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Abstract 
It is fifty years since Andreas Rett first described Rett syndrome, a disorder now known to 
be caused by a mutation in the MECP2 gene. A compelling blend of astute clinical 
observations, clinical and laboratory research has already built our understanding of Rett 
syndrome and its biological underpinnings. We document the contributions of the early 
pioneers and describe the evolution of knowledge in terms of diagnostic criteria, clinical 
variation and the interplay with other Rett-related disorders. We provide a synthesis of 
what is known about the neurobiology of MeCP2, the lessons from both cell and animal 
models and how they may inform future clinical trials. With a focus on the core criteria, we 
examine the relationships that have been demonstrated between genotype and clinical 
severity. We review what is known about the many comorbidities that occur in this disorder 
and how genotype may also modify their presentation. We acknowledge the important 
drivers that are accelerating this research program including the roles of research 
infrastructure, international collaboration and advocacy groups. Finally, we conclude by 
highlighting the major milestones since 1966 and what they mean for the day–to-day lives 
of those with Rett syndrome and their families. 
 
Key points 
There has been an explosion of knowledge about Rett syndrome in relation to its genetic 
basis, clinical characteristics and their relationships during the fifty years since the disorder 
was first described by Andreas Rett. 
 
Whilst initially the diagnosis of Rett syndrome was based only on clinical criteria, identifying 
its genetic cause has had a major positive impact on how clinicians diagnose the disorder 
but also provides new challenges as we enter the era of next generation sequencing. 
 
A mutation in the MECP2 gene was found to be causative of Rett syndrome accounting for 
fundamentally altered neurobiological pathways, the stimulus for advances in identifying 
pathways that can be manipulated to provide a treatment for Rett syndrome. 
 
Whilst the disability is severe, the type of MECP2 mutation is associated with varying clinical 
severity and influences many aspects of the phenotype including functional abilities, onset 
of scoliosis, bone health and sleep disturbances. 
 
There has been considerable progress in understanding the natural history of Rett syndrome 
which has led to improvement in clinical management in selected areas while overall life 
expectancy has increased mainly due to changing attitudes and allocation of resources 
towards the health care of those with disability. 
  
The advancement in knowledge about Rett syndrome has been dependent on global efforts 
to study this disorder including the establishment of database infrastructures, the input of 
advocacy groups and the development of international collaborations. 
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Introduction 
It was in 1966 that Dr Andreas Rett first reported on a series of 22 young female patients 
with similar characteristics. He was initially aalerted to their similarities when he first 
observed two of this group sitting together in his waiting room demonstrating almost 
identical stereotypic hand movements (see Fig. 1).1 And so the gestalt of Rett syndrome 
(RTT) was first recognised, initially thought to be of metabolic origin because of an apparent 
association with hyperammonaemia, later discounted because of laboratory error. 
Seventeen years later, Bengt Hagberg and colleagues attributed Dr Rett’s name to the 
condition they had also seen in their patients.2 The disorder affected girls whose initial 
apparently normal development was followed, between seven and eighteen months (now 
known to extend later),3 by loss of previously achieved abilities, in particular hand use and 
speech.  
 
Our aim in this review is to describe the 50 year journey from recognition of Rett syndrome 
to the present day, a journey that has included iterations of the diagnostic criteria and 
growing understanding of the clinical and biological variation of the disorder. We focus 
particularly on the discovery that Rett syndrome is caused by a mutation on the MECP2 
gene, the burgeoning knowledge of its neurobiology and ensuing pathways to clinical trials. 
We include detailed review of the phenotype and observed relationships with genotype, 
and reflect on how knowledge has advanced rapidly in part due to database infrastructure, 
international collaborations and strong advocacy groups.   
 
 
 
Pivotal discoveries and advances 
Further to its original description by Hagberg and colleagues in the Annals of Neurology (see 
Fig. 1) there followed an explosion of literature about the disorder, much of which was 
published as proceedings of early meetings held in Vienna and Baltimore. An important 
outcome of the first Vienna symposium was the need for a set of clinical criteria to facilitate 
diagnosis (see Fig. 1).4 A schema of clinical characteristics with eight inclusionary and four 
exclusionary criteria was soon published, but there have since followed several iterations 
over the past three decades.5-7 An international workshop, co-sponsored by the newly 
found parent organisation, the International Rett Syndrome Association was also held in 
Baltimore, Maryland and attended by over 85 health professionals and 70 girls and their 
families. This was the beginning of a close collaboration between parents and researchers 
which has contributed greatly to the rapid advancement of knowledge in this condition. The 
case series, emerging as a consequence, was seminal in informing the medical community 
about the clinical features of this disorder,8 as was the description of 19 cases in the West of 
Scotland.9 A staging system was also developed from information relating to 29 Swedish 
cases to characterise the disease profile into  four distinct phases.10 This system has been 
widely adopted but as yet, not formally validated in the light of the genetic knowledge and 
the longitudinal data available today. The pivotal discoveries following on from the original 
clinical  revelations have been outlined first in Figure 1 but their enormous significance will 
become clear as we follow the story of Rett syndrome both in the laboratory and in the 
clinic and across the world over a further three decades.  
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Identifying the genetic cause of Rett syndrome 
The discovery of the relationship between the MECP2 gene and RTT in the Zoghbi laboratory 
in 1999 (see Fig. 1),11 undoubtedly the most significant milestone we describe, arose as a 
consequence of preceding exclusion mapping studies narrowing down the area of interest 
on Xq28.12,13 The nuclear protein MeCP2 had hitherto been of interest largely in the field of 
epigenetics. The finding that MeCP2  lay at the root of the this brain disorder resulted in  a 
convergence of clinical, neuroscience and epigenetic researchers to begin to understand the 
disease process. 
 
There were two immediate sequelae from this momentous discovery. The first was its 
impact on research. A second study from the Zoghbi laboratory identified a MECP2 
mutation in just over three quarters of screened sporadic patients with RTT and in 2/7 
familial cases.14 Severity was scored from previous clinical observations and mutations were 
categorized as either truncating or missense. Although non-random X-inactivation also 
affected phenotype, there were no overall genotype phenotype relationships identified.14 
However this was the first of numerous such investigations across the globe in ensuing 
years.e.g15-18 One of the earliest  papers identified mutations in 80% of typical RTT cases.18 
These included eight recurrent missense and nonsense mutations now known to account for 
almost two thirds of the mutations seen in RTT (see Fig. 2).19 20 
 
The second impact was the burgeoning availability of genetic testing, at least In European 
countries with equitable public funding systems and for appropriately insured US patients, 
although sadly, in many countries this still remains inaccessible to patients today. 
Techniques other than direct sequencing, such as Multiplex Ligation-Dependent Probe 
Amplification (MLPA), necessary for the identification of large deletions of exon 3 and 4,21,22 
also became available. This would have major implications for the subsequent identification 
of these mutation types.  
 
Neurobiology of MeCP2  
RTT is not considered a degenerative brain condition but the reduced gross brain volume 
seen in patients with RTT is associated with neurons that are smaller, more densely packed, 
and with reduced dendritic complexity and synapse density.23  Discovery in 1999 that 
genetic lesions in the MECP2 gene represent the underlying cause of RTT11  dramatically 
intensified efforts to model the disorder biologically.  
 
MeCP2 is essential for normal brain function 
Much work has relied on patient derived cells 24-28  and genetically modified mice including 
Mecp2-knockout lines 29,30 (see Fig. 1) as well as a variety of conditional lines in which the 
gene has been deleted from specific brain regions, brain cell types,30-38 or at different stages 
of development.39 This work has told us that loss of MeCP2 disrupts the given brain region 
or system from which it is deleted and that localised disruption results in a subset of the 
commonly-observed symptoms. In the case of deletion from GABAergic circuits, which are 
ubiquitous across brain systems, a near-complete Mecp2-null phenotype is observed 
including motor and cognitive impairments.32 In contrast, deletion from glutamatergic cells 
causes anxiety and tremor.40 Interestingly, postnatal deletion of Mecp2, even within a 
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mature nervous system, results in RTT-like phenotypes.41,42 In contrast, activation of a 
previously silenced Mecp2 allele globally, or within GABAergic neurons, reverses many 
established RTT-like phenotypes including locomotor, behavioural and aberrant functional 
and structural synaptic plasticity (see Fig 1).43-45 This suggests that many of the features 
which characterise a RTT-like disorder in mice are amenable to reversal, but also that RTT is 
not a straightforward neurodevelopmental disorder and MeCP2 has an essential and 
ongoing role in the mature nervous system. This has important implications when 
considering potential therapeutic interventions. An important caveat in interpreting mouse 

data is that hemizygous (Mecp2+/y)null male mice are frequently used experimentally due to 
their more overt and rapidly apparent phenotypes. It should be noted however that 
heterozygous (Mecp2+/-) female mice are the accurate genetic representation of most 
patients with RTT, despite the fact that they develop overt phenotypes at a much later 
idevelopmental timepoint than humans.  
 
MeCP2 is especially abundant in post-mitotic neurons 46,47 but is also expressed at modest 
levels in non-neuronal cells in the brain 48,49 and other tissues throughout the body. 50,51 
Deletion of Mecp2 from glia in mice has relatively minor phenotypic consequences but a 
restoration of MeCP2 to astrocytes in an otherwise MeCP2-deficient nervous system results 
in a partial amelioration of phenotypes including a normalisation of breathing patterns, 
motor activities and anxiety.48 As also indicated in primary culture experiments,52 MeCP2 in 
glial cells may contributing to certain non-cell autonomous functions such as supporting 
normal dendritic morphology through the release of trophic factors within the nervous 
system. However, it is a lack of functional MeCP2 in neurons that is generally considered the 
dominant driver of the disorder.53 
 
MeCP2 in non-neural cells 
The relative importance of MeCP2 in peripheral tissues is less clear. The consequences of 
global MeCP2 deficiency are observed in several peripheral systems including fatty liver and 
metabolic disease,54 lung lesions,55 cardiac effects 56,57 and aberrant bone phenotypes.58,59 
Selective deletion of Mecp2 in hepatocytes recapitulates the metabolic dysfunction 
including altered insulin and glucose regulation and lipid homeostasis but without any overt 
neurological effects,54 possibly reflecting phenotypes with a genuine peripheral origin. 
There is similar evidence for altered bone cell regulation in MeCP2-deficient osteocytes,60 
likely explaining the osteoporotic phenotypes described in RTT. In contrast, no changes have 
been observed in skeletal muscle following selective local Mecp2 deletion.61 Overall, MeCP2 
depletion studies have revealed that the majority of Rett syndrome-like behavioural, 
sensorimotor and autonomic phenotypes associated with are MeCP2 deficiency in the brain 
but that that some less extreme but clinically significant aspects of the disorder may arise 
independently of defects in the nervous system.51 
 
MECP2 mutations and protein function 
The structure and function of MeCP2 protein have been reviewed in detail.39 62 The two 
known protein isoforms of MeCP2 differ only at the extreme amino terminus and, despite 
some evidence for isoform specific-functions,63 the two forms are considered to be largely 
functionally equivalent 53,64  although MeCP2 e1 is the dominant brain isoform. The original 
discovery of MeCP2 was a result of a biochemical screen for factors interacting with DNA 
and in particular with methylated cytosines (within the context of CpG sequences).65 MeCP2 
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is a nuclear protein that tracks DNA methylation by virtue of its methyl binding domain 
(MBD).66 Emerging evidence suggests also that the MBD of MeCP2 does not exclusively 
interact with CpG dinucleotides but also has affinity for methylated CpA.67 There are also 
reports of its interaction with 5-hydroxymethylcytosine containing DNA68,69 and these 
modified DNA sequence contexts may be of special importance in the brain.70 The 
importance of the MBD is highlighted by the fact that pathogenic missense mutations in this 
region cause reduced methylated DNA binding.71 Regions distinct from the MBD including 
AT-hooks72 and a basic cluster73 have also been implicated in DNA binding. Although the 
functional importance of these regions remains to be fully established, it is possible that 
they, together with the MBD, contribute to chromatin structure.  
 
A major presumed function of MeCP2 is to regulate gene expression at either a local or 
global level. DNA methylation is a modification that is linked to gene silencing and there is a 
long held view that MeCP2 is important in transcriptional repression.74 However MeCP2 has 
also been linked to gene activation.75 MeCP2 interacts with a wide range of proteins 
(review39) including the histone deacetylase co-repressor complexes SIN3A, NCOR (nuclear 
receptor co-repressor) and SMRT (also known as NCOR2).76-79 The NCOR-SMRT interacting 
domain (NID) has been mapped within the wider transcriptional repression domain (TRD) of 
MeCP2 and a cluster of RTT-causing missense mutations, including the common 
p.Arg306Cys variant, have been shown to disrupt this interaction (see Fig. 2).71  These 
findings have led to the idea of a bridge model, whereby MeCP2 functions as a tether 
between DNA and the NCOR-SMRT complex and that missense mutations at either end of 
the bridge will result in RTT.71  Recent reports suggest that MeCP2 associated transcriptional 
regulation may be preferentially targeted to long genes which may be important in the 
downstream cellular pathologies.80,81  
 
In addition to the repressor model of MeCP2 function, a number of alternative or 
overlapping functions have been ascribed. These include a direct role in chromatin 
remodelling (compaction),82 gene activation,75 regulation of alternative splicing 83,84 and 
miRNA processing.85 MeCP2 function can be regulated by miRNAs 86,87 and activity 
dependent phosphorylation.88,89 The significance of this to RTT is unclear however as there 
are no reports to date of RTT-causing point mutations within known MeCP2 
phosphorylation sites. The level of MeCP2 within a given cell type is believed to be critical 
for normal cellular homeostasis and neurological consequences result from both loss of 
function and overexpression perturbations.53,90-92 The phenotype of MECP2 Duplication 
syndrome, the clinical manifestation of overexpression, is gradually being delineated and is 
more commonly reported in males.91,93 When modelled in mice, MECP2 Duplication 
syndrome, like RTT, has shown the potential for phenotypic reversal when MeCP2 levels are 
restored to normal levels.94  
 
Loss of MeCP2 alters the cellular levels of many gene products but the effects at the 
individual gene level are typically small 75,95 and likely to be cell-type specific. The fact that a 
wide variety of genes are affected suggests that there is not going to be a single pathogenic 
pathway that can act as a focus for all therapeutic interventions. Downstream, many cellular 
systems are disrupted, and indeed there have been reports of altered synaptic function and 
plasticity,43,96-100 reduced protein synthesis,101 impaired mitochondrial function,102 oxidative 
stress 103 and alterations in various signalling and homeostatic pathways such as the 
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mTOR/AKT pathway 101 and energy and lipid metabolism.54 Which of these is most 
important to the cellular dysfunction may be cell-type and state dependent.  
Clinical features and diagnosis 
The diagnosis of Rett syndrome and related disorders: evolution over time 
Until 1999 RTT remained solely a clinical diagnosis based initially on the  Vienna criteria,4 
and subsequently on modifications made by a US group (see Fig. 1).5 While the exclusion 
criteria were slightly expanded, a set of supportive criteria relating to breathing dysfunction, 
peripheral vasomotor disturbances, seizures, scoliosis, growth retardation and small feet 
was also added. 
 
The  revised diagnostic criteria were initially restricted to include only classical cases  of RTT 
(see Box 1), with the intention of providing a homogenous patient population for 
epidemiological research.104 Subsequently it was recommended that cases who did not fulfil 
all the necessary criteria should be designated as atypical.105 In Europe the term ‘variant’ 
was used to describe a range of Rett-like phenotypes, categorized by others as atypical. 
These included forme fruste (see Box 2) and congenital forms and infantile seizure onset,106 
male, late childhood regression and preserved speech variants.107  Subsequently, a model to 
categorise atypical RTT in “a girl with unspecified mental retardation, aged 10 years or 
more” was developed and required the presence of three or more primary criteria and five 
or more supportive criteria (see Fig. 1, Box 2).108  Its purpose was to  cover the full range of 
clinical manifestations likely to be encompassed by the underlying biological disorder, 
subsequently to be revealed by the discovery of the true genetic cause of RTT (see Fig. 1).11 
At a meeting in Baden-Baden in 2001 the existing three sets of criteria,4, 5, 108 were assessed 
and combined to form two new versions, one for classical (see Box 1) and one recognising 
atypical RTT (see Box 2) as its own entity (see Fig. 1).6 In the intervening years some lessons 
had been learned. Early development was not invariably normal 109 nor did deceleration of 
head growth always occur.110  
 
In 2010 a further set of criteria was introduced in the hope of clarifying some of the 
differences in terminology between Europe and North America (see Fig. 1).7 In contrast to 
previous iterations, and, additional to the four core criteria relating to loss of hand skills, 
loss of spoken language, gait abnormality and stereotypic hand movements, a mandatory 
criterion of a period of regression followed by recovery or stabilisation was introduced. For 
atypical RTT, a period of regression was also mandatory but only two of the four criteria 
were required as well as at least five of eleven supportive criteria. One may question the 
need for this criterion given that regression in some patients is often “ fleeting or 
unrecognised”,111 or may not yet have occurred at time of genetic testing, now in general 
use by clinicians diagnosing RTT. While dependence on clinical criteria without genetic 
confirmation is necessary in many parts of the world, in many developed countries direct 
sequencing is being replaced by a range of next generation sequencing (NGS) techniques 
including targeted gene sequencing, whole-exome sequencing  and whole-genome 
sequencing. Consequently, such molecular testing for children with developmental 
problems could be undertaken at an early age before the hallmark features characterising 
particular disorders have become apparent. These technological advances may eventually 
prove to be more efficient and cost-effective for diagnosis 112 and the RTT clinical criteria 
which relate to the evolution of the disorder could become redundant.  
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The final component of these most recent criteria6 provides further clinical description of 
some of the original “variant” forms, two of which, the early seizure onset variant now 
recognised as the CDKL5 disorder 113 and the congenital variant, mostly caused by mutations 
in FOXG1,114 must now be considered only as Rett-related disorders.111 The third atypical 
form, the Zappella or preserved speech variant, 107 is most often associated with a 
p.Arg133Cys mutation115 or a C terminal deletion (see Fig. 2).116 However, by additionally 
describing the forme fruste, late regression and male variants, Hagberg had already 
provided the best delineation of the full spectrum of clinical presentations.117 As we reflect 
today on these early descriptors we can see how well they fit with our current 
understanding of the relationships between genotype and phenotype.  
 
Overall severity and relationship with genotype 
It was as early as 1987 that the issue of the danger of masking the true clinical variation in 
RTT (see Boxes 1 and 2) by the adoption of “artificial” inclusion/exclusion criteria based on 
phenotype and not on cause was raised by the esteemed John Opitz.118 Much later and 
endorsing this concept in a different way Bengt Hagberg acknowledged the wide clinical 
variation of what he called the “MECP2-deviant phenotypes” with a spectrum ranging from 
the severe newborn encephalopathy in males to the female carrier mothers.119 We now 
know, as Opitz might have predicted, that much of this spectrum relates to the type of 
genetic mutation with the very mild variants often represented by those with C terminal 
deletions (see Box 2).119-121 Although RTT is considered by most a clinical diagnosis there 
remains a fine line between the naming of individuals as “female forme fruste Rett 
syndrome variants”119  or as “people without Rett syndrome.”121 
 
The Australian register first provided the means to examine the spectrum of presentations 
in a total RTT population cohort using three previously published measures, designated as 
the Kerr,122 Percy 123 and Pineda 124 scores.125 Considerable variability in the early regression 
period, current functioning and comorbidities, much of which was subsequently shown to 
relate to genotype, was demonstrated. Severity generally increased with age.  
 
Despite numerous small studies it took time to accumulate adequate data to provide 
consistency in genotype phenotype relationships. The two most seminal studies were 
published within months, the first using data from InterRett,126 and the second from the US 
Natural History study.127 Where comparable, findings were broadly similar with most severe 
mutations being p.Arg270*, p.Arg255* and p.Arg168* and less severe being p.Arg133Cys, 
p.Arg294*and C terminal deletions (see Figs 2 & 3E, Boxes 1 and 2). Overall individuals with 
severe mutations were less likely to walk, retain hand use, or use words and to be 
diagnosed at an earlier age (see Figs. 2 & 3A, B, C & D).128 The large deletion group, not 
included in the initial InterRett study, was subsequently  described separately confirming 
earlier US findings127 of phenotypic severity (see Figs 2 & 3E).129 In a later publication, also 
studied separately were the C terminal deletions, a milder group which, due to their 
comparatively later loss of skills and onset of stereotypies,120  fit with the initial “late 
regression” descriptor (see Figs. 2 & 3E and Box 2).  Of interest also were their better 
growth parameters and increased likelihood of kyphosis.120 Information from 
these120,126,127,129 and other studies 20 is enormously useful when considering prognosis 
although it is clear that genotype is but one factor and other factors  such as X-
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inactivation,130 genetic modifiers,131 and possibly environmental factors132 also have a role 
to play (see Box 2). 
 
Variation in functional abilities 
The classic signs of RTT include severe functional impairments usually necessitating 
substantial support in daily life. There are often subtle changes in development prior to the 
onset of regression109 which is characterised by dramatic or more subtle loss of hand and 
communication skills, loss of balance, and development of hand steretoypies.7,133 Patterns 
in the relationships between genotype and hand and gross motor skills can be seen.126,134,135 
Although cross sectional studies suggest that motor function declines with increasing age, 
further longitudinal research is necessary to confirm or refute this. For example, some 
adults with RTT, likely those with a mutation associated with a milder phenotype retain the 
capacity to walk (see Figs. 2 & 3B).136,137 Similarly for communication, those with milder 
mutations such as p.Arg133Cys or p.Arg306Cys are more likely to learn to babble or use 
words prior to regression, to regress at a later age, to retain some oral communication skills 
after regression and to be diagnosed later (see Figs. 2 & 3A & D).115,128 Building capacity for 
movement and communication in everyday life is a fundamental goal and with deeper 
understanding of motor deficits, the potential role of the enriched environment132 and 
technological advances in assisted communication systems, there is expanding capacity to 
respond. Nevertheless, there are no studies beyond single or small case series 138,139 and we 
do not fully understand what interventions are associated with favourable outcomes and 
how treatments should be modified for variation in phenotype. 
 
 
 
 
Comorbidities and their management  
Epilepsy 
Epilepsy is a particularly challenging comorbidity to study in RTT. Although the EEG is 
uniformly abnormal typically from about 18 months,140 this does not necessarily reflect 
seizure activity.141 Moreover, while some seizures seen during video-EEG monitoring may 
not be recognised by caregivers as clinical events, the reverse is also true that many events 
characterised by caregivers as seizures are not associated with EEG seizure discharges. This 
has contributed to difficulties in validating epilepsy diagnosis and in recording seizure 
history for research and probably to the comparative dearth of literature. With this caveat 
in mind a number of investigations have been undertaken. Epilepsy was diagnosed in 95% of 
a Swedish representative series (n=53) although seizure frequency declined with age.142 In 
one Australian study the prevalence of epilepsy diagnosis was 81% with a median age of 
onset of four years.143 In another study, seizure rates were found to be generally higher in 
those with greater clinical severity and lower in those with p.Arg294* and p.Arg255* 
mutations and C-terminal deletions.144 In recent years there have been three substantially-
sized studies reporting on epilepsy in RTT.145-147 On average just over 60% of cases had been 
diagnosed with epilepsy but in the US study145  the proportion verified by physicians as 
seizures was lower. The variation seen in relation to effect of genotype (e.g. see Figs 2 & 3G) 
may have resulted from methodological differences but in all three studies the mutation 
p.Thr158Met conferred some additional risk of epilepsy.145-147  
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Growth and nutrition 
Growth retardation was listed amongst the early supportive criteria,5  with head growth 
deceleration occurring first followed later by weight and height and even hands and feet.148 
Although the exact underlying mechanism remains unclear149-151 there is a definite 
relationship with genotype.120,150 Growth charts have been generated using cross-sectional 
and longitudinal data from 816 US cases with the growth failure again more pronounced in 
those with the more severe p.Thr158Met, p.Arg168*, p.Arg255*, p.Arg270* and large 
deletion mutations (see Figs. 2 & 3E).152 Enteral support is common practice in developed 
countries. It is now being used in over a quarter of cases,153 particularly in those with large 
deletion and p.Arg168* mutations (see Fig. 2), with apparent benefit both in growth 
parameters and parental satisfaction.153 A large multinational group also collated existing 
evidence and used expert opinion to provide guidance on the assessment and management 
of growth and feeding problems in RTT.154 These published guidelines, also available in user-
friendly formats for clinicians and families have provided an important step in tackling this 
comorbidity.154 
 
Autonomic dysfunction 
Abnormal breathing patterns, considered a manifestation of autonomic dysregulation, 
commonly occur in RTT. These generally  present either as episodes of hyperventilation or 
breath holding.155,156 Abdominal bloating, which in rare cases can lead to gastric 
perforation,157 is a common sequela and may need alleviation through the release of air via 
a gastrostomy. Vasomotor disturbances causing cold and blue hands and feet were also 
identified as supportive clinical criteria 5 Despite the intensive autonomic monitoring now 
undertaken in some European centres155 information on the prevalence and natural history 
of these disturbances and potential relation to genotype remains unknown. In general the 
literature on autonomic disturbance in humans is lacking compared to that in animal 
models.158 This knowledge gap is of concern given that animal studies suggest the need for 
pharmacological interventions and clinical trials that are imminent will be testing 
compounds that aim to reduce autonomic dysfunction. 
 
Scoliosis 
With neurological impairment and altered motor skills, the development of deformity such 
as scoliosis can be relentless. An early case series indicated that neurological signs were 
often asymmetrical with the right side more affected159 and indeed larger studies found 
scoliosis to be a common deformity.160,161 In the Australian study, 75% of girls developed 
scoliosis by age 15 years with earlier onset in those with more severe mutations such as 
p.Arg255* or large deletions (see Figs. 2 & 3H).160 Scoliosis is usually progressive particularly 
in children who are unable to walk and with most common mutations other than the  
p.Arg306Cys.160 There are health implications because a scoliosis with a Cobb angle greater 
than 70 degrees has particularly detrimental effects on respiratory health.162 In response to 
a very poor evidence base, an international group developed a set of clinical guidelines for 
the management of scoliosis using available literature, but drawing heavily on the literature 
for neuromuscular scoliosis. There was consensus that scoliosis should be regularly 
monitored and spinal fusion considered when the Cobb angle is greater than 50 degrees.163 
In a subsequent study, spinal fusion was associated with improved survival and, in those 
with early onset scoliosis, a moderate reduction in frequency of severe respiratory tract 
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infections.164 This is important for clinicians and families when considering the advantages 
or otherwise of spinal fusion in individual girls/circumstances.165  
 
Sleep disturbances 
Sleep disturbances have always been considered supportive criteria for RTT and their 
burden on the affected person and their family is likely considerable. An early Australian 
study (n=83) reported less night-time sleep overall and day-time naps that persisted with 
age.166 Subjects with a seizure disorder had more and those who could walk less daytime 
sleep.166 Further population-based research found a high prevalence of sleep problems with  
a decrease with age, especially for night laughing and screaming.167,168 The highest 
likelihood of sleep problems occurred in those with a large deletion (particularly night 
laughing) and in those with p.Arg294* (see Fig. 2).167,168 A recent study, using InterRett for 
ascertainment, surveyed parents/carers of 364 genetically confirmed cases aged 2-57 
years.169 Night waking was frequent, and, consistent with previous  research, those with the 
p.Arg294*were most likely to have problems initiating and maintaining sleep (see Figs. 2 & 
3F).169 Those with epilepsy and those not mobile were more likely to have excessive 
somnolence also consistent with earlier findings.166 In one small clinical trial (n=9) melatonin 
appeared to improve total sleep time and efficiency in those worse at baseline without any 
adverse side effects.170 Given the frequency and impacts of sleep dysfunction on child and 
family, our evidence base for management remains remarkably sparse. 
 
Bone health 
Unlike other comorbidities adverse bone health was not one of the original supportive 
criteria. Susceptibility to osteopenia and fractures was first highlighted through US171 and 
Australian research.172,173  Fracture risk was four times that of the general female 
population, and specifically increased in those with p.Arg168* and p.Arg270*mutations (see 
Fig 2).173 Several Danish,174,175 US176,177 and further Australian studies178,179 have also 
investigated which particular bone parameters were most adversely affected and their 
potential nutritional,180 (e.g. Vitamin D status) environmental and genetic risk factors. Risk 
factors for fractures such as genotype173 and use of certain anti-epileptic medications181 did 
not always correlate exactly with those for low bone density, which also varied by outcome 
parameter and body site. For example, right femoral neck areal bone mineral density was 
particularly impaired with increasing age and lack of mobility in comparison to other 
parameters.178 A recent Danish study concluded that the comparatively reduced levels of 
biochemical bone markers in RTT signified a a low bone turnover state.182 Non-
representative and small sample sizes, often without longitudinal collection, lack of 
childhood population bone parameter norms and accommodation for decreased stature 
and different analytical methods all make cross-study comparison difficult. Yet 
understanding the role of bone health in RTT and the role of MeCP2 in bone development is 
crucial especially since MeCP2-deficiency has now been shown to alter the biomechanical 
integrity of bone in a mouse model.58,59  Thus, as for growth problems, a set of guidelines for 
bone health has been developed which aimed to provide the best available evidence at time 
of publication.183 It is hoped that these guidelines will soon be able to be modified with 
results from clinical trials assessing the effectiveness of drugs such as bisphosphonates in 
RTT.184 
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Therapeutic strategies 
The increased understanding of MeCP2 function and the availability of valid cellular and 
animal models has fueled efforts to identify and develop therapeutic strategies for RTT.185-

188  These include efforts to target the various brain systems and downstream cellular 
processes affected in RTT as well as approaches that target the root cause of the disorder - 
MeCP2 dysfunction (see Fig. 4).185 
 
Approaches targeting MeCP2 at the level of the gene or protein to restore functional MeCP2 
within the nervous system are appealing in that they have the potential to produce a 
profound amelioration or reversal of symptoms based on reversal studies in mice.43,44,189 
Such approaches involve molecular and genetic manipulations ranging from gene 
transfer190,191 and protein substitution to novel forms of DNA and RNA editing.192 However, 
the level of MeCP2 in a given cell may be critical 193  and restoring MeCP2 function without 
producing overexpression-related pathology is likely to be a significant challenge. Strategies 
targeting MECP2 typically require the development of completely novel molecules which 
represents a bigger uncertainty in terms of adequate brain delivery, safety and ensuing 
regulatory hurdles. MeCP2 protein is a macromolecule and, with multiple functional 
domains, it is not considered practical to restore normal function using small molecule 
drugs. However, it may be possible to develop small molecules to act at the genomic level to 
reactivate the MECP2 allele on the inactive X chromosome194 or at the level of RNA to 
enable read-through of nonsense mutations.195,196  
 
In contrast to targeting MECP2, pharmacological strategies targeting mechanisms 
downstream in the pathogenic process can make use of small molecules already developed 
or approved for other indications. Indeed, several drugs with proven efficacy in Mecp2 
knockout mice have proceeded into clinical trials in patients with RTT (see Fig. 4).185 
However, such approaches do not address the underlying aetiology and the lack of a 
dominant cellular process or pathway downstream of MeCP2-deficiency suggests that the 
impacts may be restricted to a subset of symptoms. Approaches developed so far can be 
broadly divided into (1) pharmacological agents that affect major neurotransmitter systems 
in the brain, notably glutamate, GABA, acetylcholine and monoamines (see Fig. 4); (2) drugs 
and trophic factors that promote brain growth and development, mostly via modulating the 
BDNF pathway; and (3) drugs that modulate other cellular processes known to be perturbed 
in models of RTT such as energy metabolism and protein synthesis. 
 
Clinical trials for rare disorders present challenges including mutation heterogeneity, 
variation in disease severity and the pool of available participants. Moreover, there are 
additional considerations in terms of optimal time for intervention and the nature of trial 
design.185 Important starting points are not only high quality natural-history data but also 
objective and robust outcome measures. Several clinical severity scores122,124,197 have served 
well in studies of genotype phenotype relationships,126,127 but are not necessarily optimal 
when used, as they have been,198 as outcome measures in clinical trials. The also used198 
Motor-Behavioral Assessment (MBA) comprises 39 items scored with a five-point scale to 
describe clinical severity,199 but it is poorly operationalized with some items describing 
historical aspect of regression and has never been validated. Similarly the Rett Syndrome 
Behaviour Questionnaire200 was developed for the purpose of differentiating individuals 
with RTT from those with other causes of intellectual disability before genetic testing 
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became available. It has been used successfully in genotype phenotype studies to assess 
some aspects of behavior such as mood and anxiety137,201 but again may not appropriately 
measure behavior as an outcome in a clinical trial.  There is a clear need for the further 
development of such instruments and work is currently underway in that regard.202 
 
Clinical Global Impression Scales are clinician-rated, seven-point rating scales used to 
describe severity and change, and more recently these have been adapted to RTT for use in 
clinical trials.203 This has involved the development of seven category descriptors for the 
domains of communication, ambulation, hand use, use of eye contact, autonomic function, 
seizures and attentiveness. Initial validation studies including testing their responsiveness to 
change are being undertaken.203  More sensitive measures of specific domains are also 
becoming available.  For example, there is substantial validation for the 15-item Rett 
Syndrome Gross Motor Scale providing capacity to demonstrate responses to an 
intervention in this domain.135 Wearable technologies have also been used for objective 
measurement of the patterns and regularity of respiratory and cardiac function in RTT in 
previous small observational studies156,204 and recently in a clinical trial.198  Thus some 
progress is being made in this important area of outcome measures, but much still needs to 
be done to ensure that future clinical trials are able to provide the answers that they should. 
 
 
 
Global efforts to study a rare disorder 
Epidemiology 
The Texas registry was the first population-based register to be established using multiple 
sources of ascertainment monitored with capture recapture methods.205 It provided a 
model for the Australian Rett Syndrome Database (see Fig. 1)  which in 1997 reported a 
cumulative incidence of 0.96 per 10,000 females by the age of 12 years.206 Further studies in 
2011 demonstrated that the cumulative incidence was increasing with age and that the 
median age at diagnosis had fallen from 4.5 before to 3.5 years after 1999.207 
 
Infrastructures 
The establishment of registers is a first step in understanding the epidemiology, the natural 
history and life expectancy of a rare disorder. Following Dr Alison Kerr’s use of the British 
Paediatric Surveillance Unit to launch the British Isles RTT Survey in 1990,208  the Australian 
database (see Fig 1), established three years later, took advantage of the newly formed 
Australian Paediatric Surveillance Unit to ascertain cases.206 Now maintained for over two 
decades, each additional year of follow-up increases its value,137 providing capacity to follow 
children into adulthood and identify trajectories of functioning and comorbidities.209 
Population-based longitudinal follow-up with minimisation of attrition is essential for 
studies of life expectancy but is uncommon in the field of rare disorders. 
 
Genotype phenotype investigations are ideally sourced from population-based sources,210 
but when mutations are less common or effect sizes small, large sample sizes provide 
greater power. InterRett is one such infrastructure which has served this purpose well by 
collecting questionnaire data internationally from both clinicians and families since 2003 
(see Fig. 1).211 Another is the now NIH-funded Rare Disease Network for Rett syndrome, 
initially established in 2004 by Dr Alan Percy (see Fig. 1).212 Although both of the latter two 
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data collections are likely by their nature to be highly selective, it has been possible to 
compare some characteristics of InterRett with an Australian population-based source.213 
Although InterRett families were of a somewhat higher socioeconomic status the 
distribution of mutation type was broadly comparable to that of the  population-based 
source. The original structure of the NIH-funded study involved the collection of data from 
clinic visits to inform the understanding of natural history. The major current aim is to 
increase the understanding of the molecular basis of RTT and identify treatments that may 
improve the function of affected individuals. The European Rett Syndrome Database 
Network (EuroRett) combines data from multiple sources and is more akin to the model of 
InterRett but to date has mainly been applied to investigations on epilepsy.147 RettBASE, the 
MECP2 Variation Database has a different but valuable function, which is to catalogue the 
variety of different genetic variants,  both pathogenic and non-pathogenic, reported both in 
publications and from laboratories.214  
 
Role of Advocacy Groups 
Advocacy groups have played a major role in funding both such infrastructures and RTT 
research. The main organization, providing both support and advocacy as well as funding 
was established in 1984, as the the International Rett Syndrome Association (IRSA).215 When 
commenting about the achievements of this organization, its founder, Kathy Hunter, wrote 
that “parents soon understood the critical part they must play in making sure that funds are 
available for research” and “they also understand the need for them to participate 
vigorously in research”.216  
 
International Collaboration- challenges and accomplishments 
International collaborations are important for rare disease research. Yet over the years 
there have been some differences, internationally, in the understanding and terminology 
used for RTT. Such differences can hamper progress. One example is a simple scoring 
system initially proposed by a UK researcher but with relatively poor adoption in North 
America.122 Another is the wide variation in autonomic monitoring and management 
underpinned with very little evidence.155 The Australian group has led a number of 
successful collaborative initiatives to develop guidelines for treatment of common RTT 
comorbidities. Often in the absence of a good evidence base these depended on expert 
opinion garnered in a collegial fashion through the Delphi process.154,163,183    
 
 
The last fifty years and into the future  
In terms of the clinical presentation, it seems clear that many components of the original 
model proposed by Hagberg now ring true. Life expectancy has increased dramatically 
partly because of changing attitudes and allocation of resources towards the health care of 
those with disability. For instance the value of surgical treatment for scoliosis was first 
raised by Dr Alison Kerr who reported positively on family perspectives of wellbeing one 
year after the fusion operation,217 information further validated in several recent studies 
using population-based data.164,218 Enteral nutrition is now also commonly available at least 
in developed countries and there is preliminary evidence of a positive impact on growth.153 
These positive effects of management can be seen when the 21% survival at 25 years in 
Rett’s original cohort is compared with 71% in an Australian population cohort today.219 
Recent population data using longitudinal follow-up over more than two decades suggest 
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that approximately 60% will survive to their late thirties.137  This is considerably lower than 
the estimates of 50% at 50 years using the North American Database (data derived from 
50% response to questionnaires administered to IRSA family members) 220 and 75% at 45 
years using nine years follow-up of the US Natural History sample.221 Both samples are large 
but select groups likely to be better resourced than the general US population. 
 
Other societal changes include our passage into the digital age as only 12 years ago the 
value of connecting through the internet with families affected by RTT was first 
demonstrated.222 Now social media sites are often the first port of call for families with a 
new diagnosis. Traditionally wary of patients seeking information from non-reputable 
sources, clinicians now appreciate the importance of this virtual peer support especially for 
geographically isolated families affected by a rare disease.  
 
The greatest explosion of knowledge on RTT has occurred in the sixteen years since the 
discovery of the genetic cause. During this period US and Australian natural history studies 
and international databases have informed our understanding of genotype-phenotype 
relationships and the comorbidities which occur in this disorder. We have learnt much 
about the function of the MeCP2 protein in particular in its role as a regulator of gene 
expression and its interaction with other proteins. The reversal of neurological deficits in a 
mouse model in 2007 43 has raised hopes of the potential for a treatment which can restore 
MeCP2 expression in humans. Although there has been some progress made in improving 
clinical management, we still cannot offer treatment options that resolve or substantially 
reduce many of the comorbidities. Many individuals are adversely affected by poor sleep, as 
are their families, a substantial proportion have refractory epilepsy, there are no evidence-
based management options for the autonomic breathing abnormalities and the best 
methods to improve functional ability are not yet known. These are important clinical 
challenges to address. The probability of translating promising preclinical outcomes to 
effective clinical treatments for nervous system disorders is low and expectations must be 
moderated accordingly. However, the developing pipeline of putative therapies, the 
coordinated efforts of clinicians, scientists and family organizations together with increasing 
engagement of the biomedical industry, may see exciting developments ahead. 
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Rett syndrome timeline 

1966 Andreas Rett’s original clinical 
description1 

1983 Joint French, Swedish, 
Portuguese publication in 
Annals of Neurology2 

1985  Publication of Vienna criteria-
first clinical criteria for Rett 
syndrome4 

1988 Consensus Diagnostic Criteria 
published in the US5 

1993 Establishment of the Australian 
Rett Syndrome Database206 

1994 Publication of Hagberg’s Variant 
model108 

1999 Identification of the genetic 
cause of Rett syndrome11 

2001 First animal models of Rett 
syndrome become available29 

2002 An update on clinically 
applicable diagnostic criteria in 
Rett syndrome6 

2003 Establishment of InterRett, the 
International Rett Syndrome 
Phenotype Database213 

2004 Launch of US Natural History 
study212 

2007 Reversal of Rett syndrome in a 
Mouse Model43 

2010 Rett syndrome Revised 
Diagnostic Criteria7 

2016 ~4000 research papers on Rett 
syndrome, >25 clinical trials for 
Rett syndrome completed, 
underway or planned 

 
 
 



Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

MeCP2_e1 (498 aa)

MeCP2_e2 (486 aa)

MBD TRD NID

Figure 2. MECP2 gene structure and key protein domains implicated in
RTT pathogenesis. (a) The two known mRNA isoforms MECP2_e1 and
MECP2_e2 generate two protein isoforms which differ only at the
extreme N-termini due to the use of alternative translation start sites
(bent arrows) and selective inclusion of exon 2 in the transcript. (b)
MeCP2 protein contains distinct functional domains pertinent to RTT
pathology: MBD, methylated DNA-binding domain; TRD, transcription
repression domain; NID, NCOR-SMRT interaction domain; NLS, nuclear
localization signal. Missense mutations causing RTT predominantly
cluster across the MBD and TRD/NID whereas neutral variants tend to
lie outside these domains. The locations of common point mutations
causing RTT are indicated as is the region in which common C terminal
deletions occur.

a

b

Common missense mutations 
disrupting binding domains

C terminal deletions

Common RTT-causing 
nonsense mutations 

NLS and boundary of early and 
late truncation mutations



Therapeutic approach

Neurotransmitter 
systems disrupted in RTT

Growth factors, cell 
metabolism and 

homeostasis

Targeting MECP2 at the 
level of the gene, RNA, 

protein

GABA
- L-838,417
- Midazolam
- NO-711

Glutamate
- Dextromethorphan
- Ketamine
- Memantine

Monoamines
- Benserazide
- Clenbuterol
- Citalopram
- Desipramine
- LP-211
- NLX101
- Sarizotan

Neurotrophic factors
- Copaxone
- CPT157633
- CX546
- 7,8 DHF
- Fingolimod
- LM22A-4
- Mecasermin
(Recombinant hIGF-1)

- Trofinetide
(terminal tri-peptide of IGF-1)

- UA0713

Acetylcholine
- Acetyl-L-carnititne
- Choline

Metabolic factors
Lipid metabolism
- Fluvastatin
- Lovastatin

Mitochondrial function / 
oxidative stress
- CNF1
- EPI-743
- Triheptanoin

Genetic therapy
- Gene therapy
- Genome editing
- mRNA editing
- read-through compounds 

(nonsense mutations)
- Activation of MECP2 on inactive X 
chromosome

Protein replacement
- Recombinant hMeCP2

Figure 4. Primary therapeutic strategies and compounds being investigated in preclinical animal models and in clinical trials (bold).



A Age at diagnosis by mutation type in 1,040 individuals with Rett syndrome. Data points 
are the median age. (Data source: Australian and International (InterRett) Rett Syndrome 
databases)   B Ambulation ability by mutation type in 1,112 individuals with Rett syndrome. 
(Data source: International Rett Syndrome Database (InterRett)) C Hand use acquisition and 
loss by mutation type in 1,097 individuals with Rett syndrome. (Data source: International 
Rett Syndrome Database(InterRett)) D Language ability and history by mutation type in 
1,046 individuals with Rett syndrome. (Data source: International Rett Syndrome (InterRett) 
Database) E Association between clinical severity and mutation type in 974 (Pineda) and 776 
(Percy) individuals with Rett syndrome. Data points are the mean score adjusted for age and 
data source, with 95% confidence intervals. F Relationship between sleep disturbances 
(Disorders of initiating and maintaining sleep (DIMS), Bruni 1996) and mutation type in 325 
individuals with Rett syndrome. Data points are the mean DIMS score adjusted for age, 
seizure frequency and mobility, with 95% confidence intervals.168 G Incidence rate of 
epilepsy diagnosis by mutation type in 560 individuals with Rett syndrome. Data points are 
the mean incidence rate, with 95% confidence intervals.145 H Incidence rate of scoliosis 
diagnosis by mutation type in 392 individuals with Rett syndrome. Data points are the mean 
incidence rate, with 95% confidence intervals.160 
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A Age at diagnosis by mutation type in 1,040 individuals with Rett syndrome. Data points are the median age. (Data source: Australian and International Rett Syndrome databases)

B Ambulation ability by mutation type in 1,112 individuals with Rett syndrome. (Data source: International Rett Syndrome Database) C Hand use acquisition and loss by mutation type in

1,097 individuals with Rett syndrome. (Data source: International Rett Syndrome Database) D Language ability and history by mutation type in 1,046 individuals with Rett syndrome.

(Data source: International Rett Syndrome Database) E Association between clinical severity and mutation type in 974 (Pineda) and 776 (Percy) individuals with Rett syndrome. Data

points are the mean score adjusted for age and data source, with 95% confidence intervals. F Relationship between sleep disturbances (Disorders of initiating and maintaining sleep

(DIMS), Bruni 1996) and mutation type in 325 individuals with Rett syndrome. Data points are the mean DIMS score adjusted for age, seizure frequency and mobility, with 95%

confidence intervals.168 G Incidence rate of epilepsy diagnosis by mutation type in 560 individuals with Rett syndrome. Data points are the mean incidence rate, with 95% confidence

intervals.145 H Incidence rate of scoliosis diagnosis by mutation type in 392 individuals with Rett syndrome. Data points are the mean incidence rate, with 95% confidence intervals.160
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