Three-dimensional nonlinear micro/meso-mechanical response of the fibre-reinforced polymer composites

Ullah, Z., Kaczmarczyk, Ł. and Pearce, C.J. (2017) Three-dimensional nonlinear micro/meso-mechanical response of the fibre-reinforced polymer composites. Composite Structures, 161, pp. 204-214. (doi: 10.1016/j.compstruct.2016.11.059)

1131588.pdf - Published Version
Available under License Creative Commons Attribution.



A three-dimensional multi-scale computational homogenisation framework is developed for the prediction of nonlinear micro/meso-mechanical response of the fibre-reinforced polymer (FRP) composites. Two dominant damage mechanisms, i.e. matrix elasto-plastic response and fibre–matrix decohesion are considered and modelled using a non-associative pressure dependent paraboloidal yield criterion and cohesive interface elements respectively. A linear-elastic transversely isotropic material model is used to model yarns/fibres within the representative volume element (RVE). A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between linear displacement, uniform traction and periodic boundary conditions. The computational model is implemented within the framework of the hierarchic finite element, which permits the use of arbitrary orders of approximation. Furthermore, the computational framework is designed to take advantage of distributed memory high-performance computing. The accuracy and performance of the computational framework are demonstrated with a variety of numerical examples, including unidirectional FRP composite, a composite comprising a multi-fibre and multi-layer RVE, with randomly generated fibres, and a single layered plain weave textile composite. Results are validated against the reference experimental/numerical results from the literature. The computational framework is also used to study the effect of matrix and fibre–matrix interfaces properties on the homogenised stress–strain responses.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Kaczmarczyk, Professor Lukasz and Ullah, Dr Zahur and Pearce, Professor Chris
Authors: Ullah, Z., Kaczmarczyk, Ł., and Pearce, C.J.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Composite Structures
ISSN (Online):1879-1085
Published Online:19 November 2016
Copyright Holders:Copyright © 2016 The Authors
First Published:First published in Composite Structures 161: 204-214
Publisher Policy:Reproduced under Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
618241Providing Confidence in Durable Composites (DURACOMP)Christopher PearceEngineering & Physical Sciences Research Council (EPSRC)EP/K026925/1ENG - ENGINEERING INFRASTRUCTURE & ENVIR