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Abstract: We demonstrate that Digital Holographic Microscopy can be used for accurate 3D
tracking and sizing of a colloidal probe trapped in a diamond anvil cell (DAC). Polystyrene beads
were optically trapped in water up to Gigapascal pressures while simultaneously recording in-line
holograms at 1 KHz frame rate. Using Lorenz-Mie scattering theory to fit interference patterns,
we detected a 10% shrinking in the bead’s radius due to the high applied pressure. Accurate bead
sizing is crucial for obtaining reliable viscosity measurements and provides a convenient optical
tool for the determination of the bulk modulus of probe material. Our technique may provide a
new method for pressure measurements inside a DAC.
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1. Introduction

Digital holographic microscopy (DHM) can be used in combination with Mie scattering the-
ory to simultaneously track and characterize colloidal particles with nanometer resolution [1].
The possibility of precisely sizing a colloidal probe particle is crucial for retrieving absolute
viscosity measurements from the center of mass dynamics of the probe bead [2]. Holographic
optical tweezers (HOT) [3-5] offer a powerful tool for microrheological studies [6—8] and,
when combined with DHM, allow for a full 3D and multipoint particle tracking for viscosity
measurements [2]. The need for a high numerical aperture for stable axial trapping has confined
HOT to situations where samples could be accessed using short working distance objectives.
Using a mirror trap configuration [9, 10] and a diamond anvil cell (DAC) [11] we have recently
shown that the full power of holographic tweezers can be also made available for high pressure
studies [12, 13]. Optical tweezers have been successfully applied to the study of the mechanical
and rheological response of soft and biological matter [14]. Although high applied pressures are
known to produce dramatic structural changes in soft materials, the study of the corresponding
changes in dynamical properties is still largely unexplored. Moreover, in contrast to other ex-
isting techniques for high pressure rheology [15], our method gives direct access to absolute
viscosity measurements at gigapascal pressures. In our previous work [12], a trapped bead was
used as a micron-sized probe for absolute viscosity measurements under high pressures up to
crystallization (2 GPa). The technique requires the a priori knowledge of the probe’s diameter
which is usually provided by the manufacturer with a standard deviation ranging from 3% to
15%. This fact prevents accurate viscosity measurements leading to systematic errors of the
order of a few percent.

In the present work we combine the holographic counter-propagating optical trap setup with



Research Article Vol. 24, No. 23 | 14 Nov 2016 | OPTICS EXPRESS 27011

Optics EXPRESS

in-line Digital Holographic Microscopy. A coherent light beam is scattered by a spherical probe
particle producing a fringe pattern magnified by a microscope. Fitting this interference pattern to
Lorenz-Mie scattering theory we can recover the 3D position of the bead, its refractive index,
and its radius [1,2]. The analysis of the Brownian particle fluctuations, together with a high
precision sizing, allows for accurate and absolute viscosity measurements in highly pressurized
samples. The high sensitivity of Mie scattering to probe radius can be further used to monitor
pressure induced size changes. This allowed us to obtain an unreported measurement of pressure
dependent bulk modulus of colloidal polystyrene bead up to 2 GPa.
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Fig. 1. (a) Schematic view of the optical setup. L1, L2, L3, L4, L5, L6, lenses; IRM infrared
mirror; DM1, DM2, DM3 dichroic mirrors; M mirror. (b) Radial histogram (black line) of
the experimentally recorded hologram (shown in the inset) with fit (red line). The red dashed
line is obtained without taking into account the limited NA and the aberration due to the

diamond window (see text). Black dashed line in the inset delimits the region where the
hologram is fitted.

2. Methods

A DAC is essentially composed by two diamond anvils held in a metallic structure that can
push them against each other. The diamonds are kept separated by a metallic gasket with a hole
(200 pum diameter, 50 um height) in which the sample is placed. Our DAC (EasyLab, uScope
DAC-RT(G)) has a working distance to sample of 8§ mm while its NA is 0.54. Consequently, we
use a 10X objective with 12 mm working distance and 0.3 NA. Stable 3D trapping is impossible
at such a low NA when using a single trapping beam. To overcome this problem, we have
modified our portable holographic optical tweezers instrument [5] (see Fig. 1(a)) to produce
two counter propagating beams [12,13]. A Spatial Light Modulator (Boulder P512-1064) splits
the laser IPG YLM-5-LP-SC, A = 1070 nm) in a collimated and a divergent beam. While the
collimated beam is focused on the objective focal plane, the divergent one focuses 300 pm above
and thus exerts a negligible radiation pressure. However, the divergent beam is collected by
the lenses L1-L2 and reflected back by an IR mirror (see Fig. 1(a)). After being reflected, this
counter propagating beam focuses again in the sample in a spot placed a few microns above the
focal plane. Therefore, we have two counter-propagating beams, which are focused into two
nearby spots aligned along the vertical axis, resulting in a 3D stable trap.

The sample is illuminated by a red laser diode (1 = 640 nm). If the incident beam divergence
angle is < 1 mrad, the illumination can be treated as a linearly polarized plane wave [16]. In this
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situation the field scattered by a spherical particle is predicted exactly by Mie theory [17]. The
corresponding intensity pattern (the hologram) is:

I=|1+£f(x -1y, a,n,,n,)*E (1

where E; is the amplitude of the incident plane wave, f is an analytically known function of
particle position r, = (xp,¥p,2p), radius a, particle and medium refractive indexes n, and
n,,. The hologram, normalized in order to eliminate the dependence from E;, can be fitted
using a Levenberg-Marquardt nonlinear least-squares minimization algorithm with the five free
parameters: X, y,, Zp, d, 1p. Since our particles are dispersed in water, instead of fitting n,,, we
use the values in [18] for water refractive index as a function of pressure. The fitting procedure
requires the calculation of a few hundreds holograms of 124 x 124 pixels, thus we exploited the
computational power of a CUDA based graphic processing unit (GTX-470) in order to speed-up
the computation [19,20]. The limited numerical aperture of our objective (NA=0.3) prevents
the light scattered at an angle larger than arcsin(NA) to be observed. Reducing the scattering
angle cone corresponds to the operation of filtering out from the complex scattered field the
spatial frequencies above NA/A [21,22]. In the fitting routine, when computing f, we take into
account this effect by filtering out frequency components larger than the cutoff value. This cutoff
frequency is obtained by a preliminary fitting on a set of holograms of a polystyrene bead at
ambient pressure. The obtained cutoff value corresponds to an effective numerical aperture of
0.285 and is kept fixed in all subsequent fitting procedures.
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Fig. 2. (a) Radial averages of experimental holograms at low (gray dots) and high (red dots)
pressures. The corresponding fitting curves are plotted respectively by gray and red lines. (b)
Water refractive index as function of pressure. Gray dots plot the values obtained from the
holograms leaving n,, as a fit parameter. The red line plots previously reported data [18].

Since the sample is observed through a Lg;,=1.55 mm thick diamond window, both the
incident and the scattered fields will propagate through a thick slab with a refractive index
of ng;, = 2.4 that introduces aberrations. These aberrations can be taken into account by
considering f as a sum of plane waves. Each of these plane waves will acquire a phase shift
Laiq (k9@ — k217), where k' and k%" are the wavevector components along the optical axis z
respectively in diamond and in air. The 2D Fourier transform of f, with transverse wavevector
(kx, ky), corresponds to a plane wave with k; = [(27n/ )2 - k)% - ki]l/ 2. The aberration can
be then computed by multiplying the Fourier transform of f by:

exp [i (\/(—zmjld"“)z — ki — k3 - \/(ZM%)2 k3 - k%) Ldm}

and then by transforming back.
Inset in Fig. 1(b) shows a typical hologram of a 5 um polystyrene bead trapped inside the
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DAC chamber. The trap has been displaced by the SLM 40 um above the focal plane so that the
fringes due to the interference between scattered and incident light are well visible. Other non
trapped beads sediment on the bottom diamond surface that is closer to the focal plane so that the
corresponding fringe patterns have a reduced lateral extent. To avoid interference with these other
particles we only fitted interference pattern within the region delimited by the black dashed line.
The black line in Fig. 1(b) plots the radial profile, averaged over the azimuthal coordinate, of the
experimental fringes in the hologram. The red line in Fig. 1(b) represents the curve corresponding
to the best fitting hologram computed as in Eq. 1. To highlight the importance of including the
effects given by the limited numerical aperture and the aberration due to the diamond window,
we plot as a red dashed line the curve that one obtains with the same bead parameters and without
including the aforementioned corrections. To have a better insight of our method, we show in
Fig. 2(a) the radial average of two holograms at low (0.05 GPa) and high (2.12 GPa) pressure
and their corresponding fits. Our procedure is able to fit the experimental data giving us the bead
parameters at different pressures.

Pressure in the DAC chamber is monitored by measuring the fluorescent emission of a
20 pm ruby bead placed in the sample. To excite the fluorescence, we use a green laser diode
(A4 = 532 nm) focused on the ruby by the microscope objective, while the emitted light is
collected by an optical fiber and sent to a spectrometer (Ocean Optics HR4000). As pressure
increases the ruby fluorescence spectrum peaks shift towards longer wavelengths [23] (see
Fig. 1(a)). The pressure is obtained by comparing the observed emission peaks’ wavelengths
with the calibration data given in [24].

3. Results

The DAC chamber has been loaded with 5 um polystyrene beads (Bangs Laboratories) dispersed
in deionized water. A small quantity of surfactant (2% 140000 Extran MAS) has been used
to reduce adhesion of beads to the diamonds’ facets. We trapped a single polystyrene bead
and recorded its Brownian fluctuations for 60 s at 1 KHz framerate. We acquired data for 15
different pressures ranging from ambient pressure to 2.1 GPa. At ambient temperature, water
crystallization occurs at 1 GPa meaning that we acquired data also when water is in a metastable
state. Any pressure change on the controller was followed by 30 minutes waiting time to reach the
equilibrium stationary state. After data acquisition we analyze the holograms and, as explained in
the previous section, we extract the particle trajectory and the particle radius a. From the in-plane
motion of the trapped bead we extract the fluctuations power spectrum that has the form [25]:

/JkBT 1

@)
where kg is the Boltzmann constant, T is the absolute temperature, k is the trap elastic constant,
and p is the particle mobility. By fitting the measured power spectrum with Eq. 2 we extract
both the values of k and u whose relative uncertainties, which are estimated from the covariance
matrix of the fit parameters, are respectively 1.5% and 1%. When the bead is sufficiently far
away from confining walls the mobility is given by Stokes formula u = 1/(67na) with a bead’s
radius and 7 solvent viscosity. Although we can extract the mobility with good precision from
PSD fits, an accurate determination of viscosity requires an equally accurate knowledge of the
bead radius a. In our previous study [12], we tracked beads using bright field microscopy which
does not allow to determine the bead radius with an accuracy that is better then the nominal
values provided by the manufacturer a = 5.0 = 0.5 um. Conversely, here through DHM tracking
of a bead inside a DAC we demonstrate direct and accurate determination of bead size for all
investigated pressures.

In order to highlight the importance of a direct bead sizing we report as gray circles in
Fig. 3(a) the viscosities obtained using a fixed value for the bead radius a, i.e. the measured value
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Fig. 3. (a) Water viscosity as a function of pressure. Open circles are obtained using DHM
full fits of position and size (solid line is a guide to the eye). Gray circles are obtained using
a constant bead size in fits. Squares are Abramson’s data [26], triangles are Bett and Cappi’s
data [27], dotted lines are polynomial fits to Abramson’s data. (b) Polystyrene bead radius
and bulk modulus (shown in the inset) as functions of pressure. Gray dots are obtained by
leaving the water refractive index n,, as a fitting parameter.

at ambient pressure. Empty circles in Fig. 3(a) represent the viscosity values obtained when
taking into account bead size variations as obtained from the fitting procedure at each pressure.
The relative difference between the two data sets can be quite large (11% for 2.1 GPa). This
discrepancy remarks that the knowledge of a is crucial for an accurate measure of viscosity at high
pressures. Even when the bead size does not shrink significantly, using the nominal size provided
by the manufacturer would cause a systematic error due to the unavoidable polydispersity of the
beads [2]. We estimate the precision of our measure of a by computing the standard deviation of
the fitting values of a set of holograms, recorded at the same pressure, obtaining a value of 6 nm.
Finally we evaluate the precision on 7, which is about 2%, by propagating the uncertainties of u
and a.

From the measured 7 at ambient pressure, we can estimate the temperature inside our sample
that, due to absorption of the IR trapping laser [28], could be higher than the room temperature.
By interpolating to our temperature value the curve reported in [29] for 7 as a function of
temperature, we get a sample temperature of 34 °C. Empty circles in Fig. 3(b) plot the trapped
bead radius as a function of pressure when we leave as fit parameters x,, yp, Zp, @, 1, and use
the known values of n,, reported in [18]. When #n,, is unknown, it can be included among the
fitting parameters and thus be measured. However, in that case the precision on fitted values
is reduced. Figure 2(b) shows the fitted values of n,, as a function of pressure along with the
water refractive index values reported in [18]. Similarly, a decrease in the precision is also
manifest in Fig. 3(b) that plots as gray dots the bead radius obtained setting n,, as a fit parameter.
Notwithstanding the fact that the points are more scattered, we can still recover the descending
trend. A phenomenological curve that follows our data for bead radius as a function of pressure
is the following:

a(P) = a, + Aae € P~P0)/3

where py is the ambient pressure while a.., Aa , and C are free parameters. The best fitting curve
is plotted as a red solid line in Fig. 3(b). Our phenomenological curve leads to the following
isothermal bulk modulus:
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The bulk modulus is plotted in the inset in Fig. 3(b) as a function of pressure. Interestingly, in the
range we explored, the bulk modulus increases more than a factor of two growing from 4 GPa at
ambient pressure, which is in good agreement with previously reported values [30,31], up to
10 GPa. Once a DAC is available, our technique provides a very convenient and cost effective
way of determining bulk moduli of transparent materials that can be produced in colloidal
beads, which could be particularly useful in the case of plastic materials. Alternative techniques
to access compressibilities at ultra-high-pressures usually involve a much higher degree of
complexity and costs in the experimental setup. One way is through direct measurement of atomic
structure deformations using X-rays typically from bright and collimated synchrotron sources
[32]. Alternatively one can use Brillouin scattering to retrieve the adiabatic bulk modulus from
sound speed measurements which requires high contrast spectrometers to detect wavenumber
shifts of the order of 1 cm™! [33].

-
Kp(P) = v (GP) __aP) (6a(P)) _1 (] N ﬁe(P—PO)CB)
T

4. Discussion

We have demonstrated that it is possible to perform DHM on a trapped micron-sized bead inside
a DAC. This allows to fully 3D track the trapped bead and measure its radius as a function
of pressure. DHM is superior to bright field in many respects, and it is simple to extract the
information encoded in the experimental holograms when the sample under study is extremely
dilute as in the present investigation. In particular, for high pressure physics, the possibility
of a precise determination of the size of particles through DHM and Lorenz-Mie scattering
theory appears very intriguing. In the present work we used this knowledge to have an accurate
measure of water viscosity and to compute the bulk modulus of the polystyrene bead as a function
of pressure. Such micron-sized objects, once calibrated, might also be used not only as local
rheological probes, but also as local pressure sensors inside the DAC.
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