusive and exclusive semileptonic determi-
nations of jVubj. Light outer bands include all sources of error,
and the dark interior bands neglect uncertainty in jVubj.
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with central values equal to those obtained by taking the
ratio of results from Eqs. (51) and (52) with those from
Eqs. (42) and (43). The errors, however, are ∼3× smaller
when correlations are accounted for. The normalized
standard model asymmetries are plotted in Fig. 13 as a
function of q2.
The production of right-handed final state leptons is

helicity suppressed in the standard model, providing a
probe of new physics via helicity-violating interactions.
The standard model differential decay rates for left-handed
(LH) and right handed (RH) polarized final state leptons in
Bs → Klν decays is [27]

dΓðLHÞ
dq2

¼ G2
FjVubj2jpKj3

24π3

�
1 −

m2
l

q2

�
2

f2þ;

dΓðRHÞ
dq2

¼ G2
FjVubj2jpKj
24π3

m2
l

q2

�
1 −

m2
l

q2

�
2

×

�
3

8

ðM2
Bs
−M2

KÞ2
M2

Bs

f20 þ
1

2
jpKj2f2þ

�
; ð56Þ

and the l-polarization distribution is given by the
difference

Al
polðq2Þ ¼

dΓðLHÞ
dq2

−
dΓðRHÞ
dq2

: ð57Þ

We plot the τ-polarization distribution, again using the
inclusive and exclusive values of jVubj from Eqs. (44) and
(45), in Fig. 14. Because of their relatively small mass,
muons produced in the decay are predominantly left
handed, and the plot of Aμ

pol is equivalent to the total
differential decay rate. Integrating the l-polarization
distributions over q2 gives

Z
q2max

m2
μ

dq2Aμ
polðq2Þ=jVubj2 ¼ 7.61ð1.60Þ ps−1; ð58Þ

Z
q2max

m2
τ

dq2Aτ
polðq2Þ=jVubj2 ¼ 0.52ð32Þ ps−1: ð59Þ

As with the forward-backward asymmetry, we normalize
the l-polarization distribution by the differential decay rate
to remove ambiguity associated with jVubj and hadronic
uncertainties. The resulting polarization fraction [27] is
defined by

Āl
polðq2low; q2highÞ ¼

R q2high
q2low

dq2Al
polðq2ÞR q2high

q2low
dq2dΓ=dq2

: ð60Þ

Integrating over q2 we find the standard model prediction
for the fraction of polarized leptons to be

Āμ
polðm2

μ; q2maxÞ ¼ 0.982ðþ18−79Þ; ð61Þ

Āτ
polðm2

τ ; q2maxÞ ¼ 0.105ð63Þ; ð62Þ

FIG. 13 (color online). Normalized differential decay rate
forward-backward asymmetries for the (top) Bs → Kμν and
(bottom) Bs → Kτν decays.

FIG. 14 (color online). Standard model τ-polarization distribu-
tion for the differential decay rate of Bs → Kτν.
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where the error associated with the numerical integration of
Āμ

polð�0.079Þ has been truncated to satisfy the constraint
that Āl

pol < 1. The q2 dependence of the l-polarization
fraction is plotted in Fig. 15.

VIII. SUMMARY AND OUTLOOK

Using NRQCD b and HISQ light and strange valence
quarks with the MILC 2þ 1 dynamical asqtad configura-
tions, we report on the first lattice QCD calculation of the
form factors for the semileptonic decay Bs → Klν.
With the help of a new technique, called chaining, we fit

the Bs → K correlator data simultaneously with data for the
fictitious decay Bs → ηs. Fitting these data simultaneously
accounts for correlations—useful for constructing ratios of
form factors. We extrapolate our lattice form factor results
to the continuum, to physical quark mass, and over the full
kinematic range of q2 using a combination of the modified
z expansion and HPChPT that we refer to as the HPChPT z
expansion.
We then make standard model predictions for:
(i) differential decay rates divided by jVubj2, an observ-

able that, when combined with experiment, will

allow an alternative semileptonic exclusive determi-
nation of jVubj;

(ii) differential branching fractions using both the
inclusive and exclusive semileptonic B → πlν
determinations of jVubj;

(iii) the ratio of differential branching fractions Rτ
μðq2Þ;

(iv) the forward-backward asymmetry, using inclusive
and exclusive values of jVubj;

(v) the normalized forward-backward asymmetry;
(vi) the τ-polarization distribution in the differential

decay rate for Bs → Kτν; and
(vii) the l-polarization fraction in the differential decay

rate for Bs → Klν, for l ¼ μ; τ.
In Appendix D we construct ratios of form factors for

Bs → K with those for Bs → ηs. In combination with a
future calculation of Bs → ηs using HISQ b, these ratios
can provide a nonperturbative determination of the b → u
current matching factor. This would be relevant for both
Bs → Klν and B → πlν simulations using NRQCD b
quarks.
Our results, built on first principles lattice QCD form

factors, greatly clarify standard model expectations [27]
based on model estimates of form factors [21,22,28], most
notably at large q2. Combining our form factors, which are
most precise at large q2, with model calculations, typically
more reliable at low q2, would result in a more precise
determination of f0 and fþ. We are studying the possibility
of further refining Bs → Klν standard model predictions
using such form factors.
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APPENDIX A: FITTING BASICS

Here we describe in more detail two aspects of our
statistical analysis: 1) the definition of our error budgets for
fit results and 2) the technique for chained fits of multiple
data sets. We also discuss a general procedure for testing fit
procedures. These are general techniques applicable to
many types of fitting problems [29]. Finally we illustrate
these ideas with an example drawn from this paper.

1. Fits and error budgets

The formal structure of a least-squares problem involves
fitting input data yi with functions fiðpÞ by adjusting fit
parameters pα to minmize

χ2ðpÞ ¼
X
ij

ΔyðpÞiðcov−1y ÞijΔyðpÞj; ðA1Þ

FIG. 15 (color online). Standard model l-polarization fraction
for the differential decay rate of Bs → Klν, for l ¼ μ; τ.
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where covij is the covariance matrix for the input data and

ΔyðpÞi ≡ fiðpÞ − yi: ðA2Þ

There are generally two types of input data—actual data
and prior data for each fit parameter—but we lump these
together here since they enter χ2ðpÞ in the same way. So the
sums here over i and j are over all data and priors. Note that
priors and data may be correlated in some problems.
The best-fit parameters p̄α are those that minimize χ2,

∂αχ
2ðp̄Þ ¼ 2

X
ij

∂αfiðp̄Þðcov−1y ÞijΔyðp̄Þj ¼ 0; ðA3Þ

where the derivative ∂α ≡ ∂=∂p̄α. The inverse covariance
matrix, ∂α∂βχ

2ðp̄Þ=2, for the p̄α is then given by

ðcov−1p Þαβ ¼
X
ij

∂αfiðp̄Þðcov−1y Þij∂βfjðp̄Þ þOðΔyÞ;

ðA4Þ

where we neglect terms proportional to Δy (which makes
sense for reasonable fits to accurate data). This is the
conventional result.
The uncertainties in the p̄α are due to the uncertainties in

the input data yi, and, for very accurate data, depend
linearly upon covy. The relationship can be demonstrated
by differentiating Eq. (A3) with respect to yj to obtain

X
β

ðcov−1p Þαβ
∂p̄β

∂yj ¼
X
i

∂αfiðp̄Þðcov−1y Þij þOðΔyÞ;

ðA5Þ

where again we neglect terms proportional to Δy. Solving
for ∂p̄β=∂yj gives

∂p̄β

∂yj ¼
X
αi

ðcovpÞβα∂αfiðp̄Þðcov−1y Þij: ðA6Þ

In the high-statistics, small-error limit the covariances in
the p̄α are related to those in the yi by the standard formula

ðcovpÞαβ ¼
X
ij

∂p̄α

∂yi ðcovyÞij
∂p̄β

∂yj ; ðA7Þ

and, indeed, substituting Eq. (A6) into this equation
reproduces Eq. (A4) for covp.
Equations (A6) and (A7) allow us to express the error σg

for a function gðp̄Þ of the best-fit parameter values in terms
of the input errors,

σ2g ≡
X
αβ

∂αgðp̄ÞðcovpÞαβ∂βgðp̄Þ ¼
X
ij

cijðcovyÞij; ðA8Þ

where

cij ≡
X
αβ

∂αgðp̄Þ
∂p̄α

∂yi
∂p̄β

∂yj ∂βgðp̄Þ; ðA9Þ

and Eq. (A6) is used to evaluate ∂p̄α=∂yi. We can then
decompose σ2g into separate contributions coming from the
different block-diagonal submatrices of covy. These con-
tributions to σg constitute the error budget for gðp̄Þ.
The cijs in Eq. (A8) depend upon both the yi and their

covariance matrix, but that dependence can be neglected to
leading order in covy. Consequently Eq. (A8) can be used
to estimate the impact on σg of possible modifications to
any element of covy.
Note that the data’s covariance matrix covy can be quite

singular if there are strong correlations in the data. This can
make it numerically difficult to invert the matrix for use in
χ2ðpÞ. This problem is typically dealt with by using a SVD
to regulate the most singular components of the covariance
matrix. In our fits we rescale the covariance matrix by its
diagonal elements to obtain the correlation matrix, which
we then diagonalize. We introduce a minimum eigenvalue
by setting any smaller eigenvalue equal to the minimum.
We then reconstitute the correlation matrix and rescale it
back into a (less singular) covariance matrix which we use
in the fit. This procedure, in effect, increases the error in the
data and so increases the uncertainties in the final fit results;
it is a conservative move.
It is common when using SVD to discard eigenmodes

corresponding to the small eigenvalues. This is equivalent
to setting the variance associated with these modes to
infinity in the fit. In our implementation, all eigenmodes are
retained, but the small eigenvalues are replaced by a (larger)
minimum eigenvalue. This is a more realistic estimate for
the variances of these modes—that is, more realistic than
setting them to infinity—and gives more accurate fit results.

2. Chained fits

Chained fits simplify fits of multiple data sets for which
the fit functions share fit parameters by allowing us to fit
each data set separately. To illustrate, consider two sets of
data, yiðAÞ and yjðBÞ, that we fit with functions fiðA; pÞ
and fjðB; pÞ, respectively—both functions of the same fit
parameters pα (unlike the previous section, here we do not
lump the priors in with the ys). The fit procedure is
straightforward in a Bayesian framework if yðAÞ and
yðBÞ are statistically uncorrelated. We first fit, say, data
set yðAÞ to obtain best-fit estimates p̄ðAÞ for the parameters
and an estimate covpðAÞ for the parameters’ covariance
matrix. We then fit data set yðBÞ, but use p̄ðAÞ and covpðAÞ
to form the prior for the fit parameters.
This two-step fit merges the information contained in

yðAÞ with that from yðBÞ by feeding the information from
the first fit into the second fit as prior information. The
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order in which the data sets are fit does not matter in the
high-statistics (Gaussian) limit; with larger errors, it is
better to fit the more accurate data set first. The χ2 for the
two-step fit is the sum of the χ2s for each step.
The situation is slightly more complicated if yðAÞ and

yðBÞ are correlated. Then the best-fit parameters p̄ðAÞ from
the first fit above are correlated with the second data set
yðBÞ. The pðAÞ-yðBÞ covariance can be computed from

covpðAÞyðBÞ ≡
X
yðAÞ

∂p̄ðAÞ
∂yðAÞ covyðAÞyðBÞ ðA10Þ

using Eq. (A6) in the previous section. This correlation
must be included in the second fit, to data set yðBÞ. So the
second fit uses the best-fit parameters p̄ðAÞ from the first fit
to construct the prior, together with covpðAÞ for parameter-
parameter covariances and covpðAÞyðBÞ for parameter-data
covariances.
We refer to a sequential fit of multiple data sets, where the

best-fit parameters and covariance matrix from one fit are
used as the prior for the next fit, as a chained fit. It is essential
in such fits to account for possible correlations between the
priors (fromprevious fits) and the data being fit at each stage.
The results of a chained fit should agree with those of a
simultaneous fit in the limit of large (i.e. Gaussian) statistics.

3. Testing fits

It is generally useful to have ways of testing particular fit
strategies. One simple approach to testing is to create
multiple fake data sets that are very similar to the actual
data being fit, but where the exact values for the fit
parameters are known ahead of time. Running several such
data sets through an analysis code tells you very quickly
whether, for example, your analysis code gives results that
are correct towithin one sigma 68%of the time, as is desired.
It is easy to create fake data sets of this sort. One simple

recipe is the following:

(1) Fit the actual data to obtain a set of parameter values
p�
α such that the fit function fiðp�Þ closely matches

the mean values yi of the actual data. Calculate the
difference between the actual means of the data and
the fit values for p ¼ p�:

δyi ≡ fiðp�Þ − yi: ðA11Þ
(2) Create a bootstrap copy ybsi of the original data and

replace its mean values by

y�i ¼ ybsi þ δyi: ðA12Þ

The fake data set then consists of the mean values y�i
and the covariancematrix covy of the original data. The
role of the bootstrap here is to generate fluctuations in
the means with the same distribution as the original
data. These data sets will fluctuate around central
valuesfiðp�Þ rather than the originalmeans of the data.

(3) Repeat the second step to create any number of
additional fake data sets.

Each fake data set is fit using the same procedure that was
used to analyze the original data. The results for the fit
parameters are compared with the parameter values p� used
to define the correction δyi [Eq. (A11)], since, by con-
struction, these are the correct values for the parameters in
the fake data.
Typically only a handful of parameters from a fit are of

interest. Their best-fit values from different fake data sets
will differ, but they should all agree with the p� values to
within the errors generated by the fake fit (that is, to within
one sigma 68% of the time, two sigma 95% of the time, and
so on). Such tests can reveal, for example, potential
problems coming from poor priors or inadequate SVD
cuts, or biases in particular combinations of fit parameters.

4. Example

We compare chained and unchained fit results in
Fig. 16. Because unchained fits to very large data sets

FIG. 16 (color online). Bs → ηs three point ground state amplitudes, for varying currents and momenta, as obtained from different
fitting strategies described in the text. Plotted central values indicate the number of standard deviations by which a fit result differs from
an “uncorrelated” fit. The size of the error bars is the ratio of the plotted fit error to that from an uncorrelated fit.
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are unreliable, for purposes of comparison we divide the
data into the smallest subsets that allow the extraction of
individual matrix elements. Such fits are uncorrelated in
that they neglect correlations among data at different
momenta, for different currents, and among the two decays.

The uncorrelated fits include only one decay mode
(Bs → K or Bs → ηs), data for only one simulation
momentum (000, 100, 110, or 111), and only one current
(Vt or Vk). These fits are still complicated, however, as they
require the minimum amount of data needed to extract a
single matrix element. This minimum number of correlators
consists of parent and daughter two point and three point
data, i.e. Bs → Bs, ηs → ηsð000Þ, and Bs → Vt → ηsð000Þ.
Including correlations results in marked improvement in
the accuracy of matrix elements obtained from the noisiest
data—that for Vk at large momenta. This improvement can
be traced to correlations of these data with the more precise
data for Vt (for the same decay and at a common
momentum), as demonstrated in Fig. 3.

TABLE IV. Bs priors and fit results for aEsimð0Þ
Bs

.

Ensemble Prior 2pt 2þ 3pt

C1 0.537(53) 0.53780(72) 0.53801(31)
C2 0.54(6) 0.54360(84) 0.54234(35)
C3 0.54(8) 0.5362(15) 0.53575(36)
F1 0.405(55) 0.4081(13) 0.40869(21)
F2 0.407(60) 0.40770(64) 0.40710(23)

TABLE V. K priors and fit results. For each ensemble, the first row lists priors, the second row gives two point correlator fit results, and
the third row shows simultaneous two and three point correlator fit results.

Ensemble aMð0Þ
K aEð0Þ

Kð100Þ aEð0Þ
Kð110Þ aEð0Þ

Kð111Þ

C1 0.312(17) 0.41(11) 0.48(23) 0.55(28)
0.31211(15) 0.40657(58) 0.48461(76) 0.5511(16)
0.31195(14) 0.40661(49) 0.48408(63) 0.5513(13)

C2 0.329(24) 0.45(15) 0.55(15) 0.61(31)
0.32863(18) 0.45406(85) 0.5511(16) 0.6261(75)
0.32870(16) 0.45434(73) 0.5506(11) 0.6273(35)

C3 0.356(25) 0.475(75) 0.58(20) 0.65(30)
0.35717(22) 0.47521(85) 0.5723(11) 0.6524(30)
0.35744(21) 0.47507(71) 0.57218(80) 0.6539(18)

F1 0.229(60) 0.32(24) 0.39(34) 0.43(40)
0.22865(11) 0.32024(66) 0.39229(86) 0.4515(25)
0.22861(12) 0.32020(61) 0.39192(82) 0.4528(16)

F2 0.246(36) 0.33(23) 0.40(30) 0.47(37)
0.24577(13) 0.33322(52) 0.40214(73) 0.4623(14)
0.24566(13) 0.33310(50) 0.40184(72) 0.4624(11)

TABLE VI. Like Table V but for the ηs.

Ensemble aMð0Þ
ηs aEð0Þ

ηsð100Þ aEð0Þ
ηsð110Þ aEð0Þ

ηsð111Þ

C1 0.411(9) 0.487(12) 0.553(50) 0.61(11)
0.41111(12) 0.48736(23) 0.55311(29) 0.61148(60)
0.41107(11) 0.48726(23) 0.55294(29) 0.61135(52)

C2 0.415(12) 0.52(5) 0.61(11) 0.68(23)
0.41445(17) 0.51949(46) 0.6063(12) 0.6797(31)
0.41446(15) 0.51934(44) 0.60647(67) 0.6794(18)

C3 0.412(20) 0.518(40) 0.61(12) 0.69(35)
0.41180(23) 0.51757(63) 0.60723(78) 0.6831(23)
0.41175(20) 0.51742(57) 0.60720(67) 0.6843(14)

F1 0.294(24) 0.37(10) 0.43(23) 0.48(34)
0.294109(93) 0.36965(31) 0.43278(45) 0.4867(13)
0.294066(88) 0.36988(26) 0.43301(38) 0.48729(88)

F2 0.293(30) 0.369(89) 0.43(18) 0.49(30)
0.29315(12) 0.36939(35) 0.43259(45) 0.48810(87)
0.29310(12) 0.36927(35) 0.43197(48) 0.48729(97)
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In addition to properly accounting for correlations in the
data, chaining reduces the time required to perform the fits.
While the uncorrelated fits required a total of 1 hour 14
minutes, the chained (8,8) fit required only 24 minutes. The
use of marginalization significantly reduces the time
required. The chained and marginalized ð6; 1Þ=ð8; 8Þ fit
required only 57 seconds.

APPENDIX B: CORRELATOR FIT RESULTS

The method for selecting priors for correlator fits was
described in detail in Appendix B of Ref. [10]. We use the
same method in this analysis. Tables IV, V, and VI tabulate
priors and fit results for ground state energies. They
compare results obtained from fits to two point correlation
function data to those from simultaneous fits to two and
three point correlation function data, as described in
Sec. IV. The combined fits show improved precision for
the Bs meson mass and the larger momenta daughter meson
energies, suggesting that the three point correlation func-
tion data provide additional information to the fit. Within
errors, the two point and simultaneous two and three point
fit results are consistent.

APPENDIX C: HPChPT z EXPANSION
FIT RESULTS

Group I parameters listed in Table VII insert error in the
fit based on uncertainty associated with input parameters—
quantities not determined by the data. Priors for r1 and
Mηphyss

are taken from Ref. [30]. We base our prior choice for
the BB�π coupling gBB�π on the combined works in
Ref. [31]. Resonance masses for the Blaschke factors
P0;þ introduced in Eq. (20) are calculated relative to the
Bs meson mass in our simulations,

MBsK
0 ¼ MBs

− ðMBs
−MBÞ þ 400ð1Þ MeV; ðC1Þ

MBsKþ ¼ MBs
− ðMBs

−MBÞ þ Δhyperfine
B ; ðC2Þ

MBsηs
0 ¼ MBs

þ 400ð1Þ MeV; ðC3Þ

MBsηsþ ¼ MBs
þ Δhyperfine

Bs
; ðC4Þ

and we refer to the shift relative to MBs
as ΔBsK;Bsηs

0;þ . The
MBs

−MB and hyperfine splittings are taken from the PDG
[23]. We tested increasing the uncertainty in the location of
the scalar pole, which we have taken to be 400(1) MeV
above the JP ¼ 0− state. A splitting of 400(50) MeV gives
identical results for the form factors, in both the central
value and error, but accommodates for part of the error in f0
via allowed uncertainty in M0. To reconstruct the form
factors in this case, correlations between P0 and the
coefficients of the z expansion must be accounted for.
By effectively fixing M0 we arrive at the same fit results
and can neglect uncertainty in P0 and correlations with the

coefficients. The 4% uncertainty associated with the
perturbative matching is accounted for by m∥ and m⊥,
where we use prior central values of zero and width 0.04, as
explained by Eq. (32) and the surrounding text. Matrix

TABLE VII. Group I priors for theHPChPT zexpansion for fBsK
0;þ

and fBsηs
0;þ . Quantities listed in five consecutive rows have ensemble-

dependent values corresponding to C1, C2, C3, F1, and F2.

Group I Prior Fit

r1 [fm] 0.3133(23) 0.3133(23)
gB�Bπ 0.51(20) 0.53(20)
Mηphyss

[GeV] 0.6858(40) 0.6858(40)

ΔBsK
0 [GeV] 0.3127(10) 0.3126(10)

ΔBsKþ [GeV] −0.04157ð42Þ −0.04157ð42Þ
ΔBsηs

0 [GeV] 0.4000(10) 0.4000(10)

ΔBsηsþ [GeV] 0.0487(22) 0.0487(22)
m∥ 0.00(4) 0.000(40)
m⊥ 0.00(4) 0.001(40)
r1=a 2.647(3) 2.6465(30)
r1=a 2.618(3) 2.6186(30)
r1=a 2.644(3) 2.6438(30)
r1=a 3.699(3) 3.6992(30)
r1=a 3.712(4) 3.7117(40)
aMBs

3.2303(12) 3.2300(12)
aMBs

3.2663(13) 3.2668(12)
aMBs

3.2336(13) 3.2333(12)
aMBs

2.30849(89) 2.30841(87)
aMBs

2.30035(90) 2.30048(88)

aMHISQ
K

0.31195(14) 0.31196(14)

aMHISQ
K

0.32870(17) 0.32868(17)

aMHISQ
K

0.35744(21) 0.35746(21)

aMHISQ
K

0.22861(12) 0.22861(12)

aMHISQ
K

0.24566(13) 0.24565(13)

aMasqtad
K

0.36530(29) 0.36532(29)

aMasqtad
K

0.38331(24) 0.38331(24)

aMasqtad
K

0.40984(21) 0.40983(21)

aMasqtad
K

0.25318(19) 0.25316(19)

aMasqtad
K

0.27217(21) 0.27219(21)

aMHISQ
π 0.15988(12) 0.15988(12)

aMHISQ
π 0.21097(16) 0.21097(16)

aMHISQ
π 0.29309(22) 0.29309(22)

aMHISQ
π 0.13453(11) 0.13453(11)

aMHISQ
π 0.18737(13) 0.18736(13)

aMasqtad
π 0.15971(20) 0.15971(20)

aMasqtad
π 0.22447(17) 0.22447(17)

aMasqtad
π 0.31125(16) 0.31125(16)

aMasqtad
π 0.14789(18) 0.14789(18)

aMasqtad
π 0.20635(18) 0.20365(18)

aMHISQ
ηs

0.41107(11) 0.41109(11)

aMHISQ
ηs

0.41447(15) 0.41442(15)

aMHISQ
ηs

0.41176(20) 0.41177(20)

aMHISQ
ηs

0.294066(89) 0.294053 (89)

aMHISQ
ηs

0.29310(12) 0.29312(12)
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elements for Bs → K and Bs → ηs use the same matching
factors, so we use common m∥;⊥ for both data sets. We use

values for r1=a from Ref. [6] and Masqtad
π;K from Ref. [32].

We use values for MHISQ
π;K;ηs

and MBs
from best fit results in

this and an ongoing B → π analysis using HISQ valence
quarks.
The group II parameters of Table VIII are quantities

determined by the fit. We choose priors for ak to be 0� 5,
based roughly on the unitarity constraint, and verify that fit
results are insensitive to variations in the prior width from
1 to 10. Chiral analytic terms are written in terms of
dimensionless parameters that are naturally Oð1Þ. For this
reason we use priors of zero with width 1 for c1 and c3.
Based on previous analyses using the same ensembles we
know that sea-quark effects are smaller than those of the
valence quarks, so we choose priors for c2 to be 0� 0.3.
The leading order HISQ discretization effects are Oðαsa2Þ,
so for the coefficients d1 and e1 which characterize the
Oða2Þ discretization effects, we choose priors of 0� 0.3.
Coefficients d2 and e2 characterize Oða4Þ effects, and we

use 0� 1. The coefficients h and l characterize light- and
heavy-quark mass-dependent discretization effects. These
terms are written in terms of Oð1Þ quantities, and we take
the coefficients to have priors of 0� 1.

TABLE VIII. Group II priors and fit results for the simultaneous HPChPT z expansion for fBsK
0;þ and fBsηs

0;þ .

Fit result Fit result

Group II Prior fBsK
0 fBsKþ fBsηs

0 fBsηsþ Group II Prior fBsK
0 fBsKþ fBsηs

0 fBsηsþ
a0 0(5) 0.24(10) 0.284(32) 0.04(12) 0.293(30) hð0Þ1

0(1) 0.31(92) 0.37(92) 0.0(1.0) 0.22(95)

a1 0(5) 0.7(1.0) −0.58ð16Þ 0.0(1.2) −0.99ð18Þ hð1Þ1
0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

a2 0(5) 1.9(3.6) 2.1(1.1) 2.1(4.3) 3.2(1.7) hð2Þ1
0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

cð0Þ1
0(1) 0.01(60) 0.07(11) −0.23ð99Þ −0.16ð15Þ hð0Þ2

0(1) 0.20(0.99) 0.02(99) 0.0(1.0) −0.15ð99Þ
cð1Þ1

0(1) 0.11(90) −0.16ð38Þ 0.0(1.0) −0.39ð25Þ hð1Þ2
0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

cð2Þ1
0(1) −0.04ð99Þ −0.62ð85Þ 0.11(98) −1.25ð86Þ hð2Þ2

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

cð0Þ2
0(0.3) −0.24ð27Þ 0.05(29) −0.03ð27Þ 0.15(29) hð0Þ3

0(1) 0.0(1.0) 0.1(1.0) 0.0(1.0) 0.0(1.0)

cð1Þ2
0(0.3) 0.00(30) −0.02ð30Þ 0.00(30) −0.01ð30Þ hð1Þ3

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

cð2Þ2
0(0.3) 0.00(30) −0.01ð30Þ 0.00(30) −0.01ð30Þ hð2Þ3

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

cð0Þ3
0(1) 0.37(99) −1.22ð74Þ 0.0(1.0) −0.19ð70Þ hð0Þ4

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

cð1Þ3
0(1) 0.0(1.0) 0.34(97) 0.0(1.0) −0.24ð94Þ hð1Þ4

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

cð2Þ3
0(1) 0.1(1.0) −0.20ð99Þ 0.0(1.0) 0.00(99) hð2Þ4

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

dð0Þ1
0(0.3) 0.16(18) −0.20ð22Þ −0.02ð21Þ −0.15ð24Þ lð0Þ1

0(1) 0.64(0.97) 0.18(0.98) 0.0(1.0) 0.24(98)

dð1Þ1
0(0.3) −0.01ð30Þ −0.06ð30Þ 0.00(30) −0.05ð29Þ lð1Þ1

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

dð2Þ1
0(0.3) 0.01(30) −0.03ð30Þ 0.00(30) −0.01ð30Þ lð2Þ1

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

dð0Þ2
0(1) −0.22ð92Þ −0.32ð94Þ −0.02ð85Þ −0.21ð94Þ lð0Þ2

0(1) 0.1(1.0) 0.0(1.0) 0.0(1.0) 0.1(1.0)

dð1Þ2
0(1) 0.0(1.0) −0.1ð1.0Þ 0.0(1.0) −0.07ð99Þ lð1Þ2

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

dð2Þ2
0(1) 0.0(1.0) −0.1ð1.0Þ 0.0(1.0) 0.0(1.0) lð2Þ2

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

eð0Þ1
0(0.3) −0.21ð17Þ 0.13(24) −0.09ð16Þ 0.15(23) lð0Þ3

0(1) −0.1ð1.0Þ 0.0(1.0) 0.0(1.0) 0.1(1.0)

eð1Þ1
0(0.3) −0.01ð30Þ 0.00(29) 0.00(30) −0.06ð28Þ lð1Þ3

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

eð2Þ1
0(0.3) 0.00(30) −0.02ð30Þ 0.00(30) −0.02ð30Þ lð2Þ3

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

eð0Þ2
0(1) 0.40(24) 0.12(30) 0.26(19) 0.02(25) lð0Þ4

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

eð1Þ2
0(1) −0.1ð1.0Þ 0.25(94) 0.0(1.0) −0.04ð83Þ lð1Þ4

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

eð2Þ2
0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) −0.03ð99Þ lð2Þ4

0(1) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

TABLE IX. Fit results for the scalar and vector Bs → ηs form
factors on each ensemble and for each simulated momentum.

Ensemble fBsηs
0 ð000Þ fBsηs

0 ð100Þ fBsηs
0 ð110Þ fBsηs

0 ð111Þ
C1 0.8135(17) 0.7352(22) 0.6813(19) 0.6381(21)
C2 0.8205(21) 0.7127(33) 0.6475(39) 0.5921(70)
C3 0.8140(26) 0.7095(32) 0.6504(31) 0.6069(39)
F1 0.8179(20) 0.7107(23) 0.6410(26) 0.5862(47)
F2 0.8229(24) 0.7096(31) 0.6383(33) 0.5874(51)

Ensemble fBsηsþ ð100Þ fBsηsþ ð110Þ fBsηsþ ð111Þ
C1 1.843(10) 1.5476(62) 1.3400(63)
C2 1.742(13) 1.3885(99) 1.150(17)
C3 1.6802(95) 1.3855(84) 1.1771(85)
F1 1.6928(71) 1.3497(55) 1.134(10)
F2 1.7012(97) 1.3588(72) 1.155(11)
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APPENDIX D: BS → ηS FORM
FACTORS AND RATIOS

The results of Bs → ηs correlator fits are tabulated in
Table IX and plotted as data points in the top two panels of
Fig. 17. From these plots one sees that simulation data

FIG. 17 (color online). Bs → ηs form factor results from a
simultaneous HPChPT z expansion are shown (top) relative to
coarse ensemble data (C1, C2, and C3), (middle) relative to fine
ensemble data (F1 and F2), and (bottom) in the continuum limit
with physical masses, extrapolated over the full kinematic range.

FIG. 19 (color online). Bs → ηs (top) f0 and (bottom) fþ
relative error components. The total error (solid line) is the sum in
quadrature of the components.

FIG. 18 (color online). The stability of the HPChPT z ex-
pansion is demonstrated by studying the fit results under various
modifications, discussed in Sec. V of the text.
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exhibit very small light sea-quark mass and lattice spacing
dependence. These fit results are obtained from a single
fit to both theBs → K andBs → ηs data described in Sec. IV.
As a result, the Bs → ηs fit results of Table IX are correlated
with the Bs → K results of Table II, as shown in Fig. 3.
The Bs → ηs form factor data of Table IX is extrapolated

to the physical quark mass, the continuum limit, and over
the entire kinematic range using the HPChPT z expansion
described in Sec. V. This fit is also done simultaneously
with the extrapolation of the Bs → K data. The fit functions
for the simultaneous chiral, continuum, and kinematic
extrapolation of Bs → ηs are equivalent to those of
Sec. V, with Eqs. (25), (26) modified as follows:

Dk ¼ 1þ cðkÞ1 xK þ cðkÞ2 δxK þ cðkÞ3 δxηs þ dðkÞ1 ða=r1Þ2

þ dðkÞ2 ða=r1Þ4 þ eðkÞ1 ðaEηsÞ2 þ eðkÞ2 ðaEηsÞ4; ðD1Þ

½logs� ¼ −
1þ 3g2

2
xK log xK −

1þ 3g2

6
xη log xη; ðD2Þ

with implicit indices in Eq. (D1) specifying a scalar or vector
form factor. Results of this fit for the Bs → ηs form factors
are shown relative to data, and extrapolated over the full

kinematic range of q2, in Fig. 17. The HPChPT z expansion
stability analysis outlined in Sec. V involved simultaneous
fits to both Bs → K and Bs → ηs data. The Bs → ηs fit
results for each of the modifications discussed in that
analysis are shown in Fig. 18. Because these results are
from a simultaneous fit, the values of χ2 in Fig. 5 are
applicable here as well and are reproduced for convenience
in Fig. 18. Note that the chiral analytic terms for Bs → ηs
differ slightly from those for Bs → K, cf. Eqs. (25) and (D1).
As a result, the NNLO analytic terms added to the Bs → ηs
fit function in modification 7 differ from those listed in
Eq. (34). Error breakdown plots for theBs → ηs form factors
are shown in Fig. 19.

R∥ðq2Þ ¼
fBsK
∥ ðq2Þ

fBsηs
∥ ðq2Þ ; ðD3Þ

R⊥ðq2Þ ¼
fBsK⊥ ðq2Þ
fBsηs⊥ ðq2Þ . ðD4Þ

In the ratios of form factors, the leading systematic error, that
due to one-loop perturbative matching, largely cancels.

FIG. 20 (color online). Ratios of Bs → K to Bs → ηs form
factors R∥;⊥ as functions of q2.

FIG. 21 (color online). Relative error components for (top) R∥
and (bottom) R⊥ as a function of q2. The total error is the sum in
quadrature of the components.
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Figure 20 plots the ratios as functions of q2 and shows that
they are most precisely determined at q2 ¼ ðMBs

−MηsÞ2,
where

R∥ððMBs
−MηsÞ2Þ ¼ 0.821ð22Þ; ðD5Þ

R⊥ððMBs
−MηsÞ2Þ ¼ 0.931ð30Þ: ðD6Þ

The errors of the ratios are broken down into components in
Fig. 21. Neglecting correlations among the Bs → K and
Bs → ηs decays yields ratios at this q2 with ∼30% larger
errors. When combined with lattice results for fBsηs

∥;⊥ using
HISQ b quarks, these ratios will provide a nonperturbative
determination of the NRQCD b → u current matching
factor, applicable to both Bs → K and B → π.
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