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Abstract

We study a relation between higher order comoments and dependence structure of equity portfolio

in the US and UK by relying on a simple portfolio approach where equity portfolios are sorted on the

higher order comoments. We �nd that beta and coskewness are positively related with a copula cor-

relation, whereas cokurtosis is negatively related with it. We also �nd that beta positively associates

with an asymmetric tail dependence whilst coskewness negatively associates with it. Furthermore,

two extreme equity portfolios sorted on the higher order comoments are closely correlated and their

dependence structure is strongly time-varying and nonlinear. Backtesting results of value-at-risk and

expected shortfall demonstrate the importance of dynamic modeling of asymmetric tail dependence

in the risk management of extreme events.
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1. Introduction

The Fama-French factor model (Fama and French, 1993) is a monumental turning point in the

modern asset pricing literature. Recently, Christo�ersen and Langlois (2013) study how an extreme

dependence structure associates with the Fama-French factors and address its role in broad area of

�nance. They also emphasize the importance of copula modeling for the extreme dependence struc-

ture. On the other hand, there is a group of researchers supporting the importance of higher order

comoments in asset pricing (Harvey and Siddique, 2000; Dittmar, 2002; Bakshi et al., 2003; Ang et al.,

2006; Guidolin and Timmermann, 2008; Chabi-Yo, 2012; Maheu et al., 2013; Chabi-Yo et al., 2014a).

Although those are less popular than the Fama-French factors among practitioners, those have been

rigorously developed from theoretical perspectives. Hence, it is academically interesting to study

how the extreme dependence structure is related with the higher order comoments and address their

implications in �nance.

A few papers address a relation between the higher order comoments and the tail dependence of

equity portfolio. They show that it has a close relationship with, not only beta, but also coskewness.

For example, Garcia and Tsafack (2011) show that a strong dependence in lower returns creates a large

negative coskewness in their international bond and equity market portfolio analysis. Chabi-Yo et al.

(2014b) also show that a strong lower tail dependence creates a large negative coskewness. In addi-

tion they show that beta is monotonically increasing with respect to the lower tail dependence. From

these studies, we are able to draw an inference that the tail dependence is a key driver to create the

higher order comoments of the equity portfolio. Thus our �rst research question is how the higher

order comoments associate with the dependence structure of the equity portfolio. We approach our

research question by relying on a simple portfolio approach. Speci�cally, we sort equities into port-

folios based on the size of the higher order comoment, i.e., from low beta (coskewness, cokurtosis)

to high beta (coskewness, cokurtosis), and test patterns of a copula correlation or an asymmetric

dependence across the characteristic-sorted portfolios.

We �nd that there are statistically signi�cant patterns between the higher order comoments and

the dependence structure of the equity portfolio. First, beta and coskewness are positively related

with the copula correlation whilst cokurtosis is negatively related with it. Second, we �nd the asym-

metry that the lower tail dependence is stronger than the upper tail dependence for all portfolios.
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Third, beta is positively related with the asymmetric tail dependence, whereas coskewness is nega-

tively related with it.

Our second research question is what economic implication is contained by the relation between

higher order comoments and the dependence structure of the equity portfolio. We �nd its implication

from risk management perspectives. We often long and short two extreme portfolios to hedge their

risk. Thus the higher order comoment risk can be also hedged by buying and selling two extreme

beta (coskewness, cokurtosis) portfolios, i.e. Buying Minus Selling (BMS) portfolio. However, if our

inference is correct in the �rst research question, the higher order comoments are unable to be key

inputs for the risk management of extreme events. Rather, a key driver is the tail dependence which

creates the higher order comoments. To investigate our second research question, we apply backtest-

ing tools to alternative models: dynamic copula models, multivariate GARCH model and univariate

model. The dynamic copula models fully incorporate the dependence structure of two extreme port-

folios whilst the multivariate GARCH model takes into account only the second order comoment.

The univariate model considers neither the tail dependence nor the second order comoment.

The backtesting results strongly support the importance of modeling the time-varying and asym-

metric dependence of the BMS portfolio. First, we �nd that the dependence structure of the BMS port-

folio is strong, time-varying and asymmetric for all characteristic-sorted portfolios. Second, both the

multivariate GARCH model and the univariate model signi�cantly underforecast value-at-risk (VaR)

and expected shortfall (ES). Third, the dynamic copula models show not only robust coverage ability

but also statistical accuracy for VaR and ES.

Besides two important research questions, we develop a generalized dynamic asymmetric copula.

Our proposed model takes into account two important characteristics of equity portfolios; a time-

varying dependence and an asymmetric tail dependence. First, we employ a generalized hyperbolic

skewed t distribution (see Demarta and McNeil, 2005) to capture the asymmetric dependence struc-

ture. Second, the time-varying copula correlation is implied by the generalized autoregressive score

(Creal et al., 2013). Hence, our proposed model can cover for the most types of the dependence struc-

ture revealed by the equity portfolios. We apply our copula to estimating the dependence structure

in our analysis.

Our study makes three contributions. First, we provide comprehensive analysis on the relation
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between higher order comoments and the dependence structure of the equity portfolio. We �nd the

striking evidence that the higher order comoments are closely related with the dependence structure

of the equity portfolio in the US and UK. Second, we demonstrate the importance of modeling the

time-varying and asymmetric dependence of the BMS portfolio in the risk management of extreme

events. The backtesting results show that the ignorance of dependence asymmetry and dynamics is

costly in the risk management. Third, we propose the generalized dynamic asymmetric copula by

combining the generalized hyperbolic skewed t distribution and the generalized autoregressive score.

Our proposed copula performs well in estimating the dependence structure of the BMS portfolio and

forecasting both VaR and ES.

The remainder of this paper is organized as follows. In Section 2, we detail the way we employ

for the portfolio construction and the dynamic asymmetric copula we propose. The data used in

the paper and the descriptive statistics are in Section 3. In Section 4, we focus on the analysis of the

relation between the higher order comoments and the dependence structure. In Section 5, we analyze

the role of the dependence structure of the BMS portfolio in the forecasting based risk management

application. In Section 6, we perform the robustness check to di�erent estimation periods. Finally,

conclusions are given in Section 7.

2. Methodology

In this section, we detail a way we employ for the portfolio construction and models we use in

this paper.

2.1. Portfolio Construction

A return on an asset is de�ned as the �rst di�erence of the log price, rt = logPt − logPt−1. We

construct portfolios sorted on beta, coskewness and cokurtosis, respectively. Following the de�nition

of Bakshi et al. (2003) and Conrad et al. (2013), we de�ne the market beta, coskewness and cokurtosis

by

BETAi,t =
E [(ri,t − E [ri,t]) (rm,t − E [rm,t])]

V ar (rm,t)
, (1)

COSKi,t =
E
[
(ri,t − E [ri,t]) (rm,t − E [rm,t])

2]√
V ar (ri,t)V ar (rm,t)

, (2)

COKTi,t =
E
[
(ri,t − E [ri,t]) (rm,t − E [rm,t])

3]
V ar (ri,t)V ar (rm,t)

. (3)

4



All stocks are sorted on each characteristic above and divided into �ve groups based on the 20th,

40th, 60th and 80th percentiles. We estimate beta, coskewness and cokurtosis each year using all

the daily data within the year. Then, we annually rebalance portfolios, value weighted based on the

capitalization of each stock.1 We denote by BETA1 (COSK1, COKT1) the portfolio formed by stocks

with the lowest beta (respectively, coskewness, cokurtosis), and BETA5 (COSK5, COKT5) denotes the

portfolio formed by stocks with the highest beta (coskewness, cokurtosis).

2.2. Modeling Marginal Density

We allow each portfolio return series to have time-varying conditional mean (µi,t) and variance

(σ2
i,t), and we also assume that the standardized returns zi,t = (ri,t − µi,t) /σi,t are identically dis-

tributed. We �t an AR model to the conditional mean

ri,t = ci +

p∑
k=1

φi,kri,t−k + εi,t, where εi,t = σi,tzi,t (4)

and an asymmetric GARCH model, namely GJR-GARCH(1,1,1) (see Glosten et al., 1993), to the con-

ditional variance

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1 + γiε

2
i,t−1Ii,t−1 (5)

where Ii,t−1 = 1 if εi,t−1 < 0, and Ii,t−1 = 0 if εi,t−1 ≥ 0.

Let zi,t be a random variable with a continuous distribution Fi. For the parametric model, we

assume that zi,t follows the skewed Student’s t distribution of Hansen (1994):

zi,t ∼ Fskew−t,i (ηi, λi) , ui,t = Fskew−t,i (zi,t; ηi, λi) (6)

whereFskew−t,i denotes the cumulative distribution function, ηi denotes the degrees of freedom, λi the

skewness parameter, and ui,t the probability integral transformation. Hence, we can easily compute

the probability given the estimates of parameters; µ̂i,t, σ̂i,t, η̂i and λ̂i. For the nonparametric model,

we use the empirical distribution function to obtain the estimate of Fi:

F̂i (z) ≡ 1

T + 1

T∑
t=1

1 {ẑi,t ≤ z} , ûi,t = F̂i (ẑi,t) . (7)

We estimate all parameters in (5) – (6) using the maximum likelihood estimation. Then we generate

1We compute the market capitalization of each company (stock price multiplied by the number of shares outstanding)
and then use it to assign weights.
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each marginal density parametrically or nonparametrically for the purpose of copula construction.

2.3. Generalized Hyperbolic Skewed t Copulas

In this section, we provide a brief introduction to the generalized hyperbolic skewed t (GHST)

distribution which we employ to capture asymmetric extreme dependence structure between equity

portfolios in our study. It belongs to the class of multivariate normal variance mixtures and has the

stochastic representation

X = µ + γW +
√
WZ (8)

for a d-dimensional parameter vector γ. Further, W is a scalar valued random variable following an

inverse gamma distribution W ∼ IG (ν/2, ν/2) and Z is a d- dimensional random vector following

a normal distribution Z ∼ N (0,Σ) and is independent of W (see Demarta and McNeil, 2005).

The density function of multivariate GHST distribution is given by

fskt (z; γ, ν,Σ) =
2

2−(ν+d)
2 K ν+d

2

(√
(ν + z∗′Σ−1z∗) γ′Σ−1γ

)
ez
∗′Σ−1γ

Γ
(
ν
2

)
(πν)

d
2 |Σ|

1
2 (ν + z∗′Σ−1z∗)

−ν+d
2
(
1 + 1

ν
z∗′Σ−1z∗

)−ν+d
2

(9)

where Kλ, ν and γ denote the modi�ed Bessel function of the third kind, the degree of freedom

and skewed parameter vector, respectively. The density of multivariate converges to the conven-

tional symmetric t density when γ tends to 0. For the parametric case, we de�ne the shocks z∗i,t =

F−1
skt,i (ui,t) = F−1

skt,i (Fskew−t,i (zi,t)) where F−1
skt,i (ui,t) denotes the inverse cumulative distribution

function of the univariate GHST distribution and it is not known in closed form but can be well

approximated via simulation. Fskew−t,i denotes the cumulative distribution function of skewed t dis-

tribution in Hansen (1994). Note that we use z∗i,t not the standardized return zi,t. For the nonpara-

metric case, we use the EDF to obtain the estimate of ui,t. A more detailed discussion can be found

in Christo�ersen et al. (2012).

The probability density function of the GHST copula de�ned from above multivariate GHST den-

sity of Eq. (9) is given by

cskt (z; γ, ν,Σ) =
2

(ν−2)(d−1)
2 K ν+d

2

(√(
ν + z∗′Σ−1

t z∗
)
γ′Σ−1

t γ
)
ez
∗′Σ−1

t γ

Γ
(
ν
2

)
|Σ|

1
2
(
ν + z∗′Σ−1

t z∗
)−ν+d

2
(
1 + 1

ν
z∗′Σ−1

t z∗
)−ν+d

2

×
d∏
i=1

(√
(ν + (z∗i )

2) γ2
i

)− ν+1
2 (

1 + 1
ν
(z∗i )

2
) ν+1

2

K ν+1
2

(√
(ν + (z∗i )

2) γ2
i

)
ez
∗
i γi

(10)
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where Σt is the time-varying covariance matrix. Speci�cally, Σt = DtRtDt, where Dt is an identity

matrix in copula modeling and Rt is the time-varying correlation matrix. Note that Christo�ersen

et al. (2012) applied the GHST copula by constraining all the margins to have the same asymmetry

parameter. Di�erent from their model, our model consider a more generalized case by allowing the

copula to have the di�erent asymmetry parameters across margins. Although our model can be used

for high-dimensional copula modeling, in this paper, only the bivariate case is considered as modeling

the dependence and market risk of the BMS portfolio is our main task.

2.4. Generalized Autoregressive Score Model

We estimate the dynamic copula model based on the Generalized Autoregressive Score (GAS)

model of Creal et al. (2013). We assume that a correlation parameter δt is dynamic and updated as

function of its own lagged value. For example, the copula correlation is a scalar for the bivariate case

and can be obtained from

Rt =

 1 δt

δt 1

 . (11)

To make sure that it always lies in a pre-determined range, e.g. δt ∈ (−1, 1), the GAS model utilizes

a strictly increasing transformation. Following Patton (2012), the transformed correlation parameter

is denoted by gt:

gt = h (δt)⇔ δt = h−1 (gt) , (12)

where δt = (1− e−gt) / (1 + e−gt). Further, the updated transformed parameter gt+1 is a function

of a constant ω̄, the lagged transformed parameter gt, and the standardized score of the copula log-

likelihood Q−1/2
t st:

gt+1 = ω̄ + ηQ
−1/2
t st + ϕgt, (13)

where st ≡ ∂ log c (ui,t, uj,t; δt) /∂δt and Qt ≡ Et−1 [sts
′
t].

Since the GAS model is an observation driven model, we can estimate the parameters by maximum

likelihood estimation

δ̂t = argmax
δt

n∑
t=1

log c (ui,t, uj,t; δt) . (14)

The dynamic copulas are parametrically estimated using maximum likelihood estimation. When

the marginal distributions are estimated using the skewed t distribution, the resulting joint distribu-

tion is fully parametric. When the marginal distribution is estimated by the empirical distribution
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function, then the resulting joint distribution is semiparametric. More details can be found in the

Appendix A.1 and A.2.

2.5. Monotonicity Test

We test a monotonic pattern between the higher order comoments and the dependence structure

of the equity portfolio using a monotonicity test proposed by Patton and Timmermann (2010). It

tests whether there is a signi�cantly increasing or decreasing pattern of average dependence measure

such as a copula correlation or an asymmetric tail dependence when moving from the portfolio of

low higher order comoment (P1) to the one with high higher order comoment (P5).

There are two types of monotonicity tests. One is “MR” test and the other is “UP (Down)” test.

The MR test statistic tests for a monotonically increasing dependence. The UP (Down) test is less

restrictive and simple. It tests for a generally increasing (decreasing) pattern without requiring the

monotonicity of the average dependence measure. Let di denote an average dependence measure for

a portfolio i. Then the MR test requires that d1 < d2 < · · · < d5 for a monotonically increasing

pattern. It formulates the null hypothesis against the alternative one as

H0 : ∆ ≤ 0 against H1 : min
i=1,...,4

∆i > 0, (15)

wehre ∆ is a vector of di�erences in adjacent average dependences, (d2 − d1, d3 − d2, d4 − d3, d5 − d4),

and ∆i is the ith element of ∆. The Up test formulates the null hypothesis of a �at pattern against

the alternative hypothesis as

H0 : ∆ = 0 against H1 :
4∑
i=1

|∆i| 1 {∆i > 0} > 0. (16)

The Down test follows in an analogous way.

The choice of test statistics for MR, Up and Down are

MR: JT = min
i=1,...,4

∆i, (17)

Up: J+
T =

4∑
i=1

|∆i| 1 {∆i < 0} , (18)

Down: J−T =
4∑
i=1

|∆i| 1 {∆i > 0} . (19)

Each test statistic does not have a standard limiting distribution under the null hypothesis, but critical
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values or p-value can be obtained using a bootstrap approach.

3. Data Sources and Sample Construction

Stock prices are obtained from Datastream. Daily returns of the 500 stocks listed in the S&P 500

and those of the 100 stocks listed in FTSE 100 are used to construct portfolios. Our data, spanning

the period of global �nancial crisis of 2007-2009 and European sovereign debt crisis of 2010-2011, go

from January 4, 2000 to December 31, 2012, resulting in 3,268 daily observations for each stock in US

and 3,283 daily observations for each stock in UK.

Given the one-year estimation period, we estimate beta, coskewness and cokurtosis using daily

data (250 days) for each stock.2 We rank securities by the estimates of beta (coskewness, cokurtosis)

and form into �ve portfolios, lowest (1st) – highest (5th). Then we calculate daily returns for each

portfolio within the estimation period.3 In this way, we construct �fteen di�erent portfolios for each

market. The �fteen portfolios consist of one for each of the three characteristics (beta, coskewness

and cokurtosis), divided into �ve portfolios. We annually rebalance all the portfolios and calculate

12-month daily returns.4 We skip over presenting descriptive statistics for all portfolios since those

have been already reported by many literature.5

4. Higher Order Comoments and Dependence Structure

In this section, we investigate a relation between the higher order comoments and the dependence

structure of the equity portfolio using a simple portfolio approach. We employ two measures to de-

scribe the dependence structure. First, we measure a general dependence between the characteristic-

sorted equity portfolio and the market by a copula correlation. Second, we measure the magnitude of

asymmetric tail dependence by di�erencing lower tail dependence and upper tail dependence. We es-

2 Since we estimate higher order comoments using daily returns, we use a short estimation period (12 months).
However, many studies often �nd that it is di�cult to accurately estimate the higher order comoments de�ned in equation
(1), (2) and (3). The estimation accuracy is de�nitely associated with a sample size. For this reason we consider shorter
(9 months) and longer (18 months) estimation periods to see how robust our results are to the sample size. In particular,
our interest focuses on the relation between higher order comoments and dependence structure in section 4 and the
backtesting results in section 5. We investigate the robustness of our results to di�erent estimation periods in section 6.
We thank Associate Editor for pointing out this issue.

3We also calculate daily reruns for the next 12-months, which are forward looking portfolio returns, and �nd similar
forecasting results. Since we are interested in how higher order comoments are related with the extreme dependence
structure, we prefer portfolio returns calculated within the estimation period to forward looking returns.

4We also consider monthly rebalancing of portfolios and �nd results consistent with annual rebalancing.
5The descriptive statistics are available upon request from author.
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timate them using our proposed dynamic asymmetric copula model in which the GHST copula takes

into account the asymmetric nature of the dependence structure and GAS embodies the time-varying

nature of the dependence structure.

4.1. Copula Correlation

Figure 1 plots an average copula correlations for equity portfolios sorted on the higher order co-

moments. We �nd the increasing patterns of average copula correlations when moving from the low

beta portfolio (BETA1) to the high beta portfolio (BETA5). In particular, the UK stock market shows

the monotonically increasing pattern. We also �nd that the average copula correlations generally

increase when moving from the low coskewness portfolio (COSK1) to the high coskewness portfolio

(COSK5). In contrast, there is the decreasing pattern in the UK stock market when moving from the

low cokurtosis portfolio (COKT1) to the high cokurtosis portfolio (COKT5). However, we �nd no

notable pattern for cokurtosis in the US stock market.

[INSERT FIGURE 1 ABOUT HERE]

We formally test the increasing or decreasing pattern of copula correlation in Table 1 using the

monotonicity test. Panel A reports test results for the US stock market. Since the MR statistics are not

rejected for all portfolios, there are no signi�cant monotonic patterns. We however �nd some signif-

icant patterns under less restrictive conditions. The UP statistics are rejected for beta and coskew-

ness. Thus there is the signi�cant increasing pattern when moving from BETA1 (COSK1) to BETA5

(COSK5). Panel B reports test results for the UK stock market. The MR statistic is rejected only for

beta. There is thus the signi�cant monotonically increasing pattern when moving from BETA1 to

BETA5. We also �nd signi�cant patterns for coskewness and cokurtosis under less restrictive con-

ditions. The Up statistic is rejected for coskewness and the Down statistic is rejected for cokurtosis.

Thus there is the signi�cant increasing (decreasing) pattern when moving from COSK1 (COKT1)

to COSK5 (COKT5). Overall, the statistical evidences are consistent with the previous descriptive

evidences.

[INSERT TABLE 1 ABOUT HERE]
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4.2. Asymmetric Tail Dependence

Figure 2 plots the average di�erence between lower tail dependence (LTD) and upper tail depen-

dence (UTD) for equity portfolios sorted on higher order comoments. We calculate both tail depen-

dence coe�cients by the parametric approach of McNeil et al. (2005). See Appendix A.3. for details.

First, we �nd the asymmetry that the average LTD is stronger than the average UTD for all portfolios.

Second, beta is positively related with the asymmetric tail dependence. There is the increasing pat-

tern of the average tail di�erence when moving from BETA1 to BETA5. Hence, the more sensitive the

portfolio is to market changes, the more sensitively investors tend to react to the market downturn.

This tendency might create the stronger dependence in the lower tail. Third, in contrast, coskew-

ness is negatively related with the asymmetric tail dependence. There is the decreasing pattern when

moving from COSK1 to COSK5. Investors would prefer a positive coskewness since it represents a

higher probability of extreme positive returns in the portfolio over market returns. Hence, when the

portfolio returns are positively coskewed over market returns, investors tend to react less sensitively

to market changes.

[INSERT FIGURE 2 ABOUT HERE]

We also formally test the monotonic increasing or decreasing pattern of the average di�erence

in Table 2. The MR statistics are not rejected for all portfolios in both stock markets. We �nd that

the Up statistic is rejected for beta in the UK stock market. Thus there is the signi�cant increasing

pattern of the asymmetry for the beta portfolio. We also �nd that the Down statistic is rejected for

coskewness in the US stock market. Thus there is the signi�cant decreasing pattern of the asymmetry

for the coskewness portfolio. Overall, the statistical test results are consistent with the descriptive

evidences.

[INSERT TABLE 2 ABOUT HERE]

5. Risk Management Application

We �nd that there are the signi�cant relations between the higher order comoments and the

dependence structure of the equity portfolio in section 4. The evidences imply that the higher or-

der comoments would not be key inputs for the portfolio risk management of extreme events since
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there are unexplained information for the tail dependence by the higher order comoments. Thus we

investigate its implication from the risk management perspectives in this section.

We often long and short two extreme portfolios to hedge its risk. Following this simple strategy,

we buy the highest beta (coskewness, cokurtosis) portfolio and sell the lowest beta (coskewness,

cokurtosis) one to construct a BMS portfolio,

rbms,t = rh,t − rl,t, (20)

where rh,t and rl,t denote returns from the highest beta (coskewness, cokurtosis) portfolio and the

lowest beta (coskewness, cokurtosis) one, respectively. Note that Table 3 de�nes several BMS port-

folios.

[ INSERT TABLE 3 ABOUT HERE ]

As demonstrated in the section 4, the higher order comoments are closely related to the extreme

dependence structure. Hence, we can expect that two extreme portfolios of the BMS portfolio are

able to create a strong extreme dependence structure which should be taken into account in the risk

modeling.

5.1. Diagnosis of BMS Portfolio

We �rst investigate the characteristics of BMS portfolio returns. We look at not only univariate

characteristics but also multivariate ones. We get a clue to the modeling of the BMS portfolio returns

for VaR and ES from this diagnosis.

5.1.1. Marginal Distribution

Before modeling the joint distribution of portfolio returns, it is necessary to select a suitable model

for the marginal return distribution, because the misspeci�cation of the univariate model can lead to

biased copula parameter estimates. To allow for autocorrelation, heteroskedasticity and asymmetry,

we use the models introduced in Section 2.2.

We estimate model parameters using maximum-likelihood estimation (MLE). The results of AR

and GARCH estimations are presented in Table 4. For each portfolio return series, the variance

persistence implied by the model is close to 1. For all the series, leverage e�ect parameters γ are

signi�cantly positive implying that a negative return on the series increases volatility more than a

positive return with the same magnitude.
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The obvious skewness and high kurtosis of returns lead us to consider the skewed Student’s t

distribution of Hansen (1994) for modeling residuals. To evaluate the goodness-of-�t for the skewed

Student’s t distribution, the Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) tests are im-

plemented and the p-values from these two tests are reported in Table 4.6 Our results suggest that

the skewed Student’s t distribution is suitable for modeling residuals. Thus, in general, the diagnosis

provides evidences that our marginal distribution models are well-speci�ed and therefore, we can

reliably use the combination of AR, GARCH and skewed Student’s t distribution, allied to copulas to

model the dependence structure.

[ INSERT TABLE 4 ABOUT HERE ]

5.1.2. Time Varying Dependence

There is the considerable evidence that the conditional mean, volatility and covariance of �nancial

time series are time-varying. This, possibly, suggests the reasonable inference that the dependence

structure may also change over time.

We now consider three tests for time-varying dependence. The �rst one is a naïve test for a

break in rank correlation at speci�ed points in the sample, see Patton (2006). A noticeable limitation

of this test is that the break point of dependence structure (e.g. a speci�ed date) must be known

a priori. The second test for time-varying dependence allows for a break in the rank correlation

coe�cient at some prior unspeci�ed date, see Andrews (1993). The third test is the ARCH LM test

for time-varying volatility, see Engle (1982). The critical values for the test statistic can be obtained

by using a iid bootstrap algorithm, see Patton (2012). The results of the above tests for time-varying

dependence are summarized in Table 5. Suppose that there is no priori date for the timing of break, we

�rst consider naïve tests for the break at three chosen points in our sample, at t*/ T ∈{0.15,0.50,0.85},

which corresponds to the dates 10-Dec-2001, 03-Jul-2006, and 17-Jan-2011. Then we consider another

test in Andrews (1993) for a dependence break of unknown timing. As can be seen from Table 5,

for almost all the equity portfolios, the p-value is signi�cant at the 5% signi�cance level showing

clear evidence against a constant rank correlation with a one-time break. To detect whether the

dependence structures between the high and low portfolios signi�cantly changed during the global

6The p-values are obtained based on the algorithm suggested in Patton (2012)
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�nancial crisis of 2007-2009 and the European sovereign debt crisis of 2010-2011, we use 15-Sep-2008

(the collapse of Lehman Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two break points. We

�nd that the dependence between BETA1 and BETA5 signi�cantly changed around those dates, as all

the p-values are fairly small. For other portfolio pairs, time homogeneity of the dependence structure

is rejected by at least one test.

[ INSERT TABLE 5 ABOUT HERE ]

Overall, we �nd the evidence against the time homogeneity of the dependence structure between

the standardized residuals of portfolios. This result shows that the standard portfolio diversi�cation

and risk management techniques based on constant correlations (or dependence) are inadequate,

especially during �nancial crisis. There are considerable evidences that the time-varying nature is

most closely related to the performance of risk forecast.

5.1.3. Asymmetric Tail Dependence

Standard models fail to take into account a noteworthy feature during �nancial crisis that asset

returns often become more highly correlated (in magnitude). To test for the presence of this feature,

we use threshold correlations. We �nd that the lower threshold correlations are always greater than

the upper threshold correlation indicating that portfolios are more correlated when both of them per-

form poorly. To �nd out whether this asymmetry is statistically signi�cant, we perform the symmetry

tests of Hong et al. (2007). Table 6 reports the test results and shows that, as measured by threshold

correlation, half of the portfolios are signi�cantly asymmetric: BMS(Beta,US/UK) and BMS(Cokt,UK).

[ INSERT TABLE 6 ABOUT HERE ]

Although the threshold correlation o�ers some insights, it is still based on (linear) correlation

and, therefore, does not take into account nonlinear information. To capture nonlinear dependence,

we consider a copula-based tail dependence. Compared with (linear) correlation, the key advantage

of copulas is that they are a “pure measure” of dependence, which cannot be a�ected by the marginal

distributions (see Nelsen, 2006). Table 7 reports the coe�cients of lower tail dependence (LTD) and

upper tail dependence (UTD) and the di�erence between them. The coe�cients are estimated using

McNeil et al. (2005) with the Student’s t copula. For example, the LTD coe�cient for BETA1 and
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BETA5 in the US equity market is 0.171 and the UTD coe�cient is 0.018. Then we �nd the signi�cant

di�erence between the UTD and LTD coe�cients. In the UK equity market, we also �nd the evidence

of asymmetric dependence in that all the portfolio pairs exhibit greater correlation during market

downturns than market upturns.

[ INSERT TABLE 7 ABOUT HERE ]

This �nding about the asymmetric dependence between the high beta (coskewness, cokurtosis)

portfolio and the low beta (coskewness, cokurtosis) portfolio is possibly associated with the fact that

investors have more uncertainty about the economy, and therefore pessimism and panic spread from

one place to another more quickly during market downturns. Another possible explanation is the

impact of liquidity risk. Some “uncorrelated” liquid assets suddenly become illiquid during market

downturns, and, therefore, even a small trading volume can lead to huge co-movements.

5.1.4. Choice of Copula

A bunch of copulas have been introduced in �nance; as a result, we face to select a copula that

accurately �ts our sample. To this end, we compare several copulas often used for �nancial time

series: Gaussian, Student-t (ST), Skewed Student-t (SKT) (Christo�ersen et al., 2012), Plackett, Frank,

(rotated) Clayton, (rotated) Gumbel and Symmetrized Joe-Clayton (SJC).

The Gaussian copula is constructed from a multivariate normal distribution; thereby, it captures

neither asymmetry nor fat tails of dependence structure. For this reason, the practice of using the

Gaussian copula in modeling the dependence structure of asset returns has come under a lot of criti-

cism in the past few years. The ST copula is popular because of its e�ective modeling of fat tails but it

is unable to capture the asymmetric dependence. The SKT copula has been developed by considering

both asymmetry and fat tails of dependence structure.

We also consider several important Archimedean copulas. These copulas are popular because of

their easy construction. The Plackett and Frank copulas are symmetric copulas which fail to take into

account the presence of asymmetry in the tail dependence. Both the Clayton and Gumbel copulas are

asymmetric. The Clayton copula exhibits greater dependence in the lower tail than in the upper tail

while the Gumbel copula exhibits greater dependence in the upper tail than in the lower tail (Nelsen,

2006). In order to generate dependence in the opposite tail from both copulas, we can use the so

15



called rotated copula. For example, the rotated Clayton copula exhibits greater dependence in the

upper tail than in the lower tail. The SJC copula can capture the asymmetric dependence in the tails

by separately parametrizing the left and the right tail. It slightly modi�es the Joe-Clayton copula

(Joe, 1997) which tends to report the asymmetric dependence even if the tail dependence is perfectly

symmetric.

We standardize individual portfolio returns using the AR-GJR-GARCH models in Table 4 and �t

the standardized residuals of portfolios with suggested copulas. Then we compute log-likelihood

(LL), Akaike information criterion (AIC) and Bayesian information criterion (BIC) from each copula

estimation and report results in Table 8. In general, the model with the highest LL or the lowest

AIC/BIC is preferred. As predicted from the previous diagnosis of BMS portfolios, the SKT copula

most accurately �ts the standardized portfolio returns in both markets. It records the highest LL and

the lowest AIC/BIC for all portfolios. Hence, the results suggest to select the SKT copula to capture

both asymmetry and fat tails of dependence structure in our sample.

[ INSERT TABLE 8 ABOUT HERE ]

5.2. Backtesting of Value-at-Risk

The diagnosis shows that forecasting models based on a constant dependence or a symmetric de-

pendence are inadequate, especially during the �nancial crisis. Thus the time varying and asymmetric

dependence structure between two extreme portfolios provides us a strong motivation to introduce

a dynamic asymmetric copula model for forecasting portfolio VaR and ES de�ned by

V aRbms,t (α) = inf {x | P (rbms,t ≤ x|Ft−1) ≤ 1− α} , (21)

ESbms,t (α) = E [rbms,t | rbms,t < V aRbms,t (α)] , (22)

where Ft−1 represents the information set available at t− 1. In our study, α is assumed to be either

0.95 or 0.99, and we report results focusing on 0.99 which is the most widely used value for market risk

management. Once the dynamic copula parameters have been estimated, Monte Carlo simulation is

used to generate 5000 values of r(s)
h,t and r(s)

l,t and, hence, of r(s)
bms,t. From the empirical distribution of

r
(s)
bms,t, the desired quantile VaR and ES are estimated. See Appendix A.4. for detailed algorithm.

We compare four forecasting models. First, we employ the GHST copula which takes into account

the asymmetric tail dependence in the model. The time varying dependence is implied by the GAS
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model. Second, we employ Student’s t (ST) copula combined with the GAS model. The Student’s

t cannot specify the asymmetric tail dependence in the model. Hence, we can test the e�ect of the

asymmetric tail dependence on the VaR and ES forecasts by comparing ST with GHST. Third, we

employ the simulation based multivariate GARCH model, namely dynamic conditional correlation

(DCC; Engle, 2002).7 This model takes into account a linear correlation between two extreme port-

folios but ignores their tail dependence. Thus we can test the e�ect of the (tail) dependence on the

forecast by comparing DCC with the dynamic copula models. Fourth, we employ the �ltered histor-

ical simulation (FHS; Barone-Adesi, et al., 2002). FHS is the most popular and successful simulation

based univariate VaR model. However, it does not explicitly take into account the dependence struc-

ture between two extreme portfolios. Thus we can test the e�ect of the correlation on the forecast

by comparing FHS with the dynamic copula models or DCC.

We apply standard backtesting tools to evaluating the coverage ability and the statistical accuracy

of the VaR models. The coverage ability is evaluated by the empirical coverage probability (ECP)

and Basel Penalty Zone (BPZ; Basel Committee on Banking and Supervision, 1996). The statistical

accuracy is evaluated by the conditional coverage test (CC test; Christo�ersen, 1998) and the dynamic

quantile test (DQ test; Engle and Manganelli, 2004). See Appendix A.5. for details.

Backtesting of ES is not a straightforward task because it fails to satisfy elicitability (see Gneiting,

2011). Thus we simply evaluate the ES forecast based on a loss function which enables researchers to

rank the models and specify a utility function re�ecting the concern of the risk manager. We de�ne

two loss functions:

Absolute error : =
∣∣∣rbms,s − ÊSbms,s (α)

∣∣∣ 1{rbms,s < V̂ aRbms,s (α)
}
, (23)

Squared error : =
(
rbms,s − ÊSbms,s (α)

)2

1
{
rbms,s < V̂ aRbms,s (α)

}
, (24)

for s = 1, . . . , N . In order to rank the models, we compute the mean absolute error (MAE) and the

mean squared error (MSE). This evaluation is in line with the framework proposed by Lopez (1999)

for the VaR evaluation. The smaller value indicates more accurate forecast.

7We also consider other multivariate GARCH models such as BEKK-GARCH or CCC-GARCH. We �nd that DCC-
GARCH provides more stable estimation and forecasting results than others. Hence, we report forecasting results by
DCC-GARCH in our paper.
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In order to evaluate VaR and ES forecasts, we use a rolling window instead of the full sample period

and set a window size at 250 (one trading year) for all the data sets.8 All the models are recursively

re-estimated throughout the out-of-sample period and the time-varying correlation coe�cients of

copulas are implied by the GAS model. For the UK portfolios, we estimate the VaR and ES models

using 250 business days over the period 4 Jan. 2000 - 15 Dec. 2000, and compute the one-day-ahead

forecast of the 99 percent VaR and ES for 18 Dec. 2000. We conduct rolling forecast by moving forward

a day at a time and end with the forecast for 31 Dec. 2012. This generates 3,033 out-of-sample daily

forecasts. Next we repeat the same process for the US portfolios. It starts with the forecast for 18 Dec.

2000 and ends with the forecast for 31 Dec. 2012. This generates 3,018 out-of-sample daily forecasts.

We evaluate the coverage ability by ECP and BPZ as follows: We calculate ECP for each portfolio

and then report bias and Root Mean Square Error (RMSE). Bias is the average deviation of ECP from

the nominal coverage probability (1% in our case). The smaller the bias is, the more accurate the

VaR forecast is. RMSE is the average of the squared deviation. It shows the dispersion of ECP from

the nominal coverage probability. It makes up for the defect of bias due to the o�set of positive and

negative deviations. Financial regulators would prefer a VaR model with, simultaneously, a small bias

and small RMSE. BPZ describes the coverage ability of the VaR model through the test of failure rate.

It counts the number of failures over the previous 250 business days.

5.2.1. Coverage Ability

Table 9 presents the evaluation results of the coverage ability. Panel A shows the ECPs of the VaR

models. We �nd that the GHST copula produces the smallest bias (-0.02%) with the smallest RMSE

(0.11%). It means that the ECPs of all portfolios are more concentrated around the nominal one than

other models. The ST copula also produces the smallest bias but RMSE (0.13%) is slightly larger

than GHST. We thus can draw inference that the asymmetric tail dependence slightly contributes

to the VaR forecast from this marginal di�erence. On the other hand, DCC produces a huge bias

(0.28%) implying that it signi�cantly underforecasts VaR. We can easily understand that this huge

8The reason we use a moving window of 250 days instead of other window length or expending window is because a
moving window of 250 days is the standard estimation period by the Basel accord. In practice the selection of an optimal
sample size is a nontrivial issue. As the window size increases, estimation and forecasting precision generally improves.
On the other hand it also raises uncertainty about the latent market regimes caused by a sequence of rare or extreme
shocks hitting the market in which case it would be more desirable to select the shorter and homogeneous sample rather
than longer and heterogeneous ones.
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underforecast is mostly generated by the lack of tail dependence in DCC. We also �nd that FHS

largely underforecast VaR. Interestingly, FHS considers neither correlation nor tail dependence but

its bias (0.31%) is similar with DCC. This tells us that the correlation (the second comoment) is not

the key input in the extreme event forecast.

Panel B shows the BPZ of the VaR models. We �nd that all models achieve 12 Green zone using the

framework of Basel committee. This result is however not surprising as the “tra�c lights” backtest

is not as rigorous as other statistical tests such as CC test and DQ test.

[ INSERT TABLE 9 ABOUT HERE ]

Consequently, the evaluation results of the coverage ability clearly show the importance of mod-

eling the time varying asymmetric dependence structure in the extreme event forecast. In particular,

we are able to con�rm that the modeling of linear correlation does not improve the forecasting ac-

curacy of extreme event at all.

5.2.2. Statistical Accuracy

We evaluate the statistical accuracy by the CC test and the DQ test as follows: We calculate both

statistics for each portfolio and test them at the 5% signi�cance level. Then we report the number of

rejected portfolios.

Table 10 represents the results of statistical tests. Panel A reports the CC test results. The GHST

and ST copulas are rejected for 2 portfolios and 1 portfolio, respectively. Thus there is not a signi�cant

di�erence between the asymmetric copula and the symmetric copula. It thus repeatedly veri�es that

the asymmetric tail dependence slightly contributes to the VaR forecast. DCC and FHS are rejected

for 3 and 2 portfolios, respectively. Panel B reports the results of the DQ test. The results are mostly

consistent with the CC test. The GHST and ST copulas are rejected for 2 portfolios whilst DCC and

FHS are rejected for 3 portfolios. Although there is not the striking di�erence of rejection frequency,

overall the dynamic copula models are less rejected than DCC and FHS.

[ INSERT TABLE 10 ABOUT HERE ]

5.3. Backtesting of Expected Shortfall

Table 11 presents MAE and MSE for the ES forecasts. Panel A reports the MAE results. The

dynamic copula models provide the most accurate forecasts (lowest MAEs) in 10 out of 12 portfolios.
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Also, The GHST copula generates the lower average MAE in general comparing with the ST copula,

as it takes into account the asymmetric dependence between portfolios. As a robustness check, the

MSE results reported in Paenl B also con�rm this conclusion. The dynamic copula models have better

performance than both DCC and FHS in almost all cases.

[ INSERT TABLE 11 ABOUT HERE ]

In sum, we �nd that two extreme portfolios sorted on the higher order comoments are closely

correlated each other over their whole distribution structure. Their dependence structure is time-

varying and nonlinear. We perform the forecasting exercise for the extreme event and have the

following implications from the backtesting results. Firstly, the dynamic modeling of the tail depen-

dence is more e�ective than the dynamic modeling of the linear correlation for the accurate forecast

of the extreme event. Especially, the lack of the tail dependence in the forecast model generates the

huge underforecast of the extreme event. Secondly, there is little di�erence between the asymmetric

dependence and the symmetric dependence in our portfolios. Both provide almost equivalent perfor-

mances. Thirdly, the linear correlation does not help it to improve the extreme event forecast at all.

There is little di�erence between DCC and FHS. Overall, the evaluation results strongly support the

importance of modeling time-varying and asymmetric dependence in the market risk management.

Note that we also examine the forecasting performance of all the candidate models at 95% and 97.5%

signi�cance level. The consistent results con�rm our conclusion and suggest that data mining are

unlikely explanations.9

6. Robustness

The estimation accuracy of the higher order comoments in equation (1) - (3) is closely associated

with an estimation period; thereby, the equity portfolios sorted on the higher order comoments would

change as we alter the estimation period. Hence, we run a set of robustness tests to check if the results

with the 12-month estimation period are robust to changes in the estimation period used for the

estimation of higher order comoments. To this end, we construct a set of portfolios with the shorter

(9-month) and longer (18-month) estimation periods and run again the same empirical exercises as

in section 4 and 5.

9All the robustness checks are available on request from the authors.
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6.1. Higher Order Comoments and Dependence Structure

We �rst re-run the same empirical exercise as in section 4. Figure 1 plots the average copula

correlations of the 9- and 18-month estimation periods. As we can see the copula correlations show

a very similar pattern with ones by the 12-month estimation period. Overall the results con�rm that

there are the signi�cant relation between the higher order comoments and the copula correlation.10

Next, we check the robustness of the relation between higher order comoment and the average

di�erence of LTD and UTD presented in section 4. Figure 2 shows that the average di�erences be-

tween LTD and UTD of 9- and 18-month have similar pattern with the one for 12-month.11

Overall, the statistical evidences presented in section 4 becomes stronger as we increase the es-

timation period and the empirical evidence on the relationship between the higher order comoment

and the dependence structure are robust to the sample size.

6.2. Backtesting of Value-at-Risk

In this section we run some robustness checks on the backtesting results presented in section 5.

We �rst perform the diagnosis of BMS portfolios for both the 9- and 18-month estimation periods

before applying the backtesting. The diagnosis results show that, overall, the dependence structure

between the highest beta (coskewness, cokurtosis) portfolio and the lowest beta (coskewness, cokur-

tosis) portfolio is still time-varying and asymmetric.12

Table 9 - 11 summarize the backtesting results for the 9- and 18-month, respectively. The RMSE

of GHST is smaller than the other models in Table 9 and GHST is less rejected by the CC and DQ

tests than the other models in Table 10. Further, GHST constantly has the smallest MAE and MSE

in Table 11. Overall, the results presented in Table 9 - 11 are consistent with the ones presented in

section 5.

In sum, the empirical evidences reported in sections 6.1 and 6.2 show that our dynamic modeling

of the asymmetric tail dependence is empirically solid (i.e. it does not depend on the sample size)

and more robust than other empirical models focusing on modeling the linear correlation in the risk

management of extreme events.

10 In Table 1, we acknowledge some minor changes of test results under less restrictive conditions. Also, unlike the US
stock market, we note an increasing pattern for beta and coksewness, and a decreasing pattern for cokurtosis in the UK
stock market.

11 We note that there are very minor changes under less restrictive conditions in Table 2.
12We do not report the details of diagnosis results in this paper but the results are available upon request from authors.
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7. Conclusion

Higher order comoments occupy an important position in asset pricing with the Fama-French

factors. There is strong evidence of nonlinear dependence across factors (Christo�ersen and Lan-

glois, 2013), which is the key input for equity portfolio selection and risk management. We therefore

empirically study a relation between the higher order comoments and the dependence structure of

the equity portfolio in the US and UK. We also investigate the role of dependence structure in the

risk management of extreme events using equity portfolios sorted on the higher order comoments.

There are three notable �ndings in this paper.

First, our analysis shows that there are clear patterns in the relation between the higher order

comoments and the dependence structure of the equity portfolio. Our simple portfolio approach

provides the signi�cant evidences of increasing or decreasing patterns in the copula correlation and

the asymmetric tail dependence. First, beta and coskewness are positively related with the copula

correlation, whereas cokurtosis is negatively correlated with it. Second, beta is positively related

with the asymmetric tail dependence whilst coskewness is negatively related with it.

Second, we �nd that two extreme equity portfolios sorted on higher order comoments are closely

correlated. In particular, the dependence structure of the BMS portfolio (high beta (coskewness,

cokurtosis) minus low beta (coskewness, cokurtosis)) is strongly time-varying and nonlinear. The

backtesting results show that the dependence structure is the key input for the robust risk manage-

ment of extreme events. The forecasting model employing a linear correlation signi�cantly under-

forecasts value-at-risk and expected shortfall whilst the dynamic copula models forecast them very

accurately.

Third, we use the new copula model to investigate the economic and statistical importance of

modeling the time-varying and asymmetric dependence between equity portfolios sorted on the

higher order comoments. We combine a hyperbolic generalized skewed t distribution with the gen-

eralized autoregressive score to capture both dynamics and asymmetries. Using a forecasting based

risk management exercise, we demonstrate economic and statistical gains from modeling dynamic

and asymmetric dependence. Our proposed copula achieves stronger coverage ability and better sta-

tistical accuracy.

Overall, we conclude that the higher order comoments are closely related with the dependence
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structure of the equity portfolio. The dependence structure is time-varying and nonlinear, which

is the key input for the risk management of extreme events. The forecasting based risk manage-

ment exercise demonstrates the importance of modeling dynamic and asymmetric dependence using

copulas.
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Appendix

A.1. Estimation of Parametric Copula Model

The log-likelihood of a fully parametric copula model for conditional distribution of zt takes the

form:

L (θ) =
T∏
t=1

f (zt|Ft−1;θ) =
T∏
t=1

[
ct (u1,t, ..., ud,t|Ft−1;θC)

N∏
i=1

fi,t (zi,t|Ft−1; θi)

]
(A.1)

with log-likelihood

T∑
t=1

log f (zt|Ft−1;θ) =
T∑
t=1

d∑
i=1

log fi,t (zi,t|Ft−1; θi) (A.2)

+
T∑
t=1

log ct (F1,t (z1,t|Ft−1; θ1) , . . . , Fd,t (zd,t|Ft−1; θd) |Ft−1;θC)

where θ denotes the parameter vector for the full model parameters, θi denotes the parameters for

the ith marginals, θC denotes the parameters of copula model and Ft−1 denotes the information set

at time t− 1. Following the two-stage maximum likelihood estimation (also known as the Inference

method for marginals) of Joe and Xu (1996), we �rst estimate the parameters of marginal models

using maximum likelihood:

θ̂i = argmax
θi

T∑
t=1

log fi,t (zi,t|Ft−1; θi) , i = 1, ..., N, (A.3)

and then using the estimations in the �rst stage, we calculate Fi,t and estimate the copula parameters

via maximum likelihood:

θ̂C = argmax
θC

T∑
t=1

log ct (F1,t (z1,t|Ft−1; θ1) , ..., Fd,t (zd,t|Ft−1; θd) |Ft−1; θC) (A.4)

A.2. Estimation of Semiparametric Copula Model

In the semiparametric estimation (also known as Canonical Maximum Likelihood Estimation),

the univariate marginals are estimated nonparametrically using the empirical distribution function
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(EDF) and the copula model is again parametrically estimated via maximum likelihood.

F̂i (z) ≡ 1

T + 1

T∑
t=1

1 {ẑi,t ≤ z} (A.5)

ûi,t ≡ F̂i (z) ∼ Unif (0, 1) , i = 1, 2, ..., N (A.6)

θ̂C = arg max
θC

T∑
t=1

log ct (û1,t, ..., ûi,t|Ft−1; θC) (A.7)

where zi,t are the standardized residuals of the marginal model and F̂i is di�erent from the standard

empirical CDF by the scalar 1/(n+ 1) (in order to ensure that the transformed data cannot be on the

boundary of the unit interval [0, 1]).

A.3. Computation of Asymmetric Dependence

A primary goal of our paper is to investigate how the characteristic-sorted portfolio returns co-

vary and whether their dependence structures are asymmetric. Consequently, we consider three

di�erent dependence structures: The threshold correlation; the quantile dependence; and the tail

dependence.

Following Longin and Solnik (2001) and Ang and Chen (2002), the threshold correlation for prob-

ability level p is given by

ρ− = Corr (rh,t, rl,t|rh,t ≤ rh (p) and rl,t ≤ rl (p)) if p ≤ 0.5 (A.8)

ρ+ = Corr (rh,t, rl,t|rh,t > rh (p) and rl,t > rl (p)) if p > 0.5 (A.9)

where r (p) denotes the corresponding empirical percentile for asset returns rh,t and rl,t. In words,

we compute the correlation between two assets conditional on both of them being less (respectively,

greater) than their pth percentile value when p ≤ 0.5 (respectively, p > 0.5). To examine whether this

asymmetry is statistically signi�cant, we consider a model-free test proposed by Hong et al. (2007). If

the null hypothesis of ρ+ = ρ− is rejected, then there exists a linear asymmetric correlation between

rh,t and rl,t.

The quantile dependence provides a more precise measure of dependence structure than the

threshold correlation, as it contains more detailed information. In addition, from the risk manage-

ment perspective, tails are more important than the centre. Following Patton (2012), the quantile
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dependence can be de�ned as

λq =


P {uh,t ≤ q|ul,t ≤ q} = C(q,q)

q
if 0 < q ≤ 0.5

P {uh,t > q|ul,t > q} = 1−2q+C(q,q)
1−q if 0.5 < q ≤ 1

(A.10)

and nonparametrically estimated by

λ̂q =


1
Tq

∑T
t=1 1 {ûh,t ≤ q, ûl,t ≤ q} if 0 < q ≤ 0.5

1
T (1−q)

∑T
t=1 1 {ûh,t > q, ûl,t > q} if 0.5 < q < 1.

, (A.11)

where C denotes the corresponding copula function.

The tail dependence coe�cient (TDC) is a measure of the degree of dependence in the tail of a

bivariate distribution (see McNeil et al., 2005; Frahm et al., 2005; Joe et al., 2010, among others). Let zh

and zl be random variables with continuous distribution functions Fh and Fl. Then the coe�cients

of upper and lower tail dependence of zh and zl are

λL = lim
q→0+

P
{
zh ≤ F−1

h (q) , zl ≤ F−1
l (q)

}
P
{
zl ≤ F−1

l (q)
} = lim

q→0+

C (q, q)

q
(A.12)

λU = lim
q→1−

P
{
zh > F−1

h (q) , zl > F−1
l (q)

}
P
{
zl > F−1

l (q)
} = lim

q→1−

1− 2q + C (q, q)

1− q
(A.13)

The coe�cients can be easily calculated when the copula C has a closed form. The copula C has

upper tail dependence if λU ∈ (0, 1] and no upper tail dependence if λU = 0. A similar conclusion

holds for the lower tail dependence. If the copulas are symmetric, then λL = λU , otherwise, λL 6= λU

(see Joe, 1997). McNeil et al. (2005) state that the copula of the bivariate t distribution is asymptoti-

cally dependent in both the upper and lower tail. We use the Student’s t copula to estimate the tail

dependence coe�cient between portfolios.

A.4. Algorithm for Forecasting VaR and ES

[Step 1] Determine the in sample and out-of-sample period for VaR and ES forecasting.

[Step 2] We predict conditional mean and conditional volatility from the prespeci�ed time series

model on rolling window and do one step ahead forecasting for each margins.

[Step 3] Estimate the density model to get the probabilities for each forecasted margin. We consider

both parametric (univariate skewed t) and nonparametric (EDF) estimation on sliding window.
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[Step 4] Estimate the parameters for full parametric and semiparametric copulas using using maxi-

mum likelihood estimation.

[Step 5] Using the estimated parameters in [Step 4] as initial values, we estimate time-varying de-

pendence parameters for asymmetric (GH skewed t) copulas based on the GAS framework.

[Step 6] With the estimated time-varying copula parameters in hand, we can apply Monte Carlo

simulation to generate N samples of shocks and then portfolio returns.

[Step 7] Based on the empirical α-quantile of forecasted portfolio return, it is straightforward to

forecast corresponding VaR.

[Step 8] Given the N simulated portfolio returns, we can also calculate α-quantile ES.

[Step 9] Use the realized portfolio returns to backtest VaR and ES forecasts.

A.5. Backtesting VaR and ES

We �rst de�ne the failure of VaR as the event that a realized return rs is not covered by the

predicted VaR. We identify it by the indicator function taking the value unity in the case of failure:

Is = 1
{
rs < V̂ aRs (α|Fs−1)

}
, s = 1, . . . , N, (A.14)

where V̂ aRs (α|Fs−1) is the VaR forecast based on the information set at s − 1, denoted by Fs−1,

with a nominal coverage probability α. Henceforth, we abbreviate the notation V̂ aRs (α|Fs−1) to

V̂ ars (α).

Empirical Coverage Probability (ECP) is calculated by the sample average of Is, α̂ = N−1
∑N

s=1 Is

which is a consistent estimator of the coverage probability. The VaR model for which ECP is closest

to its nominal coverage probability is preferred. BPZ is suggested by Basel Committee on Banking

and Supervision (1996). It describes the strength of the VaR model through the test of failure rate.

It records the number of failures of the 99 percent VaR in the previous 250 business days. One may

expect, on average, 2.5 failures out of the previous 250 VaR forecasts given the correct forecasting

model. The Basel Committee rules that up to four failures are acceptable for banks and de�nes the

range as a “Green” zone. If the failures are �ve or more, the banks fall into a “Yellow” (5–9) or “Red”

(10+) zone. The VaR model for which BPZ is in the “Green” zone is preferred.

Accurate VaR forecasts should satisfy the condition that the conditional expectation of the failure
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is the nominal coverage probability:

E [Is|Fs−1] = α. (A.15)

Christo�ersen (1998) shows that it is equivalent to testing if Is|Fs−1 follows an i.i.d. Bernoulli distri-

bution with parameter α:

H0 : Is|Fs−1 ∼ i.i.d. Bernoulli (α) . (A.16)

The CC test uses the LR statistic which follows the chi-squared distribution with two degrees-of-

freedom under the null hypothesis, Eq. (A.16). The DQ test is a general extension of the CC test

allowing for more time-dependent information of {Is}Ns=1. The out-of-sample DQ test is given by

DQ =

(
Ĩ′Z
)

(Z′Z)−1
(
Z′Ĩ
)

α (1− α)

d∼ χ2
p+2, (A.17)

where Ĩ =
(
Ĩp+1, Ĩp+2, . . . , ĨN

)′
, Ĩs = Is−α, Z = (zp+1, . . . , zN)′ and zs =

(
1, Ĩs−1, . . . , Ĩs−p, V̂ aRs (α)

)′
.

We use the �rst four lags for our evaluation, i.e., zs =
(

1, Ĩs−1, . . . , Ĩs−4, V̂ aRs (α)
)′

.

Backtesting of ES is not a straightforward task because it fails to satisfy elicitability (see Gneiting,

2011). We consider a backtesting for the ES forecast given the sample of N ES forecasts. We simply

evaluate the ES forecast based on a loss function which enables researchers to rank the models and

specify a utility function re�ecting the concern of the risk manager. We de�ne two loss functions:

Absolute error :=
∣∣∣rs − ÊSs (α)

∣∣∣ Is, Squared error :=
(
rs − ÊSs (α)

)2

Is, (A.18)

where Is = 1
{
rs < V̂ aRs (α)

}
. In order to rank the models, we compute the mean absolute error

(MAE) and the mean squared error (MSE):

MAE =
1

N

N∑
s=1

∣∣∣rs − ÊSs (α)
∣∣∣ Is, MSE =

1

N

N∑
s=1

(
rs − ÊSs (α)

)2

Is. (A.19)

This evaluation is in line with the framework proposed by Lopez (1999) for the VaR evaluation. The

smaller value indicates more accurate forecast.
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Figure 1: Relation between Higher Order Comoments and Copula Correlation

This �gure plots the average copula correlations for equity portfolios sorted on higher order como-
ments. BETA1 (COSK1, COKT1) denotes the lowest beta (coskewness, cokurtosis) portfolio whilst
BETA5 (COSK5, COKT5) denotes the highest beta (coskewness, cokurtosis) portfolio. We estimate
the correlation of GHST copula where the time-varying correlations are implied by the GAS model.
We plot the average di�erences for di�erent window sizes used to compute higher order comoments
for sorting portfolios; in particular, we use 12 months (solid line) as main results and 9 & 18 months
(dot line & dash line) for robustness check.

Panel A: US Stock Market Panel B: UK Stock Market

(a) BETA (a) BETA

(b) Coskewness (b) Coskewness

(c) Cokurtosis (c) Cokurtosis
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Figure 2: Relation between Higher Order Comoments and Asymmetric Tail Dependence

This �gure plots the average di�erence between lower tail dependence (LTD) and upper tail depen-
dence (UTD) for equity portfolios sorted on higher order comoments, DIFF = LTD − UTD. The
average di�erence measures the extent of asymmetry for the tail dependence. The tail dependence
coe�cients are calculated by the parametric approach in McNeil et al. (2005). We estimate the GHST
copula where the time-varying correlations are implied by the GAS model. We plot the average dif-
ferences for di�erent window sizes used to compute higher order comoments for sorting portfolios;
in particular, we use 12 months (solid line) as main results and 9 & 18 months (dot line & dash line)
for robustness check.

Panel A: US Stock Market Panel B: UK Stock Market

(a) BETA (a) BETA

(b) Coskewness (b) Coskewness

(c) Cokurtosis (c) Cokurtosis
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Table 1: Relation between Higher Order Comoments and Copula Correlation

This table presents average copula correlations for equity portfolios sorted on higher order como-
ments. We estimate the correlation of GHST copula where the time-varying correlations are implied
by the GAS model. The column P1 denotes a portfolio with the lowest higher order comoment whilst
the column P5 denotes one with the highest higher order comoment. Columns ‘MR’, ‘Up’ and ’Down’
report p-values for tests of correlation monotonicity (Patton and Timmermann, 2010). ‘–’ indicates
a case that both ‘Up’ test and ‘Down’ test are rejected, i.e., inconclusive. We report test results for
di�erent window sizes used to compute higher order comoments for sorting portfolios; in particular,
we use 12 months as main results and 9 & 18 months for robustness check.

Portfolio P1 P2 P3 P4 P5 MR Up Down

Panel A: US Stock Market
12 months BETA 0.741 0.852 0.922 0.942 0.914 1.000 0.000 0.013

Coskewness 0.876 0.918 0.942 0.952 0.947 0.972 0.000 0.230
Cokurtosis 0.915 0.955 0.932 0.915 0.906 1.000 – –

9 months BETA 0.736 0.872 0.921 0.945 0.915 1.000 – –
Coskewness 0.874 0.936 0.948 0.955 0.931 1.000 – –
Cokurtosis 0.908 0.929 0.947 0.922 0.917 0.997 – –

18 months BETA 0.751 0.852 0.923 0.934 0.916 1.000 0.000 0.089
Coskewness 0.847 0.914 0.944 0.958 0.943 1.000 0.000 0.023
Cokurtosis 0.945 0.938 0.933 0.935 0.912 0.343 0.733 0.000

Panel B: UK Stock Market
12 months BETA 0.600 0.722 0.798 0.846 0.880 0.000 0.000 0.910

Coskewness 0.815 0.797 0.798 0.847 0.880 0.905 0.000 0.323
Cokurtosis 0.869 0.879 0.828 0.811 0.817 0.938 0.101 0.000

9 months BETA 0.577 0.725 0.800 0.860 0.886 0.000 0.000 0.885
Coskewness 0.807 0.820 0.844 0.864 0.879 0.000 0.000 0.980
Cokurtosis 0.870 0.856 0.832 0.819 0.805 0.000 0.978 0.000

18 months BETA 0.578 0.712 0.778 0.846 0.882 0.000 0.000 0.901
Coskewness 0.765 0.820 0.828 0.832 0.883 0.000 0.000 0.994
Cokurtosis 0.873 0.862 0.839 0.820 0.790 0.000 0.948 0.000
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Table 2: Relation between Higher Order Comoments and Asymmetry of Tail Dependence

This table presents the average di�erence of lower tail dependence (LTD) and upper tail dependence
(UTD) for equity portfolios sorted on higher order comoments, DIFF = LTD − UTD. The aver-
age di�erence measures the extent of asymmetry for the tail dependence. The tail dependences are
calculated by the parametric approach in McNeil et al. (2005). We estimate the GHST copula where
the time-varying correlations are implied by the GAS model. The column P1 denotes a portfolio with
the lowest higher order comoment whilst the column P5 denotes one with the highest higher order
comoment. Columns ‘MR’, ‘Up’ and ’Down’ report p-values for tests of correlation monotonicity
(Patton and Timmermann, 2010). ‘–’ indicates a case that both ‘Up’ test and ‘Down’ test are rejected,
i.e., inconclusive. We report test results for di�erent window sizes used to compute higher order
comoments for sorting portfolios; in particular, we use 12 months as main results and 9 & 18 months
for robustness check.

Portfolio P1 P2 P3 P4 P5 MR Up Down

Panel A: US Stock Market
12 months BETA 0.173 0.229 0.250 0.317 0.240 1.000 – –

Coskewness 0.353 0.258 0.271 0.227 0.083 1.000 0.026 0.000
Cokurtosis 0.232 0.351 0.238 0.248 0.212 1.000 – –

9 months BETA 0.152 0.212 0.230 0.283 0.215 1.000 – –
Coskewness 0.329 0.244 0.244 0.214 0.078 1.000 0.932 0.000
Cokurtosis 0.213 0.305 0.222 0.230 0.202 1.000 – –

18 month BETA 0.168 0.226 0.242 0.290 0.217 0.080 0.000 0.928
Coskewness 0.316 0.240 0.247 0.204 0.087 1.000 0.986 0.000
Cokurtosis 0.201 0.296 0.226 0.231 0.208 1.000 – –

Panel B: UK Stock Market
12 months BETA 0.119 0.139 0.216 0.210 0.217 0.777 0.000 0.488

Coskewness 0.240 0.195 0.176 0.193 0.109 1.000 – –
Cokurtosis 0.164 0.205 0.246 0.217 0.183 1.000 – –

9 months BETA 0.109 0.128 0.192 0.197 0.210 0.000 0.000 0.976
Coskewness 0.220 0.183 0.163 0.174 0.096 1.000 0.011 0.000
Cokurtosis 0.158 0.200 0.220 0.189 0.160 1.000 – –

18 month BETA 0.116 0.137 0.177 0.199 0.199 1.000 – –
Coskewness 0.218 0.181 0.178 0.178 0.105 1.000 0.094 0.000
Cokurtosis 0.161 0.207 0.208 0.184 0.150 1.000 – –
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Table 3: De�nitions of BMS Portfolios

This table describes the 12 BMS portfolios that we constructed for the purpose of empirical analysis
in our study. Portfolios are sorted by market beta, coskewness and cokurtosis. All the portfolios are
annually rebalanced.

Portfolio Description

Panel A: US Stock Market
BMS (Beta, L/S;US) Long (short) BETA5 and short (long) BETA1
BMS (Cosk, L/S;US) Long (short) COSK5 and short (long) COSK1
BMS (Cokt, L/S;US) Long (short) COKT5 and short (long) COKT1

Panel B: UK Stock Market
BMS (Beta, L/S;UK) Long (short) BETA5 and short (long) BETA1
BMS (Cosk, L/S;UK) Long (short) COSK5 and short (long) COSK1
BMS (Cokt, L/S;UK) Long (short) COKT5 and short (long) COKT1
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Table 4: Parameter Estimates and Goodness of Fit Test for Univariate Modeling

This table reports parameter estimates from AR and GJR-GARCH models for conditional mean and
conditional variance of portfolio returns. We estimate all parameters using the sample from January
4, 2000 to December 31, 2012, which correspond to a sample of 3,268 observations for US market
and a sample of 3,283 observations for UK market. We use * to indicate the signi�cance of estimate
at the 5% signi�cance level. We also report the p-values of two goodness-of-�t tests for the skewed
Student’s t distribution. We employ Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) tests.

Panel A: US Stock Market
Porftolio BETA1 BETA5 COSK1 COSK5 COKT1 COKT5
φ0 0.025 -0.021 0.004 0.006 -0.011 0.029
φ1 -0.064* _ _ -0.091* _ -0.085*
φ2 _ _ _ -0.085* _ -0.061*
ω 0.012* 0.048* 0.027* 0.015* 0.021* 0.016*
α 0.018 0.001* 0.0235* 0.000 0.023* 0.008
γ 0.122* 0.133* 0.104* 0.163* 0.126* 0.179*
β 0.901* 0.923* 0.903* 0.916* 0.903* 0.896*
ν 11.507 12.805 9.404 12.331 24.329 5.637
λ -0.111 -0.072 -0.246 0.006 -0.099 -0.099
KS 0.61 0.17 0.43 0.11 0.14 0.97
CvM 0.33 0.10 0.42 0.10 0.16 1.00

Panel B: UK Stock Market
Porftolio BETA1 BETA5 COSK1 COSK5 COKT1 COKT5
φ0 0.039* -0.023 0.018 -0.001 0.009 0.008
φ1 _ _ _ -0.045* _ -0.060*
φ2 _ _ _ _ _ _
ω 0.014* 0.036* 0.021* 0.019* 0.014* 0.028*
α 0.012 0.004 0.031* 0.006 0.016 0.047*
γ 0.111* 0.130* 0.092* 0.135* 0.103* 0.142*
β 0.913* 0.924* 0.911* 0.919* 0.925* 0.867*
ν 9.593 27.910 7.384 33.361 94.667 7.475
λ -0.076 -0.054 -0.168 0.025 -0.062 -0.076
KS 0.77 0.96 0.53 0.53 0.35 0.36
CvM 0.87 0.92 0.30 0.40 0.45 0.27
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Table 5: Tests for Time-varying Dependence between High and Low Portfolios

We report the p-value from tests for time-varying rank correlation between the high portfolio
(e.g. BETA5) and the low portfolio (e.g. BETA1). Having no a priori dates to consider for the
timing of a break, we consider naive tests for breaks at three chosen points in sample period, at
t∗/T ∈ {0.15, 0.50, 0.85}, which corresponds to the dates 10-Dec-2001, 03-Jul-2006, 17-Jan-2011.
The ‘Any’ column reports the results of test for dependence break of unknown timing proposed by
Andrews (1993). To detect whether the dependence structures between characteristic-sorted port-
folios signi�cantly changed after the US and EU crisis broke out, we use 15-Sep-2008 (the collapse
of Lehman Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two break points and the ‘Crisis’
panel reports the results for this test. The ‘AR’ panel presents the results from the ARCH LM test for
time-varying volatility proposed by Engle (1982). Under the null hypothesis of a constant conditional
copula, we test autocorrelation in a measure of dependence (see Patton, 2012).

Panel A: Break Panel B: Crisis Panel C: AR(p)
Portfolio 0.15 0.5 0.85 Any US EU AR(1) AR(5) AR(10)
US BETA1&5 0.00 0.00 0.04 0.00 0.00 0.07 0.00 0.00 0.00
US COSK1&5 0.00 0.03 0.82 0.04 0.22 0.38 0.00 0.00 0.00
US COKT1&5 0.02 0.30 0.67 0.25 0.92 0.42 0.18 0.75 0.09
UK BETA1&5 0.00 0.00 0.17 0.00 0.04 0.08 0.00 0.12 0.00
UK COSK1&5 0.59 0.03 0.62 0.03 0.07 0.25 0.01 0.00 0.02
UK COKT1&5 0.98 0.24 0.36 0.24 0.24 0.13 0.00 0.00 0.00
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Table 6: Testing Di�erences of Exceedence Correlations

This table presents the statistics and p-values from a model-free symmetry test proposed by Hong
et al. (2007) to examine whether the exceedance correlations between low portfolio (i.e. BETA1) and
high portfolio (i.e. BETA5) are asymmetric. We report p-values in [·]. The J statistics for testing the
null hypothesis of symmetric correlation, ρ+ (c) = ρ− (c), is de�ned as

Jρ = T
(
ρ̂+ − ρ̂−

)′
Ω̂−1

(
ρ̂+ − ρ̂−

)
where Ω̂ =

∑T−1
l=1−T k (l/p) γ̂l and k is a kernel function that assigns a suitable weight to each lag

of order l, and p is the smoothing parameter or lag truncation order (see Hong et al. (2007) for more
details).

Panel A: US Stock Market Panel B: UK Stock Market
BETA1&5 COSK1&5 COKT1&5 BETA1&5 COSK1&5 COKT1&5

48.471 40.246 44.363 56.249 38.655 46.367
[0.06] [0.25] [0.13] [0.01] [0.31] [0.09]
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Table 7: Testing Di�erences of Tail Dependences

This table reports the coe�cients of lower tail dependence (LTD) and upper tail dependence (UTD)
and the di�erence between them for all the portfolios pairs. The estimations are calculated by the
parametric approach in McNeil et al. (2005). λL and λU denote LTD and UTD estimated by t copula.
The p-values of testing λL = λU are computed by a bootstrapping with 500 replications and reported
in [·].

Portfolio λL λU λL − λU
US BETA1&5 0.171 0.018 0.153 [0.02]
US COSK1&5 0.200 0.153 0.047 [0.53]
US COKT1&5 0.153 0.103 0.050 [0.13]
UK BETA1&5 0.104 0.018 0.086 [0.00]
UK COSK1&5 0.203 0.062 0.141 [0.01]
UK COKT1&5 0.137 0.052 0.085 [0.21]
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Table 8: Log-likelihood, AIC and BIC for Choice of Copula

This table reports the log-likelihood (LL), Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) after estimating a copula with whole sample. We compare several copulas
often used for �nancial time series: Gaussian, Student-t (T), skewed Student-t (SKT), Plackett, Frank,
(Rotated) Clayton, (Rotated) Gumbel and Symmetrized Joe-Clayton (SJC) copulas. We standardize
individual portfolio returns using the AR-GJR-GARCH models in Table 4 and �t the standardized
residuals of portfolios with suggested copulas. The copula with the highest LL or the lowest AIC/BIC
is preferred.

BETA1&5 COSKEW1&5 COKURT1&5
Copula LL AIC BIC LL AIC BIC LL AIC BIC

Panel A: US Stock Market
Gaussian 536.2 -1070.4 -1064.3 1292.9 -2583.9 -2577.8 1222.8 -2443.5 -2437.4
ST 645.3 -1286.6 -1274.5 1507.8 -3011.6 -2999.4 1453.1 -2902.1 -2890.0
SKT 703.1 -1402.3 -1390.1 1590.4 -3176.7 -3164.6 1596.5 -3189.0 -3176.8
Plackett 604.5 -1207.0 -1201.0 1500.9 -2999.9 -2993.8 1442.5 -2883.0 -2877.0
Frank 550.6 -1099.2 -1093.1 1343.9 -2685.8 -2679.7 1298.4 -2594.8 -2588.7
Clayton 521.1 -1040.2 -1034.1 1214.7 -2427.5 -2421.4 1132.1 -2262.3 -2256.2
Rotated Clayton 386.8 -771.6 -765.5 969.4 -1936.8 -1930.7 953.8 -1905.5 -1899.4
Gumbel 520.9 -1039.8 -1033.7 1286.6 -2571.2 -2565.1 1246.1 -2490.2 -2484.2
Rotated Gumbel 604.6 -1207.1 -1201.0 1427.8 -2853.7 -2847.6 1350.4 -2698.8 -2692.7
SJC 605.4 -1206.8 -1202.7 1402.3 -2800.5 -2796.5 1330.2 -2656.4 -2652.3

Panel B: UK Stock Market
Gaussian 266.9 -531.9 -525.8 896.1 -1790.1 -1784.1 782.2 -1562.3 -1556.2
ST 321.9 -639.8 -627.7 984.3 -1964.7 -1952.5 839.1 -1674.3 -1662.1
SKT 335.4 -666.8 -654.7 1080.5 -2157.0 -2144.8 920.0 -1836.1 -1823.9
Plackett 293.4 -584.8 -578.7 966.1 -1930.2 -1924.1 835.6 -1669.3 -1663.2
Frank 273.0 -544.0 -537.9 917.7 -1833.4 -1827.3 802.2 -1602.3 -1596.3
Clayton 297.6 -593.1 -587.1 829.5 -1657.1 -1651.0 700.0 -1398.0 -1391.9
Rotated Clayton 156.7 -311.3 -305.2 628.0 -1254.0 -1247.9 530.7 -1059.3 -1053.3
Gumbel 225.2 -448.4 -442.4 837.3 -1672.7 -1666.6 706.2 -1410.3 -1404.2
Rotated Gumbel 326.4 -650.8 -644.7 956.6 -1911.2 -1905.1 817.0 -1632.0 -1625.9
SJC 317.2 -630.5 -626.4 934.4 -1864.9 -1860.8 799.1 -1594.1 -1590.0
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Table 9: Backtesting of Value-at-Risk: Empirical Coverage Probability

This table presents ECP in Panel A and BPZ in Panel B for each BMS portfolio and VaR model. Bias
summarises the average deviation of 12 portfolios from the nominal coverage probability, 1%, for each
VaR model, and RMSE (Root Mean Square Error) summarises the �uctuation of the deviation across
12 portfolios for each VaR model,

Bias =
1

12

12∑
p=1

(ECPp − 1%) , RMSE =

√√√√ 1

12

12∑
p=1

(ECPp − 1%)2.

BPZ counts the number of failures of the 99 percent VaR in the previous 250 VaR forecasts. Up to
four failures, on average, the portfolio falls into the range of a “Green” zone. If the failures are �ve
or more, the portfolio falls into a “Yellow” (5–9) or “Red” (10+) zone. The VaR model of which BPZ
is “Green” zone is preferred. For the UK portfolios, we estimate the VaR models using 250 business
days over the period 4 Jan. 2000 - 15 Dec. 2000, and compute the one-day-ahead forecast of the 99
percent VaR for 18 Dec. 2000. We conduct rolling forecasting by moving forward a day at a time and
end with the forecast for 31 Dec. 2012. This generates 3,033 out-of-sample daily forecasts. Next we
repeat the same process for the US portfolios. It starts with the forecast for 18 Dec. 2000 and ends
with the forecast for 31 Dec. 2012. This generates 3,018 out-of-sample daily forecasts. We report ECP
and BPZ for di�erent window sizes used to compute higher order comoments for sorting portfolios;
in particular, we use 12 months as main results and 9 & 18 months for robustness check.

Panel A: ECP Panel B: BPZ
Portfolio GHST ST DCC FHS GHST ST DCC FHS

12 months
BMS (Beta, L;US) 0.86% 0.86% 1.46% 1.09% Green Green Green Green
BMS (Cosk, L;US) 1.03% 1.06% 1.36% 1.56% Green Green Green Green
BMS (Cokt, L;US) 0.86% 0.89% 1.19% 1.36% Green Green Green Green
BMS (Beta, S;US) 1.13% 1.19% 1.39% 1.26% Green Green Green Green
BMS (Cosk, S;US) 0.93% 0.99% 1.42% 1.23% Green Green Green Green
BMS (Cokt, S;US) 1.03% 0.86% 1.29% 1.29% Green Green Green Green
BMS (Beta, L;UK) 0.92% 0.86% 1.13% 1.39% Green Green Green Green
BMS (Cosk, L;UK) 0.96% 0.92% 1.19% 1.16% Green Green Green Green
BMS (Cokt, L;UK) 0.99% 0.99% 1.19% 1.16% Green Green Green Green
BMS (Beta, S;UK) 0.89% 0.92% 1.06% 1.52% Green Green Green Green
BMS (Cosk, S;UK) 1.22% 1.25% 1.26% 1.33% Green Green Green Green
BMS (Cokt, S;UK) 0.92% 0.96% 1.36% 1.33% Green Green Green Green
Bias (Green/Yellow/Red ) -0.02% -0.02% 0.28% 0.31% 12/0/0 12/0/0 12/0/0 12/0/0
RMSE 0.11% 0.13% 0.30% 0.34%

9 months
Bias (Green/Yellow/Red ) 0.02% 0.10% 0.23% 0.22% 12/0/0 12/0/0 12/0/0 12/0/0
RMSE 0.06% 0.19% 0.30% 0.33%

18 months
Bias (Green/Yellow/Red ) 0.02% 0.00% 0.19% 0.14% 12/0/0 12/0/0 12/0/0 12/0/0
RMSE 0.07% 0.11% 0.27% 0.21%
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Table 10: Backtesting of Value-at-Risk: Statistical Accuracy

This table presents statistical tests for the accuracy of VaR forecasts. Panel A reports the CC test
results. The CC test uses the LR statistic and it follows the Chi-squared distribution with two degrees-
of-freedom under the null hypothesis. Panel B reports the DQ test results. The DQ test uses the
Wald statistic and it follows the Chi-squared distribution with 6 degrees-of-freedom under the null
hypothesis. For the UK portfolios, we estimate the VaR models using 250 business days over the
period 4 Jan. 2000 - 15 Dec. 2000, and compute the one-day-ahead forecast of the 99 percent VaR
for 18 Dec. 2000. We conduct rolling forecasting by moving forward a day at a time and end with
the forecast for 31 Dec. 2012. This generates 3,033 out-of-sample daily forecasts. Next we repeat
the same process for the US portfolios. It starts with the forecast for 18 Dec. 2000 and ends with
the forecast for 31 Dec. 2012. This generates 3,018 out-of-sample daily forecasts. * indicates that
the VaR model is rejected at the 5% signi�cance level. GHST, ST, DCC and FHS denote “Generalized
Hyperbolic Skewed Student’s t copula”, “Student’s t copula”, “DCC-GARCH” and “Filtered Historical
Simulation”, respectively. We report both test results for di�erent window sizes used to compute
higher order comoments for sorting portfolios; in particular, we use 12 months as main results and 9
& 18 months for robustness check.

Panel A: The CC Test Panel B: The DQ Test
Portfolio GHST ST DCC FHS GHST ST DCC FHS

12 months
BMS (Beta, L;US) 3.44 1.06 6.91* 0.99 9.75 5.49 34.03* 16.73*
BMS (Cosk, L;US) 8.60* 8.33* 6.83* 8.20* 35.42* 33.83* 19.74* 12.25
BMS (Cokt, L;US) 6.07* 5.52 1.67 3.85 15.19* 14.17* 3.64 6.72
BMS (Beta, S;US) 4.01 4.22 4.43 2.34 10.84 10.36 6.17 4.55
BMS (Cosk, S;US) 1.42 1.05 6.11* 1.96 3.18 2.71 7.67 4.14
BMS (Cokt, S;US) 1.06 1.06 2.78 3.41 1.63 1.63 4.86 4.69
BMS (Beta, L;UK) 0.71 1.10 1.15 4.31 1.18 1.42 3.64 24.63*
BMS (Cosk, L;UK) 0.62 0.71 4.18 4.05 11.19 11.84 11.87 10.67
BMS (Cokt, L;UK) 0.74 0.60 1.88 1.34 2.54 2.54 3.24 3.18
BMS (Beta, S;UK) 0.87 0.71 0.78 11.46* 5.20 4.71 3.65 27.39*
BMS (Cosk, S;UK) 2.30 2.78 2.78 3.18 3.85 4.53 9.86 5.71
BMS (Cokt, S;UK) 0.71 0.62 4.55 3.18 1.18 1.17 25.44* 5.57
Number of Rejection 2 1 3 2 2 2 3 3

9 months
Number of Rejection 1 2 4 4 1 3 5 5

18 months
Number of Rejection 1 1 2 2 1 1 3 3
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Table 11: Backtesing of Expected Shortfall

This table presents the mean absolute error (MAE) in Panel A and the mean squared absolute error
(MSE) for each BMS portfolio and ES model. For the UK portfolios, we forecast the ES models using
250 business days over the period 4 Jan. 2000 - 15 Dec. 2000, and compute the one-day-ahead forecast
of the 99 percent ES for 18 Dec. 2000. We conduct rolling forecasting by moving forward a day at a
time and end with the forecast for 31 Dec. 2012. This generates 3,033 out-of-sample daily forecasts.
Next we repeat the same process for the US portfolios. It starts with the forecast for 18 Dec. 2000
and ends with the forecast for 31 Dec. 2012. This generates 3,018 out-of-sample daily forecasts. The
average MAE and MSE are reported at the bottom of this table. GHST, ST, DCC and FHS denote
“Generalized Hyperbolic Skewed Student’s t copula”, “Student’s t copula”, “DCC-GARCH” and “Fil-
tered Historical Simulation”, respectively. We report MAE and MSE for di�erent window sizes used
to compute higher order comoments for sorting portfolios; in particular, we use 12 months as main
results and 9 & 18 months for robustness check.

Panel A: MAE Panel B: MSE
Portfolio GHST ST DCC FHS GHST ST DCC FHS

12 months
BMS (Beta, L;US) 0.0068 0.0073 0.0108 0.0100 0.0168 0.0178 0.0287 0.0237
BMS (Cosk, L;US) 0.0047 0.0042 0.0030 0.0055 0.0053 0.0054 0.0016 0.0083
BMS (Cokt, L;US) 0.0084 0.0058 0.0056 0.0081 0.0176 0.0130 0.0169 0.0234
BMS (Beta, S;US) 0.0054 0.0172 0.0149 0.0112 0.0253 0.0514 0.0497 0.0286
BMS (Cosk, S;US) 0.0112 0.0029 0.0094 0.0093 0.0282 0.0127 0.0155 0.0184
BMS (Cokt, S;US) 0.0099 0.0102 0.0060 0.0069 0.0219 0.0237 0.0069 0.0089
BMS (Beta, L;UK) 0.0070 0.0071 0.0073 0.0127 0.0105 0.0121 0.0200 0.0257
BMS (Cosk, L;UK) 0.0048 0.0043 0.0054 0.0049 0.0045 0.0033 0.0044 0.0042
BMS (Cokt, L;UK) 0.0071 0.0072 0.0096 0.0108 0.0148 0.0178 0.0330 0.0550
BMS (Beta, S;UK) 0.0058 0.0062 0.0099 0.0136 0.0119 0.0122 0.0155 0.0346
BMS (Cosk, S;UK) 0.0100 0.0101 0.0125 0.0139 0.0214 0.0215 0.0351 0.0394
BMS (Cokt, S;UK) 0.0046 0.0050 0.0067 0.0064 0.0046 0.0050 0.0068 0.0063
Average 0.0071 0.0073 0.0084 0.0094 0.0152 0.0163 0.0195 0.0230

9 months
Average 0.0033 0.0039 0.0055 0.0060 0.0101 0.0137 0.0176 0.0200

18 months
Average 0.0031 0.0033 0.0043 0.0046 0.0077 0.0095 0.0097 0.0124
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