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ABSTRACT Cognitive radio (CR) enables unlicensed users to explore and exploit underutilized licensed
channels (or white spaces). While multi-hop CR network has drawn significant research interest in recent
years, majority work has been validated through simulation. A key challenge in multi-hop CR network
is to select a route with high quality of service (QoS) and lesser number of route breakages. In this
paper, we propose three route selection schemes to enhance the network performance of CR networks, and
investigate them using a real testbed environment, which consists of universal software radio peripheral
and GNU radio units. Two schemes are based on reinforcement learning (RL), while a scheme is based
on spectrum leasing (SL). RL is an artificial intelligence technique, whereas SL is a new paradigm that
allows communication between licensed and unlicensed users in CR networks. We compare the route
selection schemes with an existing route selection scheme in the literature, called highest-channel (HC),
in a multi-hop CR network. With respect to the QoS parameters (i.e., throughput, packet delivery ratio,
and the number of route breakages), the experimental results show that RL approaches achieve a better
performance in comparison with the HC approach, and also achieve close to the performance achieved by the
SL approach.

INDEX TERMS Cognitive radio, multi-hop network, route selection, reinforcement learning, spectrum
leasing.

I. INTRODUCTION
Cognitive radio (CR) is the next-generation wireless
communication system that enables unlicensed users
(or secondary users, SUs) to explore and exploit underutilized
licensed channels (or white spaces), which are owned by
the licensed users (or primary users, PUs), in the spectrum.
The PUs have exclusive rights to access their respective
licensed channels, and the SUs are unaware of their usage
patterns unless there are explicit communications between
the PUs and the SUs. Two major objectives of CR are to
maximize spectrum utilization, and to improve quality of ser-
vice (QoS), which can be achieved by incorporating cognition
(or intelligence) into SUs.

Majority of the research related to CR networks has been
limited to theoretical framework [1], [2], and simulation stud-
ies [3]–[5]. In recent years, some essential CR functions, such
as channel sensing, have been implemented on real testbeds
focusing on PHY and MAC layers [6]–[10]. However, there
is only perfunctory effort to investigate the network layer
through real testbed implementations, and there are three
main limitations. Firstly, only a few nodes have been uti-
lized in existing network-layer implementations [12]–[14].
Secondly, monetary constraint has discouraged network-
layer implementation asmore nodes and computing resources
are needed to investigate multi-hop transmission. Thirdly,
the underlying layers (i.e., physical and data link layers),
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particularly the hardware and software processing delays,
can affect the network layer performance [11]–[13], [15].
This means that the choice of hardware and software for
the underlying physical and data link layers can significantly
affect the network-layer performance, which is undesirable.
We address the limitations associated with the network-layer
implementation using a simplified system architecture to con-
struct a larger network consisting up to ten nodes in which the
universal software radio peripheral (USRP) hosts are directly
connected to a single computer using an Ethernet switch. This
allows the extension of existing implementations [12], [13]
by increasing the number of USRP hosts in the platform.
The Ethernet switch reduces the effects of latency so that the
performance of network-layer schemes can be analyzed.

In this article, an experimental setup has been deployed to
examine route selection schemes in multi-hop CR platform
using USRP [16], [17], and GNU radio toolkit [18]. Gener-
ally speaking, USRP, which is an off-the-shelf wireless host,
enables each SU to autonomously and dynamically config-
ure various operating parameters, such as channel frequency
and modulation scheme, for data transmission using GNU
radio. GNU radio, which is an open source software platform,
generates signals for USRP nodes and performs waveform-
specific processes including modulation (e.g., GMSK), as
well as packet encoding and decoding. We deploy three route
selection schemes based on: 1) the traditional reinforcement
learning (RL) approach, 2) a RL approach with average
Q-value, and 3) a spectrum leasing (SL) approach. RL is an
artificial intelligence technique in which a decision maker
(or an agent) learns about its operating environment and
makes decisions on action selection that provides system
performance enhancement without using prior or explicit
knowledge. SL is a new paradigm that allows communication
among PUs and SUs in CR networks. The proposed schemes
select the best possible route from a SU source node to a
SU destination node in a multi-hop CR network in order to
improve QoS parameters (i.e., throughput and packet deliv-
ery ratio) and routing stability (e.g., the number of route
breakages).

Our contribution is to propose and implement three
route selection schemes based on RL and SL on real
testbed environment using USRP/GNU radio platform with
the objective of improving QoS performance in multi-hop
CR networks, while taking into consideration the limitations
of the underlying USRP/GNU radio platform for network-
layer implementation. To the best of our knowledge, this is the
first testbed implementation of RL-based and SL-based route
selection schemes in CR networks, taking into consideration
the limitations of network-layer implementation.

A summary of the notations used in this article is shown
in Table 1. The rest of this article is organized as follows.
Section II presents related work. Section III presents system
architecture. Section IV presents route selection. Section V
presents experiment and evaluation. Finally, Section VI
presents conclusion and future work.

II. RELATED WORK
In the network layer of CR networks, there are two widely
adopted network architectures, namely distributed and cen-
tralized models. In the distributed model, each SU node has
local spectrum knowledge, which represents the local avail-
ability of various channels over time and space [19]. In the
centralized model, there is a centralized entity, such as a SU
base station, which has full spectrum knowledge in the form
of spectrum occupancy map, representing the network-wide
availability of various channels over time and space. The SU
base station sends updates on the spectrum occupancy map
to the rest of the SUs [20]. In this work, both centralized and
distributed models are considered. In the centralized model, a
SL approach is adopted in which the PUs share their spectrum
occupancy map with SUs [21], [22]. In the distributed model,
PUs do not share the spectrum occupancy map with SUs, and
so the SUs must sense for available channels and infer their
available time.

Tremendous work has been done to investigate route selec-
tion in centralized and distributed models in CR networks
using simulation tools (e.g., Qualnet and NS2) [23]–[26].
However, there has only limited work on route selection con-
ducted on real testbeds (e.g., USRP/GNU radio) [12], [13];
and hence, this is the focus of this article. Various route
selection approaches have been proposed with the objectives
of maximizing throughput [27], [28], minimizing end-to-end
delay [29], [30], maximizing route stability [13], [31], and
minimizing route recovery/maintenance cost [32].

Three main spectrum-aware route selection schemes that
adopt the distributed model have been implemented on a CR
testbed. Firstly, in [14], Nagaraju et al. (2010) implemented
a joint cross-layer routing and channel selection scheme on a
testbed comprised of three USRP SU nodes to select a next-
hop node in a single-hop CR network. Generally speaking,
in a single-hop network, a single source node selects one of
the two destination nodes based on throughput performance.
There are two possible routes in the network. The route selec-
tion scheme uses the signal-to-interference-noise ratio, which
is dependent on binary phase shift keying and quadrature
phase shift keying modulation schemes, to achieve the objec-
tives of maximizing throughput and minimizing the inter-
ference with neighboring PUs and SUs. Secondly, in [13],
Huang et al. (2011) implemented Coolest Path on a testbed
comprising six USRP SU nodes to find a stable route travers-
ing across a multi-hop CR network. There are three possible
routes in the network. Coolest Path uses channel availability
as the routing metric, which is dependent on the number of
channel and route switches, as well as the number of route
breakages, in order to achieve the objectives of maximizing
throughput and minimizing route recovery. Lastly, in [12],
Sun et al. (2014) investigated various route selection schemes,
particularly SAMER and CRP, on a testbed comprising up to
six USRP SU nodes to find a stable route traversing across
a multi-hop CR network. There are four possible routes in
the network. The mechanism uses the number of channel
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TABLE 1. Summary of notations.

switches and the number of route breakages as the routing
metrics, which are dependent on channel availability time, in
order to achieve the objectives of maximizing throughput and
minimizing route recovery.

We achieve our contribution by proposing and implement-
ing three route selection schemes based onRL and SL in a real
multi-hop CR testbed. The RL and SL approaches address
the dynamicity of the PUs’ activities (or channel availability)
and select the best possible route in a multi-hop CR networks
in order to improve QoS parameters, particularly throughput
and packet delivery ratio, as well as the number of route
breakages, which represents the route stability. Using RL,
SUs learn about the average channel available time and
select a route that maximizes the SUs’ network performance.
On the other hand, SL allows PUs to communicate with SUs
and lease their channels to them. Hence, the SL approach
may be more suitable in a centralized network in which
the SUs has direct communication with PUs. In general,

SL offers two main advantages. Firstly, it improves the SUs’
channel utilization and network performance based on the
spectrum occupancy map sent by the PUs to SUs. Secondly,
it offers remuneration to PUs in terms of monetary gain
or performance enhancement (e.g., SUs help PUs to relay
packets [20]). Hence, the main difference between RL and
SL is that, SUs are not informed of the channel utilization
of PUs in RL, and the SUs are informed of such information
in SL.

This article implements the RL-based and SL-based route
selection schemes in a real testbed environment using
USRP/GNU radio platform. This article also proposes a sys-
tem architecture to address three main limitations associated
with network-layer implementation. Firstly, the system archi-
tecture can establish a larger network, which is necessary
in multi-hop network-layer implementation for a meaningful
investigation in contrast to two nodes (i.e., a transmitter and
a receiver) in physical-layer implementation and single-hop
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FIGURE 1. A 6-node topology consists of six USRP SU nodes.

transmission (i.e., point-to-point and point-to-multipoint) in
data link-layer implementation. While route selection mech-
anism has been investigated in [14], the implementation
focuses on single-hop transmission. Secondly, the system
architecture addresses the monetary constraint. The require-
ment to purchase more equipment (i.e., nodes and computing
resources) has discouraged researchers to setup a real testbed
environment to investigate the network layer. As an example,
in [12], each of the six USRP SU nodes must be connected
to a single computer. Our system architecture uses a switch
to connect the USRPs to a single computer (addressing the
second limitation), and more USRPs can be connected to the
switch to establish a larger network (addressing the first lim-
itation). Thirdly, the system architecture reduces the effects
of hardware and software processing delays in USRP/GNU
radio to network-layer performance. If such delays are taken
into account, the choice of hardware and software for the
underlying physical and data link layers can significantly
affect the network-layer performance. This is particularly
significant in multi-hop communication as connecting each
USRP SU node to a different computer and running separate
software code in each computer incur hardware and software
delays at each SU intermediate node. Our system architecture
uses a single computer running a single software code to
coordinate the USRPs. As most processes are performed by

a single computer, there are no hardware and software pro-
cessing delays at each SU intermediate node. Furthermore,
a switch provides a seamless control message transmission
which is out-of-bound in nature, so that the control message
transmission is not affected by data transmission. This is
important as each USRP module is only equipped with a
single transceiver, and so it cannot transmit data and control
messages simultaneously.

III. SYSTEM ARCHITECTURE
This section presents the architecture of the USRP/GNU
radio platform for CR networks. Fig. 1 shows an architecture
with six USRP SU nodes; while another architecture with
ten USRP SU nodes is shown in Fig. 11. In Fig. 1, the
SUs are represented as: a source node (m1), intermediate
nodes (m2,m3,m4,m5), and a destination node (m6). In our
experiment, we show and compare the performance of several
route selection schemes in selecting the best possible route
out of a number of routes. In the literature, investigations have
been conducted with two possible single-hop routes (between
the source node and the destination node) in a network with
three USRP SU nodes [14], as well as three [13] and four [12]
possible routes with a maximum of three hops in a network
with six USRP SU nodes. In our work, investigations are
conducted with four possible routes with a maximum of
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FIGURE 2. Transmit and receive paths in a USRP unit.

three hops in a network with six USRP SU nodes in the
6-node topology (see Fig. 1) and five possible routes with a
maximum of four hops in a network with ten USRP SU nodes
(see Fig. 11). The PUs are emulated using a Python script, and
their interference is represented by dash-line circles in Fig. 1
and Fig. 11. For instance, in Fig. 1, there are four PUs that
interferes with the intermediate nodes (i.e., m2,m3,m4,m5),
and each PU can interfere with three SU links from each of the
SUs. Specifically, PU interference at intermediate node m2
affects links m1−m2, m2−m4 and m2−m5, PU interference
at intermediate node m4 affects links m2 − m4, m3 − m4
and m4 − m6, and so on. The USRP hardware provides the
RF frontend. GNU radio is a software interface written in
Python, and it is installed in the computer. It serves as a
signal processing block that perform tasks such as generat-
ing and reconfiguring waveforms. In this implementation, it
serves twomain purposes. Firstly, it houses the decision mak-
ing engine, and defines the operating environment (e.g., the
PUs’ activities, which are exponential ON/OFF processes).
Secondly, it provides a software interface to the USRP plat-
form. For instance, it receives the channel state information
(e.g., channel number and channel availability) from the
operating environment. The decision making engine is one of
the main components of GNU radio software, and it obtains
decision making factors from the operating environment
(e.g., PUs’ activities), analyzes the decision making fac-
tors, and makes selection of the optimal action (e.g., route
selection). Both decision making factors and actions are
stored in the knowledge base. More details about the deci-
sion making engine for RL-based and SL-based approaches
can be found in Sections IV-C and IV-D, respectively. The
computer and USRP SU nodes are connected to a gigabit
Ethernet switch via gigabit wired connections so that the need
to connect each USRP SU node to a different computer is
not necessary. The gigabit wired connections emulate a com-
mon control channel (CCC) used by the USRP SU nodes to
exchange route selection messages such as RREQ and RREP.

The USRP SU nodes are connected via wireless medium to
form a multi-hop CR network. In Fig. 1, the source node m1
chooses a route that has higher channel available time to the
destination node m6. Further details of the USRP and GNU
Radio are presented in the rest of this section.

A. USRP UNIT
Fig. 2 shows the transmit and receive paths in a USRP
unit. There are four main sections. Firstly, the radio fre-
quency (RF) section comprises a set of VERT900 antennas,
namely RF1 and RF2, which allows transmission and recep-
tion in two different channels, respectively. Each antenna is
connected to a WBX transceiver daughterboard. The antenna
and transceiver daughterboard can transmit and receive radio
signals ranging from 824 MHz to 960 MHz. Secondly, the
immediate frequency (IF) section consists of analog/digital
converters, as well as digital up/down converters. Thirdly,
the baseband section performs our proposed route selection
schemes. Fourthly, the data section provides a user interface
for developing intelligent and knowledge-based mechanisms
on the USRP units. This enables a SU network to make the
right decisions on route selection in order to enhance network
performance.

B. GNU RADIO
Using GNU radio, the functionalities of the transmitters and
receivers are represented as flow graphs. Generally speaking,
a flow graph starts with a source (e.g., a user datagram
protocol (UDP) source) and ends with a sink (e.g., a USRP
sink). The schematic representations of the flow graphs for
the source, intermediate, and destination nodes are shown
in Fig. 3(a), 3(b) and 3(c), respectively. In Fig. 3(a), the
source node initiates packet transmission in which a UDP
source receives video frames with a payload size of 12 KB
from a computer with an IP address 127.0.0.1 via port 1234.
The ‘Null Pkt is EOF’ is set to ‘True’ to indicate that the
end of file occurs when no packet is received. The UDP
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FIGURE 3. Flow graphs for GNU radios. (a) Source node. (b) Intermediate node. (c) Destination node.

source sends the received frames of information, such as
video frames, to the packet encoder and modulation blocks.
The packet encoder block converts the frames into packets by
adding headers, access codes, preamble codes and so on. The
‘Samples/Symbol’ and ‘Bit/Symbol’ are set to low values to
avoid an error called underrun which occurs when the com-
puter is not fast enough to send video frames to the USRPs.
The ‘Preamble’ and Access Code’ values are left empty so
that preliminarily data is not needed and access code is not
assigned to encoded packets. The GMSK modulation con-
verts the packets into signals. Similarly, ‘Samples/Symbol’
is set to a low value to avoid underrun. Subsequently, the
signals are ready for transmission through the USRP sink
block via a TX/RX antenna. Specifically, the USRP SU
device, which has an IP address 192.168.10.12, sends the
signals at a sampling rate of 250,000 samples/seconds using
a channel frequency of 848 MHz with a channel gain of 1dB.
In Fig. 3(b), the intermediate node receives and retransmits
the signals towards the destination node. The intermediate
node has two types of paths, namely receive path and transmit
path. In the receive path, the USRP SU node, which has an
IP address 192.168.10.5, receives the signals at a sampling

rate of 250,000 samples/seconds via its antenna RX2 using a
channel frequency of 848 MHz with a channel gain of 1dB.
The signals are then sent to demodulation and packet decoder
blocks which convert the signals into packets, and then back
into frames. Similarly, ‘Samples/Symbol’ is set to a low
value in GMSK Demod to avoid an error called underrun,
and ‘Access Code’ value is left empty in Packet Decoder so
that access code is not assigned to encoded packets. Next,
in the transmit path, packet encoder and modulation blocks
reconvert the frames into packets, and modulate them into
signals again. Then, the multiply const block amplifies the
signals. ‘Constant’ indicates that the signal power is ampli-
fied with the number of times indicated by the value. With a
value of 1, there is no amplification as the USRP SU nodes
are placed close to each other (see SectionV.A). Finally,
similar to the USRP sink block in the source node, the USRP
sink block in the intermediate node transmits the signals.
In Fig. 3(c), the destination node serves as the sink node. The
USRP source block receives the signals and sends them to
the demodulation and packet decoder blocks which convert
the signals into packets and then back into frames. The UDP
sink block captures these frames so that applications, such as
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FIGURE 4. Processing time along a route from a source node to a destination node in a multi-hop
CR network. (a) Non-switch-based approach. (b) Switch-based approach.

a media player and a web browser, receive the information at
the destination node.

IV. ROUTE SELECTION
While routing in multi-hop CR networks has been inves-
tigated intensively using simulation platforms (e.g., Qual-
net and NS2) [15], there is only perfunctory effort made
to implement them on experimental platform. To conduct
experiment on route selection in a multi-hop CR network, we
propose three schemes. The first two schemes are based on
Q-routing [33], which is a popular approach in RL. Although,
it has been widely applied in wireless networks and tested
through simulation platforms [33], [34], there is lack of
experimental investigation. The third scheme is based on
the spectrum leasing concept. One of the major issues of
the USRP/GNU radio platform is the effects of the under-
lying delay on network performance. The underlying delay
is caused by the processing delays of hardware (i.e., recon-
figurations and processes of USRPs and the computer) and
software (i.e., initialization and processes of GNU radio or
Python codes), and it increases with the number of route
breakages [15], [35], [36]. This means that higher number of
route breakages increases the hardware and software process-
ing time causing a decline in throughput and packet delivery
ratio. In [36], the underlying delay is reported as being in
the range of 28.9 ms to 36.9 ms. Since the primary focus
of this work is on the network layer, our USRP/GNU radio
platform does not consider the underlying processing delays.
Section IV-A fur provides further description about delay in
USRP/GNU radio. Section IV-B presents our system model.
Sections IV-C and IV-D present the route selection schemes
based onRL and SL, Section IV-B presents our systemmodel.
Sections IV-C and IV-D present the route selection schemes
based on RL and SL, respectively.

A. AN OVERVIEW OF THE UNDERLYING LATENCY IN
USRP/GNU RADIO PLATFORM
Generally speaking, route selection schemes can be imple-
mented on a USRP/GNU radio testbed using a non-
switch-based approach or a switch-based approach. In the

non-switch-based approach, each USRP SU node is con-
nected to an individual computer, hence each node incurs
the underlying hardware and software delays, which makes it
challenging to investigate the network performance achieved
by upper layers. In the switch-based approach, which is used
in this work, USRP SU nodes are connected to a single gigabit
Ethernet switch, which is connected to a single computer.
Hence, all the nodes along a route use a single Python code
in the switch-based approach, instead of their own individ-
ual codes in the non-switch-based approach. This helps the
switch-based approach to exclude the underlying hardware
and software delays found in the non-switch-based approach.
Fig. 4 shows the difference in the end-to-end time for the two
approaches whenever a new route is established. Suppose, the
source node m1 selects a new route m1 − m2 − m4 − m6
to the destination node m6 in Fig. 1. Fig. 4(a) shows the
non-switch-based approach in which the hardware and soft-
ware processing time tm1 is incurred at the source node m1
for reconfiguration, the data transmission time tm1→m2 is
incurred for data transmission from the source nodem1 to the
intermediate node m2, and so on. Fig. 4(b) shows the switch-
based approach in which the hardware and software process-
ing time tm is only incurred at the beginning of a route to
reconfigure nodes m1, m2, m4 and m6. Note that, without any
changes of route, the hardware and software processing time
is not incurred in both non-switch-based and switch-based
approaches as reconfiguration is not required. Nevertheless,
a route change is necessary due to the reappearance of PUs’
activities.

B. SYSTEM MODEL
The system model consists a set of PUs P = {1, 2, . . . , |P|
and a set of available channels C = {c1, c2, . . . ,cc, . . . ,c|C|},
where |P| and c|C| represent the number of PUs and chan-
nels, respectively. Fig. 5 shows a network topology, in
which the USR P SU nodes are represented by M =

{m1,m2, . . . ,mN }. In the network, there is a single USRP
SU source node m1 ∈ M , a set of intermediate nodes Xh,jh =
m2, . . . ,mN−1⊆M , and a single destination node mN ∈ M .
A set of routes K = {k1, k2, . . . , kk , . . . ,k|K | can be
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FIGURE 5. A network topology.

established in the network. Each route kk ∈ K has a set of
links Lk from the source node m1 to the destination node mN
(e.g., linksm1−m2,m2−m4 andm4−m6 in Fig. 1). In the set
of intermediate nodes Xh,jh , an intermediate node mnh,jh has
an identification (ID) nh,jh∈Jh , where Jh = {1, 2, . . . , |Jh|} is
a set of nodes which are h hops from the source node m1.
Specifically, node mnh,jh is located at h∈ {1, 2, . . . , |H |} hops
from the source nodem1, and it is the jhth node in the set of Jh.
The node identification nh,jh is computed as follows:

nh,jh = h+ jh +

{
0 if h = 1∑h−1

h=1
(|Jh| − 1) if h > 1

(1)

The channel selection is dependent on the channel state,
which is a two-tuple information comprised of the PU
idle/busy state and the channel available time. The PU activity
in each channel is either ON (i.e., busy or PUs’ activities
appear in the channel) or OFF (i.e., idle or no PUs’ activity in
the channel) state. The ON duration τ pcc,ON and OFF duration
τ
p
cc,OFF of a PU p ∈ P in its channel cc ∈ C follows

a Poisson model, and they are exponentially distributed with
rates λpcc,ON and λpcc,OFF , respectively. The termsONduration
and PU-ON time, as well as OFF duration and PU-OFF
time, are used interchangeably. In this work, we adopt three
assumptions on channel selection and access. Firstly, the
underlying channel sensing mechanism of the SUs in the
data link layer can sense the channel accurately within a
channel sensing time window ts [37] used by PUs to estimate
the channel available time of each PUs’ channel in longer
term. Note that, the time horizon is segregated into time win-
dows, each of which is segregated into channel sensing time
window ts and data transmission time window td . Secondly,
the neighboring links of SUs use distinct channels in order
to avoid data link-layer interference among the respective
SUs [38]. Thirdly, as the effects of typical phenomena like
fading and shadowing have been well investigated in the liter-
ature [39], [40], our focus is on the main characteristic of CR,
which is the dynamicity of PUs’ activities, so the USRP SU
nodes can be placed close to each other as shown in Fig. 10
while emulating the CR environment. These assumptions are
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adopted to simplify the underlying physical and data link
layers as the focus of our work is on the network layer and
the main characteristics CR, specifically the dynamicity of
the PUs’ activities. A cross-layer approach for physical, data
link and network layers are left as our future work.

In our system model, we use route request (RREQ) and
route reply (RREP) messages, which have been used in tradi-
tional routing schemes (e.g., AODV), to broadcast and gather
route(s) information. Suppose, a source node m1 does not
have a route information to its destination node mN in its
routing table. It broadcasts route record list (i.e., Rm1,mN = ∅)
using a route request RREQ message in the network to dis-
cover all possible routes in the network in two main steps.
Firstly, the source node m1 appends its node ID to the route
record list Rm1,mN ← m1, which is included in the RREQ
message, and broadcasts it to its next-hop neighbor nodes
mn1,J1 , which are located in the first hop from the source
node m1, using a CCC. Secondly, each neighbor node in the
first hop mn1,j1∈J1 appends its node ID to the route record list
Rm1,mN ← (m1)∪mn1,j1 , and broadcasts the respective RREQ
message to its next-hop neighbor nodes mn2,J2 , which are
located in the second hop from the source node m1. The sim-
ilar RREQ broadcast mechanism is repeated for each next-
hop neighbor node in the remaining hops to form a route kk
ofm1−mn1,j1 −· · ·−mN . Upon receiving a number of RREQ
messages from different possible routes K , the destination
node mN generates a route reply RREP message for each
route kk ∈ K and sends it back towards the source node m1
via intermediate nodes Xh,jh . The RREP includes a bottleneck
link record 0kkβ,t , which is the average channel available time
at the bottleneck link of a route kk at time t . The SU node
i estimates the average channel available time ϕi,j,kkt,cc,OFF of
channel cc ∈ C on the link of a route kk connecting itself and
its SU neighbor node j, using (2) [41]:

ϕ
i,j,kk
t,cc,OFF =

λ
p
cc,ON

λ
p
cc,ON + λ

p
cc,OFF

+
λ
p
cc,OFF

λ
p
cc,ON + λ

p
cc,OFF

× e−(λ
p
cc,ON

+λ
p
cc,OFF

)t (2)

Generally speaking, a node i updates the bottleneck link
record 0

kk
β,t if its link to its upstream node j is lower

(or ϕi,j,kkt,cc,OFF<0
kk
β,t ). There are two main steps involved in

sending the bottleneck link record using the RREP message
from a destination node to a source node. Consider a single
route kk ∈ K . Firstly, the destination node mN initializes the
bottleneck link record0kkβ,t with the average channel available
time of its link connecting to its upstream neighbor node

mn|H |,j|H | ∈ Xh,jh , specifically 0
kk
β,t ← ϕ

mN ,mn|H |,j|H |
,kk

t,cc,OFF . The

bottleneck link capacity 0kkβ,t is included in the RREP mes-
sage, and it is sent to its upstream neighbor nodes mn|H |,j|H | ∈
Xh,jh using a CCC. Secondly, the upstream node mn|H |,j|H |
updates the bottleneck link record 0kkβ,t in the RREP mes-
sage if the average channel available time of the link con-
necting to its upstream neighbor node is lower, specifically

ϕ
mn|H |,j|H |

,mn|H |−1,j|H |−1 ,kk
t,cc,OFF < 0

kk
β,t . The remaining nodes in a

route kk follow the same procedure until the RREP message
has reached the source node m1.

C. DECISION MAKING ENGINE FOR RL-BASED SCHEMES
This section proposes two RL-based schemes, namely the
traditional RL scheme (or TRL henceforth) and a RL scheme
with average Q-value (or ARL henceforth), as the decision-
making engine for route selection. In general, TRL and
ARL share a similar algorithm except the way in which the
Q-values are updated: TRL calculates the Q-values using
the traditional approach [42], whereas ARL uses an average
Q-value. In general, Q-values constitute knowledge that
represents the suitability of an action in a particular state
(or operating environment). The decision making engine
for the RL-based schemes is shown in Fig. 6, and it is
embedded in a SU source node so that it can select a route
in which the average channel available time is the highest
possible (or the PUs’ activities are minimal) in order to
increase throughput and packet delivery ratio, as well as to
reduce the number of route breakages. The RL-based scheme
uses a distributed model (see Section II), in which PUs do
not share spectrum occupancy map with SUs, and so the
SUs must sense for available channels and calculate the
average channel available time.

FIGURE 6. Decision making engine for RL-based schemes.

The RL agent receives an update of channel state infor-
mation of the links of each route in the network (i.e., the
average channel available time) using RREQ and RREP
(see Section IV-B). Then, the SU source node m1 (or the RL
agent) selects a route based on Algorithm 1. There are three
representations, namely state, action and reward. Generally
speaking, the SU source node (agent) selects a neighbor node
corresponding to a route kk (action) to its destination node
mN (state) based on the channel state information (reward).
Hence, with m1 being the source node, the state smNt ∈ S
represents a SU destination node, the action a

mn1,j1
t ∈ A =

{mn1,11 , . . . ,mn1,|J1|} represents the selection of a neighbor
nodemn1,j1of the source nodem1, and the reward R represents
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Algorithm 1 Route Selection Mechanism With Q-Value
Computation for RL-Based Schemes at SU Node i

1: /∗ Step 1: ∗/
2: /∗ RREQ messages propagation ∗/
3: if receive Rm1,mN and i! =mN then
4: Rm1,mN← (Rm1,mN )∪i
5: /∗ RREP message propagation ∗/
6: else if receive Rm1,mN and i = =mN then
7: Receive RREP for route kk ∈ K
8: for link (i, j) in kk do /∗ node j is an upstream node

of node i ∗/
9: Estimate ϕi,j,kkt,cc,OFF using (2)
10: /∗ mechanism in a destination node ∗/
11: if i == mN
12: 0

kk
β,t ← ϕ

i,j,kk
t,cc,OFF

13: /∗ mechanism in an intermediate nodes and source
node ∗/

14: else if (i! =m1||i! =mN )
15: if ϕi,j,kkt,cc,OFF >= 0

kk
β,t

16: 0
kk
β,t ← 0

kk
β,t−1 /

∗ 0
kk
β,t is not updated

∗/

17: else if ϕi,j,kkt,cc,OFF < 0
kk
β,t

18: 0
kk
β,t ← ϕ

i,j,kk
t,cc,OFF /∗ 0kkβ,t is updated

∗/
19: end if
20: end if
21: if i! =m1
22: Send RREP with 0kkβ,t to upstream node i
23: end if
24: end for
25: end if
26: /∗ Step 2: Source node m1 updates Q-value ∗/
27: Update Q-value Qm1

t+1(s
mN
t , a

mn1,j1
t ) using{

(3) forTRL
(5) forARL

28: /∗ Step 3: Source node m1 determines action ∗/
29: Determine a∗t using (4)

TABLE 2. RL-based model embedded in the SU source node m1.

the positive or negative consequence of the action taken in
the state, which is the highest channel available time 0kkβ,t at
the bottleneck link of a route kk connecting a source node
and a destination node, and so the reward varies with the
dynamicity of the PUs’ activities. Table 2 shows the RL-based
model embedded in the SU source node m1.

Algorithm 1 shows three steps to select a route in the
proposed RL schemes. In Step 1, the RL agent interacts with
the operating environment using RREQ and RREP messages
to obtain updated information about a set of routes K , includ-
ing channel state information of the routes in the network
(i.e., the average channel available time of each link along a
route between a source node m1 and a destination node mN ).
In Step 2, based on the average channel available time, the
RL agent computes the Q-value of each route kk ∈ K in
the network. In Step 3, the RL agent selects a route kk that
offers the highest Q-value. Subsequently, the RL agent uses
the selected route kk for data transmission, and the route
consists of multiple links operating on different channels.
When the PUs’ activities reappear in any of these channels
assigned to one of the links along the route kk , the route
is considered broken. This is followed by the transmitting
node (or upstream node) of the respective link sending a route
breakagemessage to the source node. The source node selects
another route in the next time window t + 1.

1) TRADITIONAL RL-BASED SCHEME
In TRL, the SU source node selects a next-hop neighbor node
a
mn1,j1
t , which corresponds to a route kk , leading towards its
destination node smNt at time t . It receives its reward in the
form of channel available time 0kkβ,t+1 at the bottleneck link,

and updates the corresponding Q-value Qm1
t (smNt , a

mn1,j1
t ) for

the state-action pair at time t + 1 as follows:

Qm1
t+1

(
smNt , a

mn1,j1
t

)
← (1− α)× Qm1

t

(
smNt , a

mn1,j1
t

)
+α × 0

kk
β,t+1 (3)

where 0 ≤ α≤ 1 is the learning rate. When α is higher, the
Q-value is more dependent on the current knowledge (or the
reward, which is the channel available time 0kkβ,t+1 at the
bottleneck link of route kk at time t+1); and when α is lower,
the Q-value is more dependent on the previous knowledge
(or the Q-value Qm1

t (smNt , a
mn1,j1
t ) at time t). Based on (3), the

source nodem1 selects the next-hop neighbor node a∗t , which
corresponds to a route kk , with the highest Q-value as follow:

a∗t = argmaxa∈AQ
m1
t (smNt , a) (4)

2) RL-BASED SCHEME WITH AVERAGE Q-VALUE
The average Q-value based route selection scheme (ARL)
has been shown to improve stability in simulation
setting [43], [44]. In this approach, the average Q-value

Q̄m1
t (smNt , a

mn1,j1
t ) is calculated, and it is used in Q-function

Qm1
t+1

(
smNt , a

mn1,j1
t

)
to select more stable routes as

follows [44]:

Qm1
t+1

(
smNt , a

mn1,j1
t

)
← (1− α)× Qm1

t

(
smNt , a

mn1,j1
t

)
+α × (0kkβ,t+1 + Q̄

m1
t (smNt , a

mn1,j1
t ))

(5)
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FIGURE 7. A 6-node topology for experimental study with RREQ and RREP message exchanges.

The average Q-value Q̄m1
t (smNt , a

mn1,j1
t ) is a ratio of the sum

of all Q-values Qm1
t+1

(
smNt , a

mn1,j1
t

)
up to time t to the total

number of times if the route kk is selected for transmission
(similarly for the case if the route kk is not selected), and it is
calculated as follows:

Q̄m1
t

(
smNt , a

mn1,j1
t

)

=



∑
kkεK P(k

+
= 1|kk )Q

m1
t (smNt , a

mn1,j1
t )∑

kkεK P(k
+ = 1|kk )

;

kk is selected∑
kkεK P(k

−
= 0|kk )Q

m1
t (smNt , a

mn1,j1
t )∑

kkεK P(k
− = 0|kk )

;

kk is not selected

(6)

where P(k+ = 1|kk ) is the probability that route kk is
selected for transmission; and similarly, P(k− = 0|kk ) is
the probability that route kk is not selected for transmis-
sion. Also,

∑
kkεK P(k

+
= 1|kk ) represents the sum of all the

probability that route kk is selected for transmission, which
determines the total number of times the route is selected;
and similarly,

∑
kkεK P(k

−
= 0|kk ) represents the sum of all

the probability that route kk is not selected for transmission,
which determines the total number of times the route is not
selected. With the consideration of average Q-value, which is
dependent on the probabilities of selecting (or not selecting)
a route, the RL agent can select a stable route that has been
selected for transmission in the past repeatedly. Based on (5),
the source node selects the next-hop neighbor node a∗t ,
which corresponds to route kk , with the highest Q-value
using (4).

3) AN ILLUSTRATION OF RL-BASED SCHEMES
Consider an experimental setup to examine the RL-based
schemes in a multi-hop CR network as shown in Fig. 7, which
is a simplified topology representation of Fig. 1. There are six
SUs: a source node m1, intermediate nodes m2,m3,m4,m5,

and a destination node m6. Initially, the source node m1
has no route information leading to its destination node
m6 in the route record list (i.e., Rm1,m6 = ∅). Then, the
source node m1 appends its own ID to the route record list
(i.e., Rm1,m6 ← m1) in a newly generated RREQ message,
and broadcasts the RREQ message to its neighboring nodes
m2 and m3 using a CCC to discover routes leading to the
destination node m6. When the neighboring nodes m2 and m3
receive separate RREQ messages from the source node m1,
nodem2 appends its ID to the route record list (i.e.,Rm1,m6 ←

(m1) ∪ m2), and node m3 does the same (i.e., Rm1,m6 ←

(m1) ∪ m3). Next, nodes m2 and m3 forward their respective
RREQ messages via CCC to their respective next-hop neigh-
boring nodesm4 andm5. The similar procedure is repeated at
nodes m4 and m5 until the RREQ messages reach destination
node m6. In Fig. 7, the destination node m6 receives four
possible routes, namely route k1 (m1 − m2 − m4 − m6), route
k2(m1 − m2 − m5 − m6), route k3(m1 − m3 − m4 − m6) and
route k4(m1 − m3 − m5 − m6).
Subsequently, the destination node m6 generates RREP

messages which traverse back towards the source node m1
using the reversed route given in the RREQ messages.
Consider route k1. The destination node m6 obtains the aver-
age channel available time ϕm4,m6,k1

t,cc,OFF of the link m4 − m6
using (2) and updates the channel available time of the bot-
tleneck link 0k1β,t in the RREP message. Next, the destination
node m6 sends the RREP message to its upstream node m4.
When node m4 receives the RREP message, it obtains

the average channel available time ϕm2,m4,k1
t,cc,OFF of the link

m2 − m4. If ϕ
m2,m4,k1
t,cc,OFF is smaller than the channel avail-

able time of the bottleneck link 0k1β,t in the RREP message

(or ϕm2,m4,k1
t,cc,OFF<0

k1
β,t ), then node m4 updates the channel avail-

able time of the bottleneck link (or 0k1β,t = ϕ
m2,m4,k1
t,cc,OFF ) in the

RREP message; otherwise the channel available time of the
bottleneck link remains the same (or 0k1β,t = ϕ

m4,m6,k1
t,cc,OFF ).

The same process is repeated until the RREPmessage reaches
the source node m1.
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FIGURE 8. Trajectory of route selection at different time instances.

Upon receiving RREP messages for the four routes, the
source node m1 computes the Q-value of each route using (3)
for TRL (or (5) for ARL), and selects the route which has
the highest Q-value using (4). Fig. 8 shows the trajectory of a
selected route on the basis of the highest Q-value at different
time instances. For instance, at time instance t = 0, route k3
is selected, as there are no PUs’ activities in the respective
channels of the links (e.g., channel c1 is used in linkm1−m3,
channel c4 in m3 − m4, and channel c6 in m4 − m6) of the
route, and so it has the highest Q-value. Whereas, route k1,
route k2, and route k4 are not chosen due to the presence of
PUs’ activities in channels c2 and c7, which are both chosen
by the links m2 − m4 and m5 − m6 of those routes.

D. DECISION MAKING ENGINE FOR SL-BASED SCHEME
The decision making engine for SL-based scheme is shown
in Fig. 9, and it is embedded in a SU source node so that it can
select the best possible route from a source node to a destina-
tion node in order to increase throughput and packet delivery
ratio, as well as reduce the number of route breakages. The
SL-based scheme uses a centralized model (see Section II),
in which the PUs share their spectrum occupancy map (i.e.,
ON duration τ pcc,ON and OFF duration τ pcc,OFF ) with SUs
located within their transmission range. In practice, the PUs
can gain monetary rewards from SUs for sharing the spec-
trum occupancy map with them. The PUs only allow SUs
to use their channels whenever the PUs are in their inactive
state (i.e., OFF duration τ pcc,OFF ). It is also beneficial for

FIGURE 9. Decision making engine for SL-based scheme.

SUs to be aware of the OFF duration τ pcc,OFF time of PUs,
which provides them with the exact channel available time
(i.e., ei,j,kkt,cc,OFF ← τ

p
cc,OFF ) for transmission of their pack-

ets. For instance, SU node i is in the transmission range of
PU p. The PU p shares its τ pcc,OFF time, which is the OFF
duration of channel cc, with SU node i. So, the SU node i

can use this exact channel available time ei,j,kkt,cc,OFF for packet
transmission with its neighboring SU node j, which
corresponds to route kk . Algorithm 2 shows three steps to
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Algorithm 2 Route Selection Mechanism for the SL-Based
Scheme at Node i
1: /∗ Step 1 ∗/
2: Receive (ei,j,kkt,cc,OFF ← τ

p
cc,OFF ) from PUs

3: /∗ Step 2 ∗/
4: /∗ Source node m1 initiates the RREQ messages
propagation ∗/
5: if receive Rm1,mN and i! = mN then
6: Rm1,mN ←

(
Rm1,mN

)
∪i

7: /∗ RREP message propagation ∗/
8: else if receive Rm1,mN and i == mN then
9: Receive RREP for route kk ∈ K
10: for link (i, j) in kk do /∗ node j is an upstream node

of node i ∗/
11: /∗ mechanism in a destination node ∗/
12: if i == mN
13: 0

kk
β,t ← e

i,j,kk
t,cc,OFF

14: /∗mechanism in an intermediate node and source
node ∗/

15: else if (i! = m1||i! = mN ))
16: if ei,j,kkt,cc,OFF >= 0

kk
β,t

17: 0
kk
β,t ← 0

kk
β,t−1

18: else if ei,j,kkt,cc,OFF < 0
kk
β,t

19: 0
kk
β,t ← e

i,j,kk
t,cc,OFF

20: end if
21: end if
22: if i! = m1
23: Send RREP with 0kkβ,t to upstream node i
24: end if
25: end for
26: /∗ Step 3 ∗/
27: Determine a∗t using (8)

select a route in the proposed SL scheme. In Step 1, every
SU node (i.e., m1 ∈ M or Xh,jh ∈ M or mN ∈ M ) receives
spectrum occupancy maps (i.e., ON duration τ pcc,ON and OFF
duration τ pcc,OFF ) from PUs within their respective transmis-
sion ranges. In Step 2, the SU source node m1 uses RREQ
and RREP messages to collect the exact channel available
time ei,j,kkt,cc,OFF of the links along all possible routes K . Based

on e
i,j,kk
t,cc,OFF , the SU source node computes the bottleneck

link 0kkβ,t of each route kk ∈ K in the network. In Step 3,
the SU source node selects a route kk that offers the highest
channel available time at its bottleneck link. Subsequently,
the source node uses the selected route kk for data transmis-
sion, and the route consists of multiple links operating on
different channels. When the PUs’ activities reappear in any
of these channels assigned to one of the links along the route
kk , the route is considered broken. This is followed by the
transmitting node (or upstream node) of the respective link
sending a route breakage message to the source node. The
source node selects another route in the next time window
t + 1.

In contrast to the RL-based decision making engine, which
is embedded in the SU source node only, the SL-based
decision making engine is embedded in each SU node. The
PUs provide their spectrum occupancy map (i.e., ON dura-
tion τ pcc,ON and OFF duration τ pcc,OFF for their respective
channel cc) to SU nodes that are within their transmission
range. The SU source node m1 receives these updates using
RREQ and RREP. Upon receiving the exact channel available
time ei,j,kkt,cc,OFF of every link (e.g., a link between SU node i
and SU node j is mi−mj), the SU source node m1 obtains the
minimum channel available time 0kkβ,t at the bottleneck link
along the route kk from source node m1 to destination node
mN , which can be computed as follows:

0
kk
β,t = argmin

(i,j)∈k
e
i,j,kk
t,cc,OFF ∀ kk ∈ K (7)

Based on (7), the source node selects the next-hop neighbor
node a ∈ mn1,j1 , which corresponds to route kk , that offers the

highest minimum channel available time0kkβ,t at its bottleneck
link as follows:

a∗t = argmax
kk∈k

0
kk
β,t (8)

1) AN ILLUSTRATION OF SL-BASED SCHEME
Consider an experimental setup to examine the SL-based
scheme in a multi-hop CR network as shown in Fig. 7.
The SL-based scheme uses a centralized model, in which
the PUs share their respective spectrum occupancy map
(i.e., ON duration τ pcc,ON and OFF duration τ pcc,OFF ) with
SUs located within their respective transmission range. So,
the source node m1 needs to collect information about the
routes and the exact channel access time e

i,j,kk
t,cc,OFF of the

links in the network. The SL-based scheme shares similar
mechanism with the RL-based scheme. The only exception
is that, in the SL-based scheme, the SUs receive the exact
channel access time rather than the estimated average channel
available time ϕi,j,kkt,cc,OFF (see (2)). Next, upon receiving RREP
messages for the four routes, the source node m1 obtains the
minimum channel available time of the bottleneck link of
each route, and selects the route with the highest minimum
channel available time using (8).

V. EXPERIMENT AND EVALUATION
This section presents experimental setup and performance
evaluation. The experimental parameters for both topologies
are shown in Table 3.

A. EXPERIMENTAL SETUP
Two experimental scenarios, namely a 6-node topology
(see Fig. 1) and a 10-node topology (see Fig. 11), for multi-
hop CR networks are considered. The 6-node topology and
10-node topology have six and ten USRP SU nodes, respec-
tively. In this paper, we deploy topologies of up to 10 USRP
SU nodes, which extend existing implementations [12], [13]
with more nodes. Fig. 10 shows the physical deployment of a
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FIGURE 10. Physical deployment of a 10-node topology.

TABLE 3. Experimental parameters.

10-node topology inwhich theUSRP SUnodes are connected
via a gigabit Ethernet switch to a computer, which runs the
GNU radio software that loads the Python program into the
USRP SU nodes (see Section III-A). The USRP/GNU Radio
testbed is setup in an indoor environment (i.e., a hall with
concrete walls) where the USRP SU nodes are placed on a
2 feet × 3.8 feet table. In Fig. 10, based on our assump-
tions (see Section IV.B), the USRP SU nodes are placed
close to each other with a maximum distance of 4.5 inch
between a pair of USRP SU nodes while emulating the main

characteristic (i.e., dynamicity of PUs’ activities) of a CR
environment. In addition, the neighboring links of SUs use
distinct channels in order to avoid data link-layer interference
among the respective SUs. In this regard, each transceiver
uses two distinct frequencies for transmission and reception,
and a guard-band of 8 MHz is used in between the two
frequencies in order to avoid interference. The computer runs
a media player application (i.e., VLC) in a server and client
mode and feeds the video into a USRP SU source node.
User Datagram Protocol (UDP) is used so that the effects of
congestion window in Transmission Control Protocol (TCP)
are not considered. The PUs’ activities are emulated using
an exponential ON-OFF model (see Section IV-B) within a
Python code. Throughout the experiment, the rate of the ON
time duration of PU p in each of its channel cc ∈ C is a
constant λpcc,ON = 15 s, and the rate of the OFF time duration
of PU p in each of its channel cc ∈ C is a variable λpcc,OFF
ranging from 10 s to 80 s [12], [13]. This means that the
channel utilization of PU ranges from 16% (or 15/95) to 60%
(or 15/25). The channels with a channel utilization of PU
of more than 60% are not considered in our experiment as
the SUs can highly interfere with the PUs. Each USRP SU
node is equipped with VERT900 antennas [45], and they can
operate in frequency ranging from 824 MHz to 960 MHz.
As temporal variability occurs in the real-world wireless
environment, each experiment is repeated 15 times, and each
experiment runs for a duration of 300 s.

The two topologies are selected in order to analyze
the QoS performance of the proposed schemes, and to
investigate the scalability of the network with 6 and 10 USRP
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FIGURE 11. A 10-node topology consists of ten USRP SU nodes.

SU nodes. In the 6-node topology as shown in Fig. 1, there
are 6 USRP SU nodes (i.e., a source node m1, intermediate
nodes m2,m3,m4,m5, and a destination node m6). There are
4 PUs (see Section IV-B for the model of PUs’ activities),
and each of them interferes with the intermediate nodes
(i.e., m2,m3,m4,m5). Hence, each PU can interfere with
3 SU links from each of the SUs within the PU’s
coverage area. There are four possible routes from the
source node m1 to the destination node m6, namely route
k1 (m1 − m2 − m4 − m6), route k2(m1−m2−m5−m6), route
k3(m1 − m3 − m4 − m6) and route k4(m1 − m3 − m5 − m6).
In the 10-node topology as shown in Fig. 11, there are
10 USRP SU nodes: a source node m1, intermediate nodes
m2,m3,m4,m5,m6,m7,m8,m9, and a destination node m10.
There are 6 PUs that interfere with the intermediate nodes
(i.e., m2,m3,m4,m6,m8,m9). At nodes m2,m3 and m4 a PU
can interfere with 2 SU links from each of the SUs that lie
within the PU’s coverage area; while at m8 and m9, a PU can
interfere with 3 SU links from each of the SUs; and at m6,
a PU can interfere with 4 SU links from each of the SUs. In
both topologies, the number of PUs constitutes approximately
60% of the total number of SU nodes. There are five possible
routes from the source node m1 to the destination node m10,
namely route k1 (m1 − m2 − m5 − m8 − m10), route k2(m1−

m3 − m6 − m8 − m10), route k3(m1 − m3 − m6 − m10),

route k4(m1−m3−m6−m9−m10) and route k5(m1−m4−

m7−m9−m10). Since SU-SU interference is not considered
in this investigation based on our assumption
(see Section IV-B for explanation), neighboring links
between a pair of SUs use distinctive channels in order
to avoid interference among the respective SUs. We use
8 and 13 channels in the 6-node topology and 10-node
topology, respectively (see Section IV-B). The guard-band
between two channels is set to 8 MHz for smooth video
transmission and to avoid inter-channel interference.

B. PERFORMANCE EVALUATION
This subsection presents performance evaluation including
experiment ordinates, performance metrics, complexity anal-
ysis and results.

1) EXPERIMENT ORDINATES AND PERFORMANCE METRICS
The experiment ordinate is the PUs’ OFF time. The PUs’
OFF time λpcc,OFF is the time duration in a time window
during which the PUs are inactive. The performance metrics
are packet delivery ratio, the number of route breakages, and
throughput. The packet delivery ratio is the total number of
packets received by the destination node to the total number
of packets sent by the source node. A route breakage happens
whenever a PU reappears in the channel of any of the links
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in the route for packet transmission from a source node
to a destination node. Lastly, the throughput represents the
effectiveness of the network in delivering data packets from
a source node to a destination node, and it is measured in bits
per second (bps).

2) COMPLEXITY ANALYSIS
This section presents the complexity analysis of our proposed
RL-based and SL-based schemes in terms of message and
time complexities. The message complexity M is defined as
the number of messages exchanged in the network in order
to obtain updated information (i.e., channel state information
of the routes) about a set of routes K . The channel state
information consists of the average channel available time of
each link along a route from a source nodem1 to a destination
node mN . When a SU sends a message to each of its neigh-
boring SUs, a single message is incurred, and so the message
complexityM is increased by one. The time complexity T is
defined as the number of time steps incurred to perform route
selection, which covers finding the number of available routes
in the network, selecting a route and switching from a broken
route, which may occur due to the re-appearance of the PUs’
activities at the bottleneck link of the route to another one.
We assume discrete time steps. One time step is the time
incurred between the transmission of a message from a SU
sender node and the reception of the message at its SU
receiver node. Suppose, a SU source node generates a RREQ
message and broadcast it towards its neighboring SU nodes.
This process continues until the message reaches its SU des-
tination node. Denote the average number of neighbor nodes
for each node by ηi, and the intermediate nodes are up to
h hops away from the SU source node. So, the whole process
of RREQ message propagation takes MRREQ = ηi × (h+ 1)
messages and TRREQ = h + 1 time steps. Upon receiving
RREQ message, the SU destination node generates RREP
message and sends it back on the reverse route kkεK that the
RREQ message has traversed. We can denote the number of
intermediate nodes from a SU source node to a SU destination
node along a route kk involved in RREQ is equal to the
number of hops h. So, the whole process of RREP message
propagation takes MRREP =

∑
kk∈K (h+ 1)kk messages and

TRREP = h+1 time steps. So, the total of message complexity
in our proposed schemes is M = MRREQ + MRREP =

ηi (h+ 1) +
∑

kk∈K (h+ 1)kk ) and the time complexity is
T = TRREQ + TRREP = 2(h+ 1) time steps.

3) EXPERIMENTAL RESULTS
This section presents our experimental results. In Section
V-B-3-i, we present the results of the effects of learn-
ing rate α on the RL scheme. In Section V-B-3-ii, we
present the results of the comparison of different route
selection schemes, namelyHighest-Channel (HC), RL-based,
as well as SL-based schemes. In Section V-B-3-iii, we
compare the performance of both 6-node and 10-node
topologies.

a: EFFECTS OF LEARNING RATE α ON RL-BASED SCHEMES
This section presents the effects of learning rate α on the
QoS parameters (i.e. throughput and packet delivery ratio,
as well as routing stability) of a RL-based scheme (i.e. TRL
approach) in the 6-node topology. As TRL and ARL schemes
produce approximately similar results, only results of the
TRL scheme are presented (see Section V-B-3-ii). The learn-
ing rate α is an important parameter that affects the learning
speed. In this work, the learning rate α is dependent and
adjusted according to the level of dynamicity of the operating
environment. Specifically, higher (or lower) α value is needed
for operating environment with higher (or lower) dynamicity.
This is shown in Fig. 12 in which higher α value shows
greater performance enhancement providing higher through-
put compared to lowerα value as the PUs’OFF time increases
beyond 30 s, with the optimal throughput being achieved with
α = 0.9.

FIGURE 12. Average throughput versus PU-OFF time λp
c,OFF at different

values of α for TRL scheme using 6-node topology.

FIGURE 13. Average packet delivery ratio versus PU-OFF time λp
c,OFF at

different values of α for TRL scheme using 6-node topology.

Fig. 12 and Fig. 13 show that the throughput and packet
delivery ratio slightly increase (note that the y-axis starts
at 1.7 Mbps and 0.88 in the figures, respectively) with
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FIGURE 14. Average number of route breakages versus PU-OFF time
λ

p
c,OFF at different values of α for TRL scheme using 6-node topology.

increasing learning rate (i.e. α ≥ 0.5). Similarly, Fig. 14
shows that the number of route breakages is lesser when
the learning rate is higher (i.e. α ≥ 0.5). This is because,
as α increases, the RL-based scheme is more dependent
on the current knowledge (i.e., 0kkβ,t+1) due to the high
temporal variability of the wireless channels (i.e., channel
available time), rather than the previous knowledge
(i.e., Q

m1,kk
t (st , a

mn1,j1
t )). With learning rate α = 0.9, the RL

approach provides the best possible network performance,
and so this value is chosen for comparison with the other
approaches in Section V-B-3-ii, as well as comparison in the
performance achieved by both 6-node and 10-node topologies
in Section V-B-3-iii.

b: COMPARISON OF ROUTE SELECTION SCHEMES
This section presents the experimental results of the
RL-based schemes (see Section IV-C) and SL-based scheme
(see Section IV-D) in the 6-node and 10-node topologies.
We compare the results with Highest-Channel (HC), which is
a RL-based scheme that selects the route in a multi-hop CR
networks with the highest number of available channels [46],
instead of highest channel available time. The main objective
of the proposed schemes is to select the best possible route
from a source node to a destination node in a multi-hop CR
networks in order to improve QoS parameters, particularly
throughput and packet delivery ratio, as well as the num-
ber of route breakages which affects the routing stability.
Fig. 15 and Fig. 16 show that throughput and packet deliv-
ery ratio performance increase with the average PUs’ OFF
time from 10 s to 50 s in the 6-node topology and stabilize
when the average PUs’ OFF time reaches approximately 50s.
Fig. 17 shows that the number of route breakages reduces
with increasing average PUs’ OFF time and stabilizes when
the PUs’ OFF time reaches 60s. Similarly, Fig. 18 and Fig. 19
show that throughput and packet delivery ratio performance
increase with the average PUs’ OFF time from 10 s to 50 s
in the 10-node topology and stabilizes when the average
PUs’ OFF time reaches approximately 50 s. Fig. 20 shows

FIGURE 15. Average throughput versus PU-OFF time λp
c,OFF for a 6-node

topology.

FIGURE 16. Average packet delivery ratio versus PU-OFF time λp
c,OFF for

a 6-node topology.

FIGURE 17. Average number of route breakages versus PU-OFF time
λ

p
c,OFF for a 6-node topology.

that the number of route breakages reduces with increasing
average PUs’ OFF time and stabilizes when the PUs’ OFF
time reaches 60 s.

Overall, the SL-based scheme achieves higher through-
put and packet delivery ratio, as well as lower number
of route breakages, in comparison with the RL-based and
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FIGURE 18. Average throughput versus PU-OFF time λp
c,OFF for a 10-node

topology.

FIGURE 19. Average packet delivery ratio versus PU-OFF time λp
c,OFF for a

10-node topology.

FIGURE 20. Average number of route breakages versus PU-OFF time
λ

p
c,OFF for a 10-node topology.

HC schemes. This is because the SL-based scheme, SUs are
aware of the exact channel available time (or PUs’ activi-
ties) as PUs share their respective spectrum occupancy map
(i.e., λpcc,OFF ) with the SUs located within their respective
transmission range. Although the RL-based and HC schemes
receive ideal sensing outcomes, their performance degrades
in comparison to the SL approach due to the channel sensing
delay. The number of route breakages of the SL-based and

FIGURE 21. Average throughput versus PU-OFF time λp
c,OFF at α = 0.9 for

TRL scheme in 6-node and 10-node topologies.

RL-based schemes are lower than that of the HC scheme.
In all cases, the HC scheme shows the least performance
in comparison with SL-based and RL-based schemes as it
selects a route with the highest number of available channels,
which may have low channel available time at its bottle-
neck link. In addition, the ARL scheme shows a very minor
improvement in comparison with the TRL scheme for both
6-node and 10-node topologies. The RL schemes are primar-
ily dependent on the estimated channel available time in order
to compute the Q-value. However, the key difference between
the TRL scheme and the ARL scheme is that the ARL scheme
further consider the average Q-value for the computation of
Q-value (see Section IV-C); which determines the stability in
terms of the route(s) selection in the past.

Next, we compare the QoS performance achieved by the
6-node and 10-node topologies in order to investigate the
scalability aspect of the schemes. The maximum throughput
achieved by the 6-node and 10-node topologies are 1.94Mbps
and 1.8 Mbps as shown in Fig. 15 and Fig. 18, respec-
tively. The maximum packet delivery ratio achieved by the
6-node and 10-node topologies are 96% and 92% as shown
in Fig. 16 and Fig. 19, respectively. In short, the throughput
and packet delivery ratio deteriorate in the 10-node topol-
ogy with increasing number of nodes due to the increasing
number of hops in a route resulting in higher packet loss.
Similarly, we compare the routing stability achieved by the
6-node and 10-node topologies. The number of route break-
ages is approximately similar in both 6-node and 10-node
topologies, and the maximum number of route breakages is
31 in each case as shown in Fig. 17 and Fig. 20. This is
because a route breakage is dependent on the channel avail-
able time at the bottleneck link, which occurs similarly in both
topologies.

c: COMPARISON OF PERFORMANCE BETWEEN 6-NODE
AND 10-NODE TOPOLOGIES
This section compares the QoS performance (i.e., throughput
and packet delivery ratio, as well as routing stability) achieved
by TRL in 6-node and 10-node topologies. In general,
the 6-node topology provides better network performance
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FIGURE 22. Average packet delivery ratio versus PU-OFF time λp
c,OFF at

α = 0.9 for TRL scheme in 6-node and 10-node topologies.

FIGURE 23. Average number of route breakages versus PU-OFF time
λ

p
c,OFF at α = 0.9 for TRL scheme in 6-node and 10-node topologies.

compared to the 10-node topology. Themaximum throughput
achieved by the 6-node and 10-node topologies are 1.93Mbps
and 1.8 Mbps respectively, as shown in Fig. 21. The max-
imum packet delivery ratio achieved by the 6-node and
10-node topologies are 95.8% and 91.9% respectively, as
shown in Fig. 22. The performance deteriorates in the
10-node topology due to the fact that it has higher num-
ber of hops in a route resulting in higher packet loss as
compared to 6-node topology. The number of route break-
ages are approximately similar in both topologies because
of the same PUs activity level (i.e., λpcc,OFF = {10, 20,
30, 40, 50, 60, 70, 80} s and λpcc,OFF = 15 s) as shown
in Fig. 23.

VI. CONCLUSION AND FUTURE WORK
In this article, we have proposed and implemented three route
selection schemes on a USRP/GNU Radio testbed environ-
ment based on reinforcement learning (RL) and spectrum
leasing (SL) approaches in order to enhance the network
performance ofmulti-hop cognitive radio (CR) networks. The
three schemes are the traditional RL (TRL) approach, the RL
approach with average Q-value (ARL), and a SL approach.
The RL-based schemes use an artificial intelligence tech-
nique to make route selection; whereas, the SL-based scheme

uses a spectrum occupancy map received from primary
users (PUs) to make route selection. Experimental results
show that the proposed RL-based and SL-based schemes aim
to select routes with the highest Q-value and highest mini-
mum channel available time, respectively, contributing to a
lower number of route breakages and higher throughput and
packet delivery ratio compared to an existing route selection
scheme called highest-channel (HC). The reason is that, in the
RL-based schemes, intelligence is incorporated to find the
estimated value of channel available time at the bottleneck
link. Similarly, in the SL-based scheme, the SUs are aware
of the PUs’ activities and so the exact channel available time
at the bottleneck link is used. Whereas, in the HC scheme,
routes are selected on the basis of the highest number of
available channels irrespective of the channel available time.
The proposed RL-based and SL-based schemes appear to
perform well as they provide enhanced performance in both
6-node and 10-node topologies. Our results show that, the
6-node topology achieves better performance than the
10-node topology. Although the 10-node topology has higher
number of routes than the 6-node topology, the degradation
in the performance is due to the higher number of hops in the
10-node topology. In this article, we have also mathemati-
cally analyzed the complexity of our route selection schemes,
and found that the complexity increases with the number of
routes and their respective number of hops, which deteriorate
the overall QoS performance (i.e., throughput and packet
delivery ratio).

In the future, we plan to implement a cross-layer design
that enables the physical, data link and network layers to
optimize network performance and to relax the assumptions
made in this article to provide a more realistic test envi-
ronment. The cross-layer design enables: (a) the channel
sensing mechanism in the data link layer to provide channel
sensing outcomes to the route selection mechanism in the
network layer, (b) the channel access mechanism in the data
link layer to allow SUs to share the available channels of a
single channel among themselves, and (c) the transmission
and reception mechanisms in the physical layer to address
the typical phenomena, such as fading and shadowing, in the
presence of dynamicity of PUs’ activities which is the main
characteristic of CR such that the USRP SU nodes are not
placed close to each other. We also plan to test our cross-
layer design in a larger network with more USRP SU nodes to
provide a more realistic test environment in which there are
higher number of routes, as well as higher number of hops
in each route. More extensions to the RL approaches applied
in this work, such as the multi-agent approach, is also part of
the future work to improve the SUs’ network performance in
more complex and realistic scenarios.
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