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Expressiveness and Robustness of First-Price Position Auctions∗

Paul Dütting† Felix Fischer‡ David C. Parkes§

Abstract

Since economic mechanisms are often applied to very different instances of the same problem,
it is desirable to identify mechanisms that work well in a wide range of circumstances. We pursue
this goal for a position auction setting and specifically seek mechanisms that guarantee good
outcomes under both complete and incomplete information. A variant of the generalized first-
price mechanism with multi-dimensional bids turns out to be the only standard mechanism
able to achieve this goal, even when types are one-dimensional. The fact that expressiveness
beyond the type space is both necessary and sufficient for this kind of robustness provides
an interesting counterpoint to previous work on position auctions that has highlighted the
benefits of simplicity. From a technical perspective our results are interesting because they
establish equilibrium existence for a multi-dimensional bid space, where standard techniques
break down. The structure of the equilibrium bids moreover provides an intuitive explanation
for why first-price payments may be able to support equilibria in a wider range of circumstances
than second-price payments.

1 Introduction

Economic mechanisms are often applied to very different instances of the same problem. It is there-
fore desirable to find mechanisms that work well in a wide range of circumstances, and specifically
do not require any knowledge of agents’ preferences on the part of the designer. This goal has been
formulated many times and forms the core of the Wilson doctrine [34] and of the agenda of robust
mechanism design [3].

We pursue this goal for a position auction setting with one-dimensional types, and specifically
seek mechanisms that guarantee good outcomes under both complete and incomplete information.
Each of k positions is to be assigned to exactly one of n agents, and the value of agent i for position j
can be written as βj · vi, where v ∈ Rn and β ∈ Rk≥ = {x ∈ Rk : xj > 0, xj ≥ xj′ if j < j′}. In the
complete information case v is common knowledge among the agents. In the incomplete information
case the components of v are independent and identically distributed according to a continuous
distribution with bounded support that is common knowledge among the agents, and vi is known
to agent i. In both cases, β is common knowledge among the agents. A prime example of this
setting can be found in the context of sponsored search, where agents correspond to advertisers,
positions correspond to slots in which advertisements can be displayed, βj denotes the fraction of
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cases where an advertisement in position j leads to a conversion, and vi denotes the value agent i
has for a conversion.

The goal of the designer is twofold: to provide the best possible service to the agents by
allocating positions in a way that maximizes social welfare, i.e., the sum of valuations for the
allocated positions; and to maximize revenue subject to this constraint. While the agents agree
with the former goal, their interests are diametrically opposed to that of the designer with regard
to the latter. From the point of view of the designer, a good mechanism must therefore guarantee
existence of an efficient equilibrium and achieve high revenue in every efficient equilibrium. An
appropriate revenue benchmark for efficient equilibria is provided by the truthful equilibrium of
the well-known Vickrey-Clarkes-Groves (VCG) mechanism [24].

We arrive at the following question:

Does there exist a single mechanism that possesses an efficient equilibrium under both
complete and incomplete information, and recovers the truthful VCG revenue in every
efficient equilibrium?

To answer this question we consider the three mechanisms commonly used in for position auc-
tions, the VCG mechanism, the generalized first-price (GFP) mechanism, and the generalized
second-price (GSP) mechanism.1 The variants of these three mechanisms we consider all assign the
positions from top to bottom to an agent with maximum bid among those not assigned one of the
higher positions.2 The VCG mechanism charges each agent the externality it imposes on the other
agents, the GFP mechanism charges the agent’s bid on the position it is allocated, and the GSP
mechanism charges the next-highest bid on that position. For each mechanism we moreover distin-
guish two variants: an expressive variant in which agent i submits a bid bij for each position j, and
a simplified variant in which agent i specifies a single bid bi and this bid is multiplied by α ∈ Rk≥
to obtain bids for the different positions. The vector α is part of the mechanism, so it is common
knowledge among the agents and the designer and may or may not be identical to β.

Our contribution It turns out that most candidate mechanisms are disqualified by prior work.
The expressive VCG and GSP mechanisms have an efficient complete information equilibrium with
revenue zero for all possible valuations of the agents [29].3 For the simplified variants of these
mechanisms the situation is somewhat better, and this has in fact been used as an argument
in favor of simplification [29]. However, revenue in an efficient complete-information equilibrium
may still be arbitrarily small compared to the truthful VCG revenue [14], and the simplified GSP
mechanism may not have an equilibrium at all when information is incomplete [22]. The simplified
GFP mechanism, on the other hand, has a unique equilibrium under incomplete information [22]
but may not have an equilibrium under complete information [16].

This only leaves the expressive GFP mechanism, and we show that it indeed possesses the desired
robustness property: an efficient equilibrium under both complete and incomplete information, and
the truthful VCG revenue in every efficient equilibrium. While good outcomes under either complete
or incomplete information can be obtained with a simplified mechanism, expressiveness thus turns

1Google and Microsoft use the GSP mechanism, Facebook the VCG mechanism. The GFP mechanism was used
by Overture, the first company to provide a successful sponsored search service.

2We use this greedy allocation rule rather than one that selects an efficient allocation relative to the bids because
it simplifies the analysis and thus enables our main positive result. All negative results also hold for the efficient
allocation rule, and the two allocation rules obviously agree in any efficient equilibrium.

3This result requires that the agents can bid arbitrary non-negative numbers. It can be circumvented by forcing
the agents to submit non-increasing bids. But then there are still efficient equilibria with revenue arbitrarily smaller
than the truthful VCG revenue [14].
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out to be both necessary and sufficient for robustness. This provides an interesting counterpoint
to previous work on position auctions that has highlighted the benefits of simplicity [29, 14]. An
additional advantage of the expressive GFP mechanism is that it is independent of β. It can
therefore be used in settings where the designer is uncertain about the exact value of β, and our
results extend to such settings.

Our analysis of the complete information case is similar to the classic analysis of Bernheim and
Whinston [5] that links equilibria of first-price auctions to the core, and to more recent approaches
that also make this connection [11, 23]. The common feature is the use of what Milgrom [28] has
called target-profit strategies. Specifically, we show that having each agent i bid its value βj · vi for
position j minus its truthful VCG utility ui, or zero if this is negative, yields an efficient equilibrium.
Notable differences concern our use of a greedy rather than efficient allocation rule, and the fact
that we show revenue in every efficient equilibrium to be at least the truthful VCG revenue. Unlike
prior work we also explicitly handle ties in choosing an allocation.

As types are one-dimensional, our incomplete information analysis can use Myerson’s classic
characterization result [30] to identify equilibrium candidates. The standard technique to verify
that a particular candidate is an equilibrium involves integrating the derivative of an agent’s utility,
as a function of both valuation and bid, along a path between two bids. This technique breaks down
in our setting, where the bid space has higher dimension than the valuation space and the utility
function may not be defined everywhere on the path. We overcome these difficulties by performing
an induction from the last position to the first, and showing that the conjectured equilibrium bid
on position j is optimal for agent i given that the other agents bid according to the conjectured
equilibrium, and agent i bids according to the conjectured equilibrium on positions j + 1 to k. We
believe that similar techniques can be used to show equilibrium existence in more general settings,
including settings with multi-dimensional types.

Each step of the induction considers only one dimension of the bid space and can use the
standard technique, but identifying the equilibrium bids and deriving the utility function is a
non-trivial task. Myerson’s theorem only provides a necessary condition for bids that lead to
an efficient equilibrium, namely that payments in expectation equal the truthful VCG payments.
Since the bid space is multi-dimensional, many different bids satisfy this condition. In the eventual
equilibrium, the bid of agent i on position j equals its expected truthful VCG payment conditioned
on being allocated position j. These bids again have a natural interpretation in terms of target-
profit strategies and also provide an intuitive explanation for why first-price payment rules may be
able to support equilibria in a wider range than second-price payment rules: the expected truthful
VCG payment of an agent subject to allocation of a given position depends on the agent’s valuation
and on the distribution from which the valuations of the other agents are drawn, which is exactly
the information available to the agent.

Related work The design of more expressive mechanisms for specific applications is an important
topic of contemporary mechanism design [e.g., 1, 19, 10, 15, 13, 20, 21]. In addition, it has been
argued more abstractly that the expressiveness of a mechanism is positively correlated with the
quality of the outcomes it is able to support. Benisch et al. [2] showed that for combinatorial
auctions, the maximum social welfare over all outcomes of a mechanism strictly increases with
expressiveness, for a particular measure of expressiveness based on notions from computational
learning theory. Implicit in this result is the intuition that more expressiveness is generally desirable,
as it allows a mechanism to achieve a more efficient outcome in more instances of the problem.

The classic analysis of position auctions is due to Varian [33] and Edelman et al. [16]. Follow-up
work has emphasized the benefits of simplicity in this context. Milgrom [29] and Dütting et al.
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[14] considered a complete information setting and showed that simplification can eliminate zero-
revenue equilibria without introducing new, and potentially undesirable, equilibria. The authors
also pointed out certain advantages of the GSP mechanism over the VCG mechanism in this regard.
Gomes and Sweeney [22] and Chawla and Hartline [8] showed that under complete information the
GSP mechanism may fail to have an efficient equilibrium, whereas the GFP mechanism always
possesses a unique equilibrium, which is efficient and yields the truthful VCG revenue. Paes Leme
and Tardos [31], Lucier and Paes Leme [25], Caragiannis et al. [7], and Syrgkanis and Tardos [32]
showed that the GSP mechanism has a small constant price of anarchy under both complete and
incomplete information.4 Lucier et al. [26] established lower bounds on the revenue of the GSP
mechanism: for complete information it can be arbitrarily small compared to the truthful VCG
revenue, for incomplete information it always is a constant fraction of the latter.

Our work also has connections to the literature on non-parametric Bayes-Nash implementation,
robust full implementation, and prior-free approximation. Non-parametric Bayes-Nash implementa-
tion shows that an uninformed designer can implement essentially the same outcomes in equilibrium
as an informed designer [e.g., 27]. Robust full implementation seeks to obtain mechanisms that
implement a desired outcome in every equilibrium and for any prior the agents may have [e.g., 4].
Prior-free approximation seeks to approximate a desired outcome for any prior [e.g., 12].

To the best of our knowledge, the study of mechanisms for position auctions that admit efficient
equilibria and yield high revenue in every efficient equilibrium under both complete and incomplete
information, and the use of additional expressiveness to achieve this goal, are both novel.

2 Preliminaries

We study a setting with a set {1, . . . , k} of positions ordered by quality and a set N = {1, . . . , n} of
agents with unit demand and one-dimensional valuations for the positions. More formally, write
Rk≥ = {x ∈ Rk : xj > 0, xj ≥ xj′ if j < j′} for the set of k-dimensional vectors whose entries are
positive and non-increasing. For β ∈ Rk≥, let Rkβ = {x ∈ Rk : x = βv, v ∈ R+} be the one-
dimensional subspace of Rn spanned by β ∈ Rk≥. Agent i’s valuation can then be represented by a
vector βvi ∈ Rkβ in this subspace, such that βjvi ≥ 0 is the agent’s value for position j. Our goal
is to assign the positions to agents in order to maximize total value. We refer to an assignment of
agents to positions that achieve this as efficient. Because the base β of the subspace Rkβ is the same
for all agents, this can be achieved by allocating positions in decreasing order of vi. We assume
that β is common knowledge among the agents.

We compare two kinds of auctions. An expressive auction solicits a vector bi ∈ Rk≥ of bids
from each agent i ∈ N , where bi,j is interpreted as agent i’s bid on slot j. A simplified auction5

is parameterized by vector α ∈ Rk≥ and solicits a single-dimensional bid bi ∈ R+ from each agent
i ∈ N . The single-dimensional bid is extended to a k-dimensional bid by multiplying it with α.
Agent i’s bid on slot j is thus αjvi.

More specifically, we consider simplified and expressive variants of the generalized first-price
(GFP), generalized second-price (GSP), and the Vickrey-Clarke-Groves (VCG) auctions. We denote
these auctions by GFPα, GSPα, and VCGα and by GFP, GSP, and VCG. We assume that all
three mechanism assign the items greedily. That is, starting from the first position and proceeding
to the last position, they assign the current position to the agent with the highest bid that has not

4The price of anarchy compares the minimum social welfare in any equilibrium to the maximum social welfare
of any outcome. That greedy algorithms can achieve a small price of anarchy, potentially smaller than that of an
efficiently computable outcome, was previously highlighted by Gairing [18] in the context of covering games.

5We refer to these mechanism as simplified as they can be viewed as resulting from the expressive mechanism by
restricting the k-dimensional bid space to a 1-dimensional subspace.
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yet received a position. We focus on greedy winner determination algorithms because it simplifies
the equilibrium analysis, and also because it is consistent with the current practice in sponsored
search. The payment rules are defined identically for the simplified and expressive variants of each
auction. In the generalized first-price auctions, the payment of agent i assigned position j is equal
to the bid value associated with position j. In the generalized second-price auctions, the payment
of agent i for position j is equal to the next-lower bid for that position. In the VCG auctions,
agent i assigned position j is charged an amount equal to the total loss in value of all other agents,
according to their bids, caused by assigning position j to agent i.

We make the usual assumption of quasi-linear utilities, such that the utility ui(b, vi) of agent
i with value vi, in a given auction and for a given bid profile b, is equal to its valuation for the
position it is assigned minus its payment for that position. To be able to reason about the strategic
behavior of agents we need to specify what the agents know about each others’ valuations. In the
complete information setting values vi are common knowledge among the agents. A vector of bids
(b1, . . . , bn) is a Nash equilibrium of a given mechanism if no agent has an incentive to change its
bid assuming that the other agents don’t change their bids, i.e., if for every i ∈ N and every b′i,

ui((b1, . . . , bi, . . . , bn), vi) ≥ ui((b1, . . . , b′i, . . . , bn), vn).

In incomplete information environments, values vi are drawn independently from a distribution F
supported on [0, v̄] for some finite v̄ ∈ R+. Distribution F is assumed to be common knowledge
among the agents. In this setting, a vector (b1, . . . , bn) of bidding functions is a Bayes-Nash equi-
librium of a given auction if no agent has an incentive to change its bidding function assuming that
the other agents don’t change their bidding functions and values of the other agents are drawn from
F , i.e., if for every i ∈ N , every vi ∈ [0, v̄], and every bidding function b′i,

Evj∼F,j 6=i
[
ui
(
(b1(v1), . . . , bi−1(vi−1), bi(vi), bi+1(vi+1), . . . , bn(vn)), vi

)]
≥

Evj∼F,j 6=i
[
ui
(
(b1(v1), . . . , bi−1(vi−1), b

′
i(vi), bi+1(vi+1), . . . , bn(vn)), vi

)]
.

Because our environment is one-dimensional we can appeal to Myerson’s characterization of the
expected payments in a Bayes-Nash equilibrium.

Theorem 1 (Myerson [30]). Consider a position auction, and assume that agents use bidding
functions such that agent i with valuation vi is assigned position s with probability P is(vi). Then
the bidding functions are a Bayes-Nash equilibrium of the auction only if, for every agent i,

1. the expected allocation
∑k

s=1 P
i
s(vi)βs is non-decreasing in vi

2. the expected payment is

pi(vi) =

k∑
s=1

P is(vi)βsvi −
∫ vi

0

k∑
s=1

P is(z)βs dz,

where pi(0) = 0.

Since an efficient allocation satisfies monotonicity, we have the following corollary.

Corollary 1. In an efficient Bayes-Nash equilibrium of any position auction, the expected payment
of every agent i is equal, for every value vi, to the expected payment of the agent in the truthful
equilibrium of the expressive VCG auction.
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3 Complete Information Analysis

We begin our analysis by reviewing the properties of the expressive GFP mechanism in settings
with complete information. We show that expressive GFP always has a Nash equilibrium, that
all its Nash equilibria are efficient, and that payments in every Nash equilibrium are at least the
truthful VCG payments. The proof is given in Appendix A.

Proposition 1. Assume that valuations are taken from Rkβ. Then,

1. the expressive GFP mechanism has an efficient Nash equilibrium with payments equal to the
truthful VCG payments,

2. every Nash equilibrium of the expressive GFP mechanism is efficient, and

3. the payments in every Nash equilibrium of the expressive GFP mechanism are at least the
truthful VCG payments.

4 Incomplete Information Analysis

Next we consider environments with incomplete information and show our main result, that the
expressive GFP mechanism always has an efficient equilibrium that yields the truthful VCG revenue.

Theorem 2. Assume that valuations are drawn independently from a continuous distribution on Rkβ
with bounded support. Then the expressive GFP mechanism has an efficient Bayes-Nash equilibrium
with the same payments as the truthful equilibrium of the VCG auction.

We prove this result by constructing a bidding function b∗ : R→ Rk≥ and showing by induction
that an agent maximizes its utility by bidding according to b∗ assuming that all other agents bid
according to b∗ as well. To this end, we define in Section 4.1 a function b∗j : R→ R for each position
j that maps a valuation v to the expected truthful VCG payment b∗j (v) an agent with valuation v
would face if it was allocated position j. The equilibrium bidding function b∗ will then be given by
b∗(v) = (b∗1(v), . . . , b∗k(v)). We will say that an agent with valuation v bids truthfully on position j
(according to b∗j ) if he bids b∗j (v), and that he bids truthfully if he bids truthfully on all positions.
The property we show by induction is that independently of the bids on positions 1, . . . , j − 1 and
assuming truthful bids on positions j+1, . . . , k, it is optimal to bid truthfully on position j. For this
we apply the usual technique and integrate the derivative of the utility function from the truthful
bid on position j to a conjectured beneficial deviation on position j to derive a contradiction.

Denote by u∗((x1, . . . , xk), v) the expected utility of an agent with valuation v who bids b∗j (xj)
on position j while all other agents bid truthfully. The proof of Theorem 2 uses the following
lemmata, which we prove in Sections 4.2 and 4.3.

Lemma 1. Fix a particular agent. Assume that all other agents bid truthfully and that the agent
bids truthfully on positions j + 1, . . . , k. Then the derivative in the bid on position j of the agent’s
expected utility vanishes at the truthful bid, i.e.,

d

dxj
u∗((x1, . . . , xj , v, . . . , v), v)

∣∣∣
xj=v

= 0.

Lemma 2. Fix a particular agent. Assume that all other agents bid truthfully and that the agent
bids truthfully on positions j + 1, . . . , k. Then, the derivative in the valuation of the derivative in
the bid on position j of the agent’s expected utility is non-negative, i.e.,

d

dv

d

dxj
u∗((x1, . . . , xj , v, . . . , v), v) ≥ 0.
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Proof of Theorem 2. Fix a particular agent and assume that all other agents bid truthfully. Suppose
that we have established the claim for positions j + 1, . . . , k, and that we want to establish it for
position j. The claim trivially holds for j = k, so we know from the induction hypothesis that

u∗(x1, . . . , xj , v, . . . , v) = max{xj+1, . . . , xk : u∗(x1, . . . , xj , xj+1, . . . , xk)}.

To show that the claim holds for position j, assume for contradiction that there exists v′ ∈ R such
that

u∗(x1, . . . , xj−1, v
′, v, . . . , v) > u∗(x1, . . . , xj−1, v, v, . . . , v).

First assume that v′ < v. Then,

u∗((x1, . . . , xj−1, v, . . . , v), v)− u∗((x1, . . . , xj−1, v′, v, . . . , v), v) =∫ v

v′

d

dxj
u∗((x1, . . . , xj−1, xj , v, . . . , v), v) dxj ≥∫ v

v′

d

dy
u∗((x1, . . . , xj−1, y, xj , . . . , xj), xj)

∣∣∣
y=xj

dxj = 0,

where the inequality and the last equality respectively hold by Lemma 2 and Lemma 1. This is
a contradiction. It is important to note here that when all other agents bid according to b∗, it is
without loss of generality to consider only bids b∗j (v) where v is in the support of F , because any
other bid will be dominated by a bid of this type.

If v′ > v we can proceed analogously to show that the deviation is not beneficial.

4.1 Truthful VCG Payments and Allocation Probabilities

We begin by formally defining the position-specific bidding functions b∗j and computing their deriva-
tive in the valuation. We then derive a recursive formulation of the allocation probabilities, which
will be used in the proofs of Lemma 1 and Lemma 2. Bid b∗j (v) equals the truthful VCG payment
for position j given valuation v and conditioned on allocation of position j. This quantity is equal
to the sum over the differences βs−βs+1 multiplied by the expected value of the s+1-highest valua-
tion among all agents conditioned on v being the j-highest valuation and assuming that valuations
are drawn independently from distribution F . Formulaically,

b∗j (v) =
k∑
s=j

(βs − βs+1)

∫ v

0

(n− j)!
(n− s− 1)!(s− j)!

(
F (u)

F (v)

)n−s−1(
1− F (u)

F (v)

)s−j f(u)

F (v)
u du

Using that (1− F (u)
F (v) )

s−j =
∑s−j

t=0(−1)t(F (u)
F (v) )

t and defining Zn−s+t(v) = ( 1
F (v))

n−s+t ∫ v
0 F (u)n−s+t du

we have that

b∗j (v) =

k∑
s=j

(βs − βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)
(v − Zn−s+t(v)) .

Using that d
dv (v − Zn−s+t(v)) = (n− s+ t) f(v)F (v)Zn−s+t(v) we obtain

d

dv
pj(v) =

k∑
s=j

(βs − βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)
Zn−s+t(v). (1)
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Denote by Ps,m(x) the probability that an agent is assigned position s against m opposing
agents if he reports a valuation vector x ∈ Rk≥. Then Ps,m(x) can be written recursively as

P1,m(x) = F (x1)
m, and

Ps,m(x) =

(
m

m− s+ 1

)
F (xs)

m−s+1

(
1−

s−1∑
t=1

Pt,s−1(x)

)
(2)

The intuition behind this formulation is that the agent is assigned position s if m − s + 1 of the
opposing agents have valuations smaller than xs and the agent is not assigned one of the positions
1, .., s−1 against the remaining s−1 agents. An important observation at this point is that Ps,m(x)
does not depend on x` for ` > s.

4.2 Proof of Lemma 1

To prove the lemma, we write the expected utility that agent i can achieve with a report x ∈ Rk≥
given value v as a sum of the contributions Ts(x, v) = Ps,n−1(x)(βsv − b∗s(xs)) of position s. We
then group these contributions into those of positions s < j, those of positions j and j + 1, and
those of positions s > j+ 1, and argue for each group that their derivative in xj vanishes at xj = v.

For the contribution
∑j−1

s=1 T (x, v) of positions s < j this is rather straightforward, as neither
the allocation probability Ps,n−1(x), nor the utility βsv − b∗s(xs) subject to allocation, depends on
xj . Hence the derivative in xj is zero everywhere, and in particular at xj = v.

To prove the claim for Tj(x, v) + Tj+1(x, v), we first apply the recursive formulation of the
allocation probabilities to compute the derivatives in xj of Tj(x, v) and Tj+1(x, v). We then observe
that the derivative of Tj(x, v) + Tj+1(x, v) vanishes at xj = v if and only if a certain differential
equation involving the bids b∗j (v) and b∗j+1(v) is satisfied. Finally, we use the formulas for the
truthful VCG payments conditioned on allocation and their derivatives to show that this differential
equation is satisfied.

Lemma 3. Fix a particular agent. Assume that all other agents bid truthfully and that the agent
bids truthfully on positions j + 1, . . . , k. Then,

d

dxj

(
Tj(x, v) + Tj+1(x, v)

)∣∣∣
xj=v

= 0.

Proof. First consider the contribution Tj(x, v) = Pj,n−1(x)(βjv− b∗j (xj)) of position j. By applying
(2) to Pj,n−1(x),

Tj(x, v) =

(
n− 1

n− j

)
F (xj)

n−j

(
1−

j−1∑
t=1

Pt,j−1(x)

)
(βjv − b∗j (xj)),

and thus

d

dxj
Tj(x, v) =

(
n− 1

n− j

)(
1−

j−1∑
t=1

Pt,j−1(x)

)(
(n− j)F (xj)

n−j−1f(xj)βjv−

(n− j)F (xj)
n−j−1f(xj)b

∗
j (xj)− F (xj)

n−j d

dxj
b∗j (xj)

)
.
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Now consider the contribution Tj+1(x, v) = Pj+1,n−1(x)(βj+1v − b∗j+1(xj+1) of position j + 1.
By applying (2) to Pj+1,n−1(x),

Tj+1(x, v) =

(
n− 1

n− j − 1

)
F (v)n−j−1

(
1−

j∑
t=1

Pt,j(x)

)
(βj+1v − b∗j+1(v)).

By pulling Pj,j(x) out of the sum and applying (2) to it, we obtain

Tj+1(x, v) =

(
n− 1

n− j − 1

)
F (v)n−j−1·(
1−

j−1∑
t=1

Pt,j(x)−
(
j

1

)
F (xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))
(βj+1v − b∗j+1(v)),

and thus

d

dxj
Tj+1(x, v) = −

(
n− 1

n− j − 1

)
F (v)n−j−1

(
j

1

)
f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

)
(βj+1v − b∗j+1(v)).

We conclude that the derivative in xj of the contribution Tj(x, v) + Tj+1(x, v) from positions j
and j + 1 vanishes at xj = v if and only if(

n− 1

n− j

)(
(n− j)F (v)n−j−1f(v)βjv − (n− j)F (v)n−j−1f(v)b∗j (v)− F (v)n−j

d

dxj
b∗j (xj)

∣∣∣
xj=v

)
−
(

n− 1

n− j − 1

)
F (v)n−j−1

(
j

1

)
f(v)(βj+1v − b∗j+1(v)) = 0.

Using
(
n−1
n−j−1

)(
j
1

)
=
(
n−1
n−j
)
(n − j) to simplify and rearranging leads to the following differential

equation:

d

dxj
b∗j (xj)

∣∣∣
xj=v

= (n− j) f(v)

F (v)

[
(βjv − b∗j (v))− (βj+1v − b∗j+1(v))

]
.

We first observe that the v parts of b∗j (v) and b∗j+1(v) cancel βjv and βj+1v. This is the case
because for z ∈ {j, j + 1} the v part of b∗z(v) is equal to

k∑
s=z

(βs − βs+1)
s−z∑
t=0

(−1)t
(
s− z
t

)
(n− j)!

(n− s− 1)!(s− z)!
1

(n− s+ t)︸ ︷︷ ︸
=1

v =
k∑
s=z

(βs − βs+1)v = βzv.

It remains to show that (n − j) f(v)F (v) times the Z part of b∗j+1(v) minus the Z part of b∗j (v) is

equal to the derivative in xj of b∗j (xj) at xj = v. Formulaically, the former can be expressed as

(n− j) f(v)

F (v)

[ k∑
s=j

(βs − βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)
Zn−s+t(v)− (3)

k∑
s=j+1

(βs − βs+1)

s−j−1∑
t=0

(−1)t
(
s− j − 1

t

)
(n− j − 1)!

(n− s− 1)!(s− j − 1)!

1

(n− s+ t)
Zn−s+t(v)

]
.
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We prove the identity by showing that for all s and t, the terms in (3) are identical to the corre-
sponding terms in (1).

For s = j, the only possible value for t is t = 0, so the term in (3) is

(n− j) f(v)

F (v)
(βs − βs+1)(−1)t

(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)
Zn−s+t(v).

It is easy to see that this is identical to the corresponding term in (1), which is

(βs − βs+1)(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)
Zn−s+t(v).

For s > j and any t in the correct range the term in (3) is

(n− j) f(v)

F (v)

[
(βs − βs+1)(−1)t

(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)
Zn−s+t(v)−

(βs − βs+1)(−1)t
(
s− j − 1

t

)
(n− j − 1)!

(n− s− 1)!(s− j − 1)!

1

(n− s+ t)
Zn−s+t(v)

]
,

which using
(
s−j−1

t

)
=
(
s−j
t

) s−j−t
s−j can be rewritten as

(βs − βs+1)(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)

[
n− j

n− s+ t
− s− j − t
n− s+ t

]
Zn−s+t(v).

Since n−j
n−s+t −

s−j−t
n−s+t = 1, we obtain the corresponding term in (1), which is

(βs − βs+1)(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)
Zn−s+t(v).

Next we consider the contribution
∑k

s=j+2 Ts(x, v) from positions s > j + 1.

Lemma 4. Fix a particular agent. Assume that all other agents bid truthfully and that the agent
bids truthfully on positions j + 1, . . . , k. Then,

d

dxj

( k∑
s=j+2

Ts(x, v)

)∣∣∣
xj=v

= 0.

Note that for position s > j + 1 the contribution Ts(x, v) = Ps,n−1(x, v)(βsv − b∗s(xs)) only
depends on xj through the allocation probability Ps,n−1(x, v). It therefore suffices to show that
the derivative in xj of Ps,n−1(x, v) vanishes at xj = v. We establish this claim by means of two
auxiliary lemmata, which again exploit the recursive formulation of the allocation probabilities.
The proofs are given in Appendices B and C.

Lemma 5. Fix a particular agent. Assume that all other agents bid truthfully and that the agent
bids truthfully on positions j + 1, . . . , k. Then, for all m ≥ j + 1,

d

dxj
(Pj,m(x) + Pj+1,m(x))

∣∣∣
xj=v

= 0.

Lemma 6. Fix a particular agent. Assume that all other agents bid truthfully and that the agent
bids truthfully on positions j + 1, . . . , k. Then, for all m and ` such that m ≥ ` ≥ j + 2,

d

dxj
P`,m(x)

∣∣∣
xj=v

= 0.
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Proof of Lemma 4. For position s > j + 1 we first apply (2) to Ps,n−1(x) to obtain

Ts(x, v) =

(
n− 1

n− s

)
F (xs)

n−s

(
1−

s−1∑
t=1

Pt,s−1(x)

)
(βsv − b∗s(xs))

and then split
∑s−1

t=1 Pt,s−1(x) into two parts to obtain

Ts(x, v) =

(
n− 1

n− s

)
F (xs)

n−s

(
1−

j−1∑
t=1

Pt,s−1(x)−
s−1∑
t=j

Pt,s−1(x)

)
(βsv − b∗s(xs)).

The derivative is thus

d

dxj
Ts(x, v) =

(
n− 1

n− s

)
F (xs)

n−s

− d

dxj

s−1∑
t=j

Pt,s−1(x)

 (βsv − b∗s(xs)),

and we use Lemma 5 and Lemma 6 to conclude that it vanishes at xj = v.

4.3 Proof of Lemma 2

We now turn to Lemma 2, and begin by recalling the results for the one-dimensional case. In this
case the expected utility for report x given value v is equal to

k∑
s=1

βsPs,n−1(x)(v − x) +

k∑
s=1

βs

∫ x

0
Ps,n−1(t) dt,

which for truthful report x = v simplifies to

k∑
s=1

βs

∫ v

0
Ps,n−1(t) dt. (4)

We will use this formula below to express the expected utility from positions j + 1, . . . , k for which
both agent i and the other agents report their valuations truthfully.

To compute the derivative in xj of the expected utility we first observe that the contribution
Ts(x, v) is independent from xj for s < j, and thus

d

dxj

( k∑
s=1

Ts(x, v)

)
=

d

dxj

( k∑
s=j

Ts(x, v)

)
=

d

dxj

(
Tj(x, v) +

k∑
s=j+1

Ts(x, v)

)
.

For the contribution Tj(x, v) from position j,

d

dxj
Tj(x, v) =

d

dxj

(
Pj,n−1(x)(βjv − b∗j (xj))

)
= βjv

d

dxj
Pj,n−1(x)− b∗j (xj)

d

dxj
Pj,n−1(x)− Pj,n−1(x)

d

dxj
b∗j (xj).

For the contributions Ts(x, v) from positions s > j we use (4) to obtain

d

dxj

k∑
s=j+1

Ts(x, v) =
d

dxj

 k∑
s=j+1

βs

∫ v

0
Ps,n−1(x1, . . . , xj , t, . . . , t)dt


=

k∑
s=j+1

βs

∫ v

0

d

dxj
Ps,n−1(x1, . . . , xj , t, . . . , t)dt.
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Taking the derivative in v yields

d

dv

(
d

dxj

k∑
s=1

Ts(x, v)

)
= βj

d

dxj
Pj,n−1(x) +

k∑
s=j+1

βs
d

dxj
Ps,n−1(x) =

d

dxj

k∑
s=j

βsPs,n−1(x).

The final step now is to argue that this expression is non-negative. That the beta fraction
won increases in the report xj on position j holding everything else fixed follows by an ex-post
argument. If the agent was allocated a position s < j then changing his reported valuation xj for
position j has no effect and he will still be allocated position s. If the agent was allocated position
s = j, he will still be allocated this position for higher xj . If the agent was allocated a position
s > j or no position at all, then by increasing the reported valuation xj for position j he will either
be allocated the same position as before or position j, which means that the beta fraction won will
increase weakly.

5 Conclusion and Future Work

In this paper we analyzed position auctions through the lens of robustness. We asked whether there
exists a single mechanism that works well under complete and incomplete information settings.
Specifically, we were looking to identify a mechanism that achieves the truthful VCG revenue
in every efficient equilibrium. By recalling results from prior work we were able to exclude both
simplified and expressive variants of the VCG and the GSP mechanism as well as simplified variants
of the GFP mechanism. We then showed that an expressive GFP mechanism indeed achieves the
desired property.

Our work has a clear message: If the goal is robustness against uncertainty about the information
agents have about one another, then expressiveness beyond the type space is both necessary and
sufficient. It also provides a nice counterpoint to recent work on position auctions which has
highlighted the benefits of simplicity.

An interesting question for future work is whether the message that expressiveness beyond
type space is required for robustness extends to other problems. This is particularly true for the
combinatorial auction problem, where simplified designs have recently received a lot of attention [9,
6, 17].
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A Proof of Proposition 1

Proof of Part 1 Assume that the agents are ordered by decreasing value, i.e., that v1 ≥ v2 ≥
· · · ≥ vn. Then in an efficient assignment agent i is assigned position i, for 1 ≤ i ≤ k. Denote by
ui the truthful VCG utility for agent 1 ≤ i ≤ n and denote by pi the truthful VCG payment for
position 1 ≤ i ≤ k. Then ui = βivi − pi for 1 ≤ i ≤ k and ui = 0 for i > k. We claim that the bid
profile b ∈ (Rk≥)n with

bi,j = max(βjvi − ui, 0)

14



for i = 1, . . . , n and j = 1, . . . , k is an equilibrium of GFP that is efficient and yields the truthful
VCG payments.

With this bid profile, an efficient allocation assigns position i to agent i at price pi. For the
greedy allocation rule, this outcome can be obtained by letting agent i point to position i and
breaking ties in favor of the agent that points to a given position. To see that b is an equilibrium
first observe that agent i cannot lower his bid for position i without being assigned a position other
than i. For contradiction it thus suffices to assume that agent i has a beneficial deviation to a
position j 6= i, such that

βivi − pi < βjvi − pj − ε,

for every ε > 0. Here we use that agent i can bid pj +ε on positions j and above to win one of these
positions, and that he values each of them at least as highly as position j. The left-hand side of
this inequality equals the utility of agent i in the truthful equilibrium of the VCG auction, whereas
the right-hand side equals the utility agent i would get if he was instead assigned position j at price
pj + ε. The inequality contradicts the fact that the truthful VCG equilibrium is envy-free.

Proof of Part 2 Consider a Nash equilibrium b and assume for contradiction that it leads to
an inefficient assignment. Then there exist agents i, j with vi > vj such that agent i is assigned
position s and agent j is assigned position t < s.

First assume that agent i bids bj,t + ε on positions t and above, which means that he wins one
of these positions. Since b is an equilibrium this deviation is not beneficial, i.e., for every ε > 0,

βsvi − bi,s ≥ βtvi − bj,t − ε. (5)

Now consider the situation where agent j bids according to bid vector b′j with

b′j,` =

{
bi,s + ε if 1 ≤ ` ≤ s
0 otherwise

for some ε > 0. We claim that with these bids agent j will either be assigned a position above s, or
will compete for position s with bids that are bi,s or lower and will therefore be assigned position
s. For the latter observe that agents other than j who are assigned a position above s when agent
j bids according to bj can only be assigned a higher position when agent j bids according to b′j .
This suffices because agents other than j who were assigned position s or below bid at most bi,s on
position s.

Since b is an equilibrium, agent j does not benefit from bidding according to b′j , and thus for
every ε > 0,

βtvj − bj,t ≥ βsvj − bi,s − ε. (6)

By adding (5) and (6) and rearranging,

βsvi + βtvj ≥ βsvj + βtvi − 2ε

and thus

vj ≥ vi −
2ε

βt − βs
for every ε > 0. This contradicts the assumption that vi > vj .
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Proof of Part 3 Consider a Nash equilibrium b = (b1, . . . , bn) and assume without loss of
generality that it leads to an assignment where agent i is assigned position i for i = 1, . . . , k.
Further assume that the assignment is efficient, i.e., that v1 ≥ v2 ≥ · · · ≥ vk. For 1 ≤ i ≤ k, agent
i+ 1 does not benefit from bidding bi,i + ε = pi + ε on position i and above, so

βi+1vi+1 − pi+1 ≥ βivi+1 − pi − ε

for every ε > 0. Thus, for every ε > 0,

pk ≥ βkvk+1 − ε and

pi ≥ (βi − βi+1)vi+1 + pi+1 − ε for 1 ≤ i < k,

which proves the claim.

B Proof of Lemma 5

First consider the allocation probability Pj,m(x) for position j. Applying (2) to Pj,m(x) yields

Pj,m(x) =

(
m

m− j + 1

)
F (xj)

m−j+1

(
1−

j−1∑
t=1

Pt,j−1(x)

)
,

and thus

d

dxj
Pj,m(x) =

(
m

m− j + 1

)
(m− j + 1)F (xj)

m−j+1(m− j)f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

)
.

Now consider the allocation probability Pj+1,m(x) of position j + 1. Applying (2) to Pj+1,m(x)
yields

Pj+1,m(x) =

(
m

m− j

)
F (v)m−j

(
1−

j∑
t=1

Pt,j(x)

)
.

Pulling Pj,j(x) out of the sum and applying (2) to it yields

Pj+1,m(x) =

(
m

m− j

)
F (v)m−j

(
1−

j−1∑
t=1

Pt,j(x)−
(
j

1

)
F (xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))
,

and thus

d

dxj
Pj+1,m(x) =

(
m

m− j

)
F (v)m−j

(
−
(
j

1

)
f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))
.

We conclude that the derivative in xj of Pj,m(x) + Pj+1,m(x) vanishes at xj = v if and only if(
m

m− j + 1

)
(m− j + 1)F (v)m−jf(v)−

(
m

m− j

)
F (v)m−j

(
j

1

)
f(v) = 0.

Since
(
m
m−j

)(
j
1

)
=
(

m
m−j+1

)
(m− j + 1), this is indeed the case.
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C Proof of Lemma 6

We prove the claim by induction over m, starting with m = j+2. In this case the only possible value
of ` is ` = j + 2, so it suffices to show that d

dxj
Pj+2,j+2(x) |xj=v= 0. Applying (2) to Pj+2,j+2(x)

shows that

Pj+2,j+2(x) =

(
j + 2

1

)
F (v)

(
1−

j+1∑
t=1

Pt,j+1(x)

)
.

By pulling Pj,j+1(x) and Pj+1,j+1(x) out of the sum this can be rewritten as

Pj+2,j+2(x) =

(
j + 2

1

)
F (v)

(
1−

j−1∑
t=1

Pt,j+1(x)−
(
Pj,j+1(x) + Pj+1,j+1(x)

))
,

and thus

d

dxj
Pj+2,j+2(x) =

(
j + 2

1

)
F (v)

d

dxj

(
− (Pj,j+1(x) + Pj+1,j+1(x)

)
.

Using Lemma 5 we conclude that the derivative vanishes at xj = v.
For the inductive step assume that the claim is true for all m′ < m. We have to show that for

any ` with m ≥ l ≥ j + 2 it holds that d
dxj

P`,m(x) |xj=v= 0. Applying (2) to P`,m(x) yields

P`,m(x) =

(
m

m− `+ 1

)
F (v)m−`+1

(
1−

`−1∑
t=1

Pt,`−1(x)

)
.

By splitting
∑`−1

t=1 Pt,`−1(x) into three parts we obtain

P`,m(x) =

(
m

m− `+ 1

)
F (v)m−`+1

(
1−

j−1∑
t=1

Pt,`−1(x)−
j+1∑
t=j

Pt,`−1(x)−
`−1∑
t=j+2

Pt,`−1(x)

)
,

and thus

d

dxj
P`,m(x) =

(
m

m− `+ 1

)
F (v)m−`+1

(
− d

dxj

j+1∑
t=j

Pt,`−1(x)− d

dxj

`−1∑
t=j+2

Pt,`−1(x)

)
.

Using Lemma 5 and the induction hypothesis we conclude that the derivative again vanishes at
xj = v.
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