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Abstract 

Resistance to cattle tick infestation in single-host ticks is primarily manifested against the larval stage and 

results in the immature tick failing to attach successfully and  obtain a meal. The present study was 

conducted to identify immune responses that characterise the tick-resistant phenotype in cattle. Thirty-

five tick-naïve Santa-Gertrudis heifers were used in this study, thirty of which were artificially infested 

for thirteen weeks with tick larvae while five animals remained at a tick-free quarantine property to serve 

as a control group. Following thirteen weeks of tick infestation, the animals in this trial exhibited highly 

divergent tick-resistance phenotypes. Blood samples collected throughout the trial were used to measure 

peripheral immune parameters: haematology, the percentage of cellular subsets comprising the peripheral 

blood mononuclear cell (PBMC) population, tick-specific IgG1 and IgG2 antibody titres, IgG1 avidity for 

tick antigens, and the ability of PBMC to recognise and proliferate in response to stimulation with tick 

antigens in vitro. The tick-susceptible cattle developed significantly higher tick-specific IgG1 antibody 

titres compared to the tick-resistant animals. These results suggest that the heightened antibody response 

either does not play a role in resistance or might contribute to increased susceptibility to infestation.  
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1.0  Introduction 

Bos indicus breeds of cattle are generally more resistant to tick infestation than Bos taurus breeds (1,2,3) 

and this is one of the reasons Brahman cattle are used extensively throughout northern Australia where 

Rhipicephalus (Boophilus) microplus is endemic. However, increasing pressure from domestic and 

overseas consumer markets is driving producers to introduce more Bos taurus genetic content into their 

herds due to the European breeds’ superior productivity and meat quality. Composite breed animals such 

as the Santa-Gertrudis present an attractive alternative to pure Bos indicus cattle in tick-endemic regions 

of northern Australia due to their blend of good meat quality and reproductive traits, together with the 

ability to acquire high levels of tick-resistance (2,3).  An alternative strategy to ensure good productive 

characteristics in addition to increased tick-resistance is to select for tick-resistance within pure B. taurus 

herds. A breeding program at CSIRO laboratories in Rockhampton demonstrated that high levels of tick 

resistance (>98%) can be achieved in pure B. taurus animals with the generation of the Belmont Adaptaur 

(4), a Hereford × Shorthorn animal intensely selected for increased tick resistance over 25 years. 

However, the Belmont Adaptaur did not become a commercial success and its development has ceased. 

The main difficulty with selecting for host resistance in cattle to ticks is that identifying highly resistant 

individuals using the standard tick count is not a feasible option in a commercial setting. Consequently, 

predictive phenotypic or genotypic markers for tick resistance would be a better approach to develop 

herds with high levels of tick resistance.  

Cattle tick infestation induces diverse bovine physiological responses including haemostasis, 

inflammation, and cell mediated and humoral immunity (5). The bovine host produces antibodies against 

tick antigens introduced during the blood feeding process (7,8,9,10) and there is large variation in 

antibody levels between individuals and infestation levels (11). The number of circulating T lymphocytes 

and antibody response to ovalbumin injection was decreased in B. taurus cattle heavily infested with R.  

microplus compared to their tick-free counterparts (12). This finding implies an immunosuppressive or 

immunoregulatory response to tick infestation. Conversely, Rechav (13) reported that Simmentaler cattle 
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(B. taurus) heavily infested with several African tick species had higher white blood cell (WBC) counts 

and levels of serum gamma globulins than Brahman (B. indicus) cattle managed under the same 

conditions. Sustained heavy infestation with R. microplus alters host haemostatic mechanisms by 

inhibiting platelet aggregation and coagulation functions (14), and altering the level of acute phase 

proteins in the susceptible host (15). 

The protein composition of tick saliva changes over the course of the blood feeding process (16,17,18) 

and it has been suggested that the constantly changing array of immunogens to which the host is exposed 

creates a complex pattern of immune reactivity (19). This constantly changing profile of proteins has 

made it difficult to identify those antigens produced by R.  microplus that are responsible for initiating 

resistance against the cattle tick in the bovine host.  

We have previously reported that tick-resistant Brahman (B. indicus) cattle demonstrate different 

peripheral cellular, humoral and white blood cell (WBC) gene expression profiles from tick-susceptible 

Holstein-Friesian (B. taurus) cattle following periods of challenge with R.  microplus (20). It was found 

that after a period of artificial infestations, Brahman cattle had a significantly higher percentage of T cell 

subsets comprising their peripheral blood mononuclear cell compared to the Holstein-Friesian cattle, 

whereas the Holstein-Friesians displayed higher percentages of monocytes and MHCII-expressing cells in 

their peripheral circulation. These observations were supported by microarray analysis of WBC gene 

expression, suggesting that the Brahman animals elicited a predominantly T cell-mediated response to 

tick infestation, as opposed to the sustained inflammatory-type response elicited by the Holstein-Friesian 

animals. However, high tick-specific IgG1 levels measured in the Holstein-Friesian animals suggested that 

these animals had also developed a T cell response to tick infestation.  

Our aim was to examine the  examine the peripheral cellular and antibody responses of previously tick-

naïve Santa-Gertrudis cattle to infestation with R. microplus. The Santa-Gertrudis is a stable composite 

breed composed of approximately 5/8 B. taurus (Shorthorn) and 3/8 B. indicus (Brahman), and has a wide 
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range of resistance to R.  microplus infestation (2,3). This study was distinct from previously reported 

work in that it makes sequential observations on initially naive animals from a taurine × indicine hybrid 

breed of cattle with an expected range of tick resistance levels that encompasses the ranges that have been 

documented previously for pure indicine and taurine cattle.  The aim of this study was to track the 

development and eventual stabilisation of the bovine immune response to R.  microplus infestation in 

previously unexposed animals to identify those responses that characterise the resistant phenotype. 

 

2.0 Materials and methods 

2.1 Animals 

Thirty-five Santa-Gertrudis heifers aged 12 months with no previous exposure to R.  microplus were 

sourced from a tick-free region of Australia. All animals had been vaccinated against the organisms that 

cause tick fever in Australia, Babesia bovis, B. bigemina and Anaplasma marginale, prior to the 

commencement of the trial. Five animals were transported directly to the Queensland Primary Industries 

and Fisheries’ (QPIF) Tick Fever Centre (tick-free quarantine property) to serve as a tick-free control 

group. The remaining thirty animals were transported to the University of Queensland’s Pinjarra Hills 

Droughtmaster Unit. The Tick Fever Centre and the Pinjarra Hills facilities are located in Brisbane, 

Australia, and are less than 6 km apart on opposite banks of the Brisbane River. Animals at both facilities 

were therefore subjected to similar environmental conditions, and both groups were run in shaded 

paddocks and fed on pasture supplemented with whole cotton seed for the duration of the trial. The study 

was conducted under approval from the University of Queensland Animal Ethics Production and 

Companion Animals Committee. 
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2.2 Tick infestations and animal resistance rankings 

At the commencement of the trial, the 30 animals at the Pinjarra Hills facility were each artificially 

infested with 10 000 (0.5 g) R.  microplus larvae applied to the neck and withers. This was repeated 

weekly for 13 weeks, and the animals were simultaneously exposed to ticks under natural conditions in 

tick-infested pastures. The larvae used to artificially infest the cattle were of the Non-Resistant Field 

Strain (NRFS) (21) that is maintained free of Babesia and Anaplasma organisms at the Queensland 

Department of Agriculture and Fisheries’ Biosecurity Science Laboratories. Larvae were maintained at 

28°C and approximately 95% humidity and applied to animals 7-14 days after hatching. Standard tick 

counts were undertaken weekly for 13 weeks as described by Utech et al. (2,3)  to assess each animal’s 

ability to resist infestation. Briefly, tick counts were performed by counting every tick sized between 4.5 

and 8 mm on one side of the animal. Tick counts were performed at 21 days following the larval 

infestation. Tick count data recorded over 13 weeks were analysed using a mixed effects model fit by 

restricted maximum likelihood (REML) (where the fixed effect was tick count and the random effect was 

animal) to rank each animal on its ability to resist tick infestation. Animals were subsequently divided 

into resistance status groups. The 6 animals consistently identified as the most resistant animals during 

the 10-week period after an initial 7-week adaptation period after initial infestation were classified as 

‘Resistant’; the 6 animals consistently identified as being the least resistant animals during the same time 

period were classified as  ‘Susceptible,’  and the rest were classified as ‘Middle’ (18 animals). 

 

2.3 Blood sampling 

Blood samples were collected from animals at the Pinjarra Hills facility prior to initial tick infestation, at 

21 d post infestation 1, and then weekly for a further 9 weeks. There was one week towards the end of the 

trial, corresponding to 84 d post infestation 1, that blood samples were not obtained. Blood samples were 

collected via jugular venipuncture into 5 × 9 ml Vacuette® blood tubes (Greiner Bio-One); 2 × lithium 
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heparin, 2 × Z clot activator, and 1 × EDTA. Blood was simultaneously collected from the 5 uninfested 

control animals at the Tick Fever Centre.  

 

2.4 Haematology  

Haematological analysis of blood samples collected in EDTA was undertaken using a VetABC animal 

blood cell counter (ABX Hematologie). Haematological analysis was performed on all blood samples 

collected from 35 animals at both facilities (Pinjarra Hills and Tick Fever Centre). 

 

2.5 Flow cytometry 

Details of the methods used for cell surface staining and flow cytometric analysis have been previously 

described in detail (20). Briefly, whole blood collected in EDTA (100 μl) was combined with 100 μl of 

either a monoclonal antibody (Table 1) or isotype control (mouse IgG, Dako). The primary antibody was 

incubated with the blood sample for 30 min at 4°C, centrifuged to pellet the contents and the supernatant 

discarded. Following a wash step with phosphate buffered saline (PBS), the samples were incubated with 

a secondary antibody (anti-mouse IgG preadsorbed with bovine IgG conjugated to fluorescein 

isothiocyanate (Calbiochem) diluted 1/100 in PBS) for 30 min at 4°C. The samples were then washed and 

resuspended in 200 µl fixative (PBS containing 1% NaN3 and 8% formaldehyde). Flow cytometric 

analysis was performed on all blood samples collected from 35 animals at both facilities over the course 

of the trial. Results for each cellular subset are presented as a percentage of the total peripheral blood 

mononuclear cell (PBMC) population.  
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2.6 Tick antigen extraction  

Approximately 1 000 semi-engorged NRFS female ticks (21) were collected from penned B. taurus cattle 

at QPIF for preparing tick antigen extracts from mid-gut and salivary glands as previously described (20, 

22). Briefly, semi-engorged adult female ticks were dissected under a light microscope while immersed in 

PBS, within several hours of being removed from the host. Salivary gland and gut were removed into 

separate vials on dry ice and stored at -80°C prior to antigen extraction. Antigens were also prepared from 

whole unfed NRFS larvae (21) as previously described (20,22). Larvae were ground up using a mortar 

and pestle and stored at -70°C prior to antigen extraction. EDTA was added to dissected organs and 

ground-up tissue prior to freezing to remove divalent cations that contribute to proteolysis. The antigen 

extraction method employed a series of centrifugation steps to separate proteins into membrane-bound 

and soluble fractions. The resulting antigen extracts included: salivary gland membrane (SM), larval 

membrane (LM), gut membrane (GM), salivary gland soluble (SS), larval soluble (LS), and gut soluble 

(GS) antigen extracts. Proteolysis inhibitor (Gibco) was added to the PBS during the extraction process. 

Antigens were stored at -80°C until required for cell proliferation and ELISA experiments. 

 

2.7 Cellular proliferation assay 

The ability of peripheral blood mononuclear cells (PBMC) to proliferate in response to stimulation with 

tick antigen extracts in vitro was determined using blood collected from all animals at both facilities 

throughout the trial. PBMC for the proliferation assay were isolated from 18 ml blood collected in lithium 

heparin using the Ficoll-Paque (Pharmacia) gradient method. Cells were resuspended at 8 × 106 cells/ml 

in Complete Medium; RPMI-1640 medium (Sigma) that contained 10% foetal bovine serum (Invitrogen), 

1% antibiotic-antimycotic (Gibco) and 2 mM L-glutamine (Gibco). The proliferation assay was 

performed in a 96 well flat bottom cell culture plate (Greiner-One) and assays were performed in 

triplicate. Each experimental well contained 4 × 105 cells with either Concanavalin-A (ConA), soluble 
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fractions of salivary gland (SS), mid-gut (GS) or larvae (LS), or membrane fractions of salivary gland 

(SM) or mid-gut (GM). ConA was diluted in Complete Medium to 5 μg/ml and dispensed at 100 μl per 

well. Soluble antigens SS, GS and LS were diluted to 20 μg/ml in Complete Medium, while membrane 

antigens SM and GM were diluted to 10 μg/ml  in Complete Medium and each were dispensed at 100 μl 

per well. Control wells contained either media only or cells plus media, and all wells were made up to a 

final volume of 200 μl with Complete Medium. Cellular proliferation was measured using a Cell 

Proliferation ELISA, BrdU (colorimetric) kit (Roche Diagnostics) according to the manufacturer’s 

instructions. The mean OD of each biological sample from triplicate experimental wells was divided by 

the mean OD of the respective biological sample from triplicate control wells (cells plus medium) to 

obtain the stimulation index. Stimulation indices were employed for statistical analysis.  

 

2.8 Tick-specific IgG1 and IgG2 antibody levels measured by ELISA 

Serum samples obtained over the course of the trial (T0 → T91 d post-infestation 1) from resistant (n = 

6), susceptible (n = 6) and tick-naive control (n = 5) animals were analysed for tick-specific IgG1 and 

IgG2 antibody levels using an indirect ELISA as previously described (20). Serum samples collected from 

these animals prior to tick infestation and at 21 d, 35 d, 63 d and 91d following infestation 1, were also 

analysed to determine the avidity of tick-specific IgG1 antibodies. For the antibody avidity ELISA, 

experiments were performed in duplicate. One set of triplicate wells were incubated with 100 μl 8 M urea 

dissolved in PBS-T (PBS containing 0.05% Tween20) for 15 min following the serum incubation. The 

other set of triplicate wells was incubated with 100 μl PBS-T. Following this incubation, all wells were 

washed 6 times in PBS-T and the ELISA performed as previously described (20). The mean optical 

density (OD) of each biological sample from triplicate wells was calculated and the avidity index was 

obtained using the formula: (Urea OD / PBS-T OD) × 100 (23). Avidity indices were employed for 

statistical analysis. 
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2.9 Statistical analysis  

A linear mixed effects model with repeated measurements (AR1 continuous correlation structure) was 

used to analyse the data (haematology, flow cytometry, ELISA) with the statistical computing language R 

(24). Fixed effects included tick count and resistance ranking (Resistant, Susceptible, Middle) and their 

interaction with the aim of identifying the effects of tick burden and resistance status independently. The 

tick-naïve control data were not included in the model but are presented in the figures to indicate either 

the variability of the trait in question (haematology and flow cytometry data) or to demonstrate baseline 

values for acquired immune response parameters (cell proliferation and ELISA data). For analysis of cell 

proliferation data, a one-way analysis of variance was performed on stimulation indices at each time point 

to determine the time points at which cellular proliferation of PBMC from tick-infested animals 

significantly exceeded that of the control group. 

 

3.0 Results 

 

3.1 Tick counts and resistance rankings 

The 30 animals infested weekly with tick larvae demonstrated divergent tick counts following 13 weeks 

of artificial infestations. Figure 1 depicts the average tick side counts for the 6 most resistant and 6 most 

susceptible animals in the herd. Other animals in the herd had tick side counts intermediate to these two 

groups. All animals carried similar numbers of ticks on counts 1 and 2, but by count 3 (corresponding to 

35 d post-infestation 1), the resistant group  carried a significantly lower (P < 0.001) burden of ticks. 

Whereas tick counts of the more resistant animals tended to be lower with each successive week 

reflecting their developing resistance, the susceptible animals carried similar numbers of ticks throughout 

the trial. On the last count of adult ticks, the average number of ticks carried by the 6 most susceptible 
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animals in the herd was 296 (±31) per side, while the average number of ticks carried by the 6 most 

resistant animals in the herd was 27 (±22) ticks per side. These tick counts correspond to 88% resistant 

(susceptible group) and 99% resistant (resistant group) as calculated using the methods described by 

Utech and Wharton (2,3). Briefly, percentage resistance is calculated from the number of female ticks 

surviving to the semi-engorged stage as a percentage of the number of larvae originally applied in the 

infestation (assuming a one to one sex ratio in the larval population). 

 

3.2 Haematology parameters 

There was no significant difference between the groups (resistant, susceptible, middle) in haemoglobin 

(Hb), packed cell volume (PCV), mean cell haemoglobin concentration (MCHC), white cell count (WCC) 

or platelet count prior to tick infestation. Susceptible animals had a significantly lower red cell count 

(RCC) than middle animals (approximately 1.0 × 106/mm3 lower than middle animals, P < 0.05) prior to 

tick infestation, and significantly higher mean corpuscular haemoglobin (MCH) and mean corpuscular 

volume (MCV) than middle animals prior to tick infestation. Susceptible animals’ MCH was 

approximately 1.5 pg/cell higher than the middle animals (P < 0.05), and their MCV was approximately 

4.3/μm3 higher than middle animals (P < 0.05).  

Tick infestation was shown to significantly decrease Hb (P < 0.01), MCH (P < 0.01) and MCHC (P < 

0.05) by an average of 0.0024 g/dl, 0.002 pg/cell and 0.0028 g/dl per tick respectively, in all animals. The 

model also demonstrated significant differences between groups with respect to the effect of tick 

infestation. Tick infestation also decreased red cell counts by 0.002 × 106/mm3 per tick in the susceptible 

group (P < 0.05) but did not have an effect on red cell counts of other animals. Within the resistant group, 

every tick accounted for an increase of 0.007/μm3
 in MCV (P < 0.05) and an increase of 0.64 × 103/mm3 

platelets (P < 0.05). 
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Figure 2(a-c) depicts the physiological effects of tick infestation on the experimental animals at Pinjarra 

Hills compared to their tick-naïve counterparts at the Tick Fever Centre. Red cell counts, Hb and PCV 

tended to increase over time in the control group, whereas these parameters in tick-infested animals 

remained similar to values recorded at the commencement of the trial. 

 

3.3 Flow cytometry  

There was no significant difference between the groups (resistant, susceptible, middle) in the percentage 

of CD14+, CD25+, CD3+, CD8+, MHCII+, WC1+ or WC3+ cells comprising the PBMC population prior to 

tick infestation. Resistant animals had approximately 4.9% more CD4+ cells than other animals prior to 

tick infestation (P < 0.01). Over all the animals, tick infestation did not have a significant effect on the 

percentage of CD4+ cells comprising the PBMC population, however, within the resistant group every 

tick accounted for a decrease of 0.02% in CD4+ cells (P < 0.05) and for susceptible animals every tick 

increased CD4+ cells by 0.01% (P < 0.05).  

In all animals tick infestation had a significant effect on the percentage of CD3+, MHCII+ and WC3+ cells 

comprising the PBMC population; every tick decreased CD3+ cells by 0.01% (P < 0.05), and increased 

MHCII+ and WC3+ cells by 0.02% (P < 0.01) and 0.01% (P < 0.001), respectively. However, within the 

susceptible group every tick accounted for a 0.02% increase in CD3+ cells (P < 0.05). Similarly, for 

susceptible animals, tick infestation increased CD25+ cells by 0.01% per tick (P < 0.05), WC1+ cells by 

0.007% per tick (P < 0.05) and CD14+ cells by 0.006% per tick (P < 0.05). Within the resistant group 

every tick accounted for an increase of 0.01% in CD14+ cells (P < 0.01) and a 0.01% decrease in CD8+ 

cells (P < 0.05). 

Figure 3(a-h) depicts the relative percentage of each cellular subset comprising the peripheral circulation 

in resistant, susceptible and control groups. 
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3.4 Cell proliferation assay 

There were no differences among the three groups in the ability of their PBMC to proliferate in vitro in 

response to stimulation with ConA (Figure 4a). The proliferation of PBMC in the presence of salivary 

gland membrane (SM) antigen was significantly greater (P < 0.01) in PBMC isolated from tick-infested 

animals compared with the tick-naïve animals (Figure 4b) after 21 d of tick infestation (corresponding to 

the first maturation of adult ticks on these animals). The stimulation index of PBMC from the tick-

infested groups significantly exceeded that of the tick-naïve group at 21 d post infestation 1 through to 56 

d post infestation 1 (P<0.05). The responsiveness of cells to stimulation with SM in the tick-infested 

groups decreased to levels similar to the tick-naive group at 63 d post infestation 1, before increasing 

again at 77 d post infestation 1 (P<0.05). There was no proliferation of cells above background levels in 

response to stimulation with LM, LS, SS and GM antigen extracts (data not shown). 

 

3.5 Tick specific IgG1 and IgG2 

The susceptible animals developed significantly higher levels of IgG1 antibodies specific for tick antigen 

extracts SM, LM, LS (P < 0.05) GM and SS (P < 0.1) than the resistant animals by the completion of the 

trial (Figure 5a-e). There was no significant difference between groups in antibody level prior to tick 

infestation. The model demonstrated a significant effect (P < 0.001) of tick infestation on IgG1 antibody 

levels within the susceptible group but not in the resistant group.  

The tick-infested groups presented with levels of tick-specific IgG1 that were significantly higher than the 

tick-naïve group between 21 d and 28 d post infestation 1. There was notable variation between 

individuals within the susceptible group in the level of tick-specific IgG1 and IgG2 antibodies that 

developed over the course of the trial. Resistant animals did not develop IgG2 levels to any of the antigen 

extracts that were significantly different to the tick-naive group. Two susceptible animals developed very 
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high tick-specific IgG2 levels, 2 susceptible animals developed low-moderate IgG2 levels, and 2 

susceptible animals did not develop IgG2 levels against all tick antigens tested (Figure 6a-e). 

The susceptible animals developed IgG1 antibodies that bound salivary membrane antigens with 

significantly higher avidity than the resistant animals by the time the trial ended after 91 d of tick 

infestation (Figure 7a). There was no change in the avidity of antibodies developed by either resistant or 

susceptible animals against salivary soluble extracts (Figure 7b), whereas the avidity of IgG1 antibodies 

developed by the resistant group against membrane and soluble larval antigens tended to decrease over 

the course of the trial but this was not significant (Figure 7c-d). 

 

4.0 Discussion 

This manuscript describes some aspects of the evolution of the peripheral cellular and antibody response 

of composite breed Santa-Gertrudis cattle to R. microplus infestation. The cattle used in this trial had 

never before been exposed to R.  microplus, and following 13 weeks of regular tick infestation in this 

experiment, subsequently developed divergent levels of tick resistance. Despite the divergent levels of 

host resistance, none of the peripheral immunological markers assessed in this study emerged as 

unambiguously associated with resistance or susceptibility to infestation. The most notable finding, which 

is consistent with our previous studies using Holstein-Friesian and Brahman cattle, was that IgG1 and 

IgG2 specific to tick antigens are consistently low in resistant cattle. 

The resistance estimates reported here closely reflect those reported by Utech et al. (2) who undertook 

tick counts on two groups of Santa-Gertrudis cattle in south-east Queensland in 1978. Cattle with 

resistance estimates of > 98% are considered to be highly resistant to cattle ticks; 95 to 98% are 

considered to be moderate, 90 to 95% low and cattle with resistance  < 90%, including most B. taurus 

dairy cattle, are considered to have very low resistance (3). Utech et al. (3) reported that the Santa-

Gertrudis cattle in Queensland in 1978 had tick-resistance estimates ranging from 81.7 – 99.7% which is 
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similar to the range reported in the present study. This suggests that the tick-resistance status of the Santa-

Gertrudis breed in Queensland has not changed significantly in the past 30 years. Lack of improvement in 

resistance to ticks might be a consequence of  the difficulty of measuring the resistance phenotype and the 

relative success of acaricides in controlling tick numbersduring this period. The Santa-Gertrudis was 

originally chosen for use in this experiment due to its expected wide range of tick resistance. We have 

previously conducted comparative experiments on immune response developed against R.  microplus by 

Holstein-Friesian (B. taurus) and Brahman (B. indicus) cattle (20, 25, 26). It was considered important to 

compare the results of these studies using only one breed, with divergent tick resistance, to eliminate any 

breed effect that might confound the results of the previous studies. The Santa-Gertrudis presented an 

ideal opportunity to examine the immune responses of tick-resistant and tick-susceptible animals, but at 

the same time retaining a similar genetic background against which to compare results. The tick count 

data reported here demonstrate that animals with high levels of tick resistance persist in herds of animals 

that have not been under any direct selection for tick resistance.  

It is important to note that as the temporal pattern of tick burdens differed between resistant and 

susceptible groups over the course of the trial, the association of tick burden and immune parameters has 

slightly different implications within the two groups. In the resistant group tick burdens were highest at 

the beginning of the trial and decreased steadily throughout the trial. Therefore, if tick infestation was 

significantly associated with a reduction in any parameter  in the resistant group, it  means that the 

parameter would have increased throughout the trial in response to infestation and could reasonably be 

proposed to have a role in increasing host resistance.  In the susceptible group, however, tick burdens did 

not systematically increase or decrease over the course of the trial, but tended to remain steady from 28 d 

post initial infestation until the end of the trial. Therefore, if a parameter is significantly associated with a 

reduction in  tick burden within the susceptible group it doesn’t infer that it increases over time after 

initial infestation and any suggestion of a potential role in increasing host resistance within this group 

would be somewhat weaker logically than in the resistant group. 
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Differences between tick-resistant and tick-susceptible Santa-Gertrudis animals in the relative percentage 

of cellular subsets comprising the PBMC population were not as apparent as the differences observed 

between the Holstein-Friesian and Brahman animals in our pilot study using previously exposed cattle 

(20). In that study the Brahman animals (highly resistant to tick infestation) had significantly higher 

percentages of CD4+, CD25+ and WC1+ T cells than Holstein-Friesian animals (susceptible to tick 

infestation), which had significantly higher CD14+ and MHCII+ cells as a proportion of the PBMC 

population. These results were very similar to those subsequently reported by Dominguez et al (27) and 

strongly imply that more susceptible animals are characterised by more pronounced inflammation and the 

more resistant animals are characterised by a T regulatory response. In contrast, Carvalho et al (28) found 

that inflammation was associated with high levels of resistance. In the present study, tick-resistant Santa-

Gertrudis animals had a significantly higher percentage of CD4+ cells than other animals in the trial prior 

to tick infestation. Within the resistant group higher levels of CD4+ were associated with lower tick 

burdens, reflective of results obtained in the pilot trial. However, within the susceptible group heavier tick 

burden was associated with increased percentage of CD4+ in the PBMC population.  

Consistent with the pilot trial, the tick-susceptible Santa-Gertrudis animals in the present study developed 

significantly higher tick-specific IgG1 antibody levels against a range of tick antigen extracts compared 

with the resistant animals. There was a significant effect of tick infestation on increasing tick-specific 

IgG1 in the susceptible group for all tick antigens tested, but not in the resistant group, suggesting that 

antibody level is a function of tick burden in susceptible animals. It was also apparent that the tick-

specific IgG2 response is extremely variable between individuals and if developed, was only consistently 

developed by animals in the tick-susceptible group in this study. This extremely variable IgG2 response 

may contribute to the variation in antibody levels reported by other researchers measuring only tick-

specific IgG such as that reported by Carvalho et al. (15).   
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Although the Ag used in the assays are not the same as those to which an animal would be exposed to in a 

natural infestation, the ELISA results of the present study suggests that the humoral immune response 

does not play an important role in bovine resistance to R. microplus. Tick-susceptible animals developed 

very high levels of IgG1 antibodies specific for all tick antigen extracts, while in the resistant group, levels 

of IgG1 antibodies tended to be lowest at the end of the trial when resistance was at its highest. 

Furthermore, by the end of the trial the susceptible animals had developed IgG1 antibodies with a 

significantly higher avidity for membrane-bound salivary gland antigens than the resistant animals, 

whereas the avidity of antibodies from resistant animals either did not change or tended to decrease over 

the course of the trial. Although it is clear that there are quantitative and qualitative differences between 

individuals and between groups with different levels of tick resistance in the development of tick-specific 

antibodies (8,9,10,15), no study has been able to demonstrate that those tick antigens recognised by 

resistant animals confer protection or are involved in inducing a protective response. Roberts and Kerr 

(29) demonstrated a humoral component to tick resistance by infusing tick-naïve calves with plasma from 

high- and low-resistant donors and reported that a significantly lower yield of ticks was obtained from 

calves injected with plasma from the high-resistant donors. Although the reduction in tick yield was 

highly significant, the authors pointed out that the reduction only accounted for about 10% of the 

difference in tick burden between high-and low-resistant cattle. We reported in another study that 

antibody-producing plasma cells take up residence in the skin of tick-susceptible animals at the larval 

attachment site, perhaps assisting the tick by establishing a site of local capillary permeability (26). It may 

be the case in susceptible animals that the  production of high levels of antibodies against a wide variety 

of tick antigens increases susceptibility by improving feeding success, or that recognition of 

immunodominant molecules in tick saliva and production of antibodies to them interferes with the 

development of a protective immune response.  
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The proliferation assay demonstrated the ability of PBMC isolated from the tick-infested cattle to 

proliferate in response to stimulation with membrane-bound salivary gland antigens. This response was 

uniformly highest at 21 days post infestation 1 and then waned towards the end of the trial. Similar to the 

antibody ELISA results, there was large individual variation between animals in the ability of their cells 

to respond to antigen extracts. The proliferative response of cells to the salivary antigen extract is a result 

that would be expected considering that the development of the cell-mediated response is integral to the 

development of the antibody response. The fact that the cell-mediated response was not detected against 

larval antigens, whereas the IgG1 antibody response to these larval antigens was so high, is striking. 

Reasons for this lack of response may include the relatively low abundance of antigenic proteins in the 

whole larval extract.  

The high levels of proliferation detected in response to the salivary gland antigens is in contrast to the 

other literature supporting results that suggest components of R.  microplus saliva have an inhibitory 

effect on cellular proliferation in vitro (30-34). Many of these studies report that the addition of tick saliva 

to cultures reduces the ability of cells to proliferate in response to ConA stimulation. Conversely, the 

present results demonstrate that proliferation in the range of that expected from ConA stimulation can be 

achieved by stimulating the cells with salivary gland antigens alone. The differences between the results 

of the present study and those reported by previous researchers may be attributed to the use of whole 

saliva rather than the membrane bound extract used in the present study, as the soluble fraction of saliva 

is more likely to contain compounds such as prostaglandin-E2 that has been implicated in suppressing 

host immune responses in vitro (12). Differences between the present data set and the results of others 

may also be attributed to the time post tick exposure that the cells are isolated from the host. Peak 

responses in the present study were observed at 21 days after the first infestation and tended to decrease 

over the course of the trial and it may therefore be the case that a proliferative response may be no longer 

detectable in animals that have been exposed to R.  microplus over a long period of time. 
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In conclusion, the present study demonstrates that a wide range of tick-resistance capabilities exist within 

the Santa-Gertrudis breed. The results reiterate previous findings with respect to the pathological 

implications of tick infestation, particularly in heavily infested animals, demonstrated by deceased 

haemoglobin, mean cell haemoglobin concentration and mean corpuscular volume in tick infested 

animals. Tick-susceptible animals in the present study developed significantly higher levels of tick-

specific IgG1 antibodies compared to the resistant animals, while the development of tick-specific IgG2 

antibodies was variable between resistance groups and between individuals within group. These results 

suggest that tick-susceptible animals have the ability to recognise and respond more vigorously to tick 

antigens introduced via tick saliva during blood feeding and that this heightened antibody response either 

does not play a role in resistance or might even contribute to increased susceptibility to infestation.  
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Figure Legends 

 

Figure 1: Average weekly tick side counts for the six most susceptible (dotted line, triangle) and six 

most resistant (dashed line, square) animals in the herd. Results are presented as the group mean ± 

standard deviation from the group mean. 

 

Figure 2(A-C): Selected haematological parameters as measured in control (solid line, diamond), 

resistant (dashed line, square) and susceptible (dotted line, triangle) groups. Group means are 

presented ± standard deviation from the group mean. A: Red blood cell counts × 106/mm3; B: 

Haemoglobin g/dl; C: Packed cell volume %. 
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Figure 3(A-H): Relative percentage of cellular subsets comprising the peripheral circulation of 

control (solid line, diamond), resistant (dashed line, square) and susceptible (dotted line, triangle) 

groups. A: CD3+ T cells; B: CD4+ T cells; C: CD8+ cytotoxic T cells; D: CD14+ monocytes; E: 

CD25+ activated T cells; F: MHCII+ cells; G: WC1+ γδ T cells; H: WC3+ B cells. Results are 

presented as the group mean with standard deviation from the group mean for each cellular subset at 

each sampling point. 

 

Figure 4(A-B): Proliferation of PBMC isolated from control (solid line, diamond), resistant (dashed 

line, square) and susceptible (dotted line, triangle) groups following stimulation with A: ConA, and 

B: salivary gland membrane (SM) antigen. Stimulation indices are presented as the group mean ± 

standard deviation from the group mean. 

 

Figure 5(A-E): Tick specific IgG1 antibody levels of control (solid line, diamond), resistant (dashed 

line, square) and susceptible (dotted line, triangle) animals against: A: salivary membrane; B: salivary 

soluble; C: larval membrane; D: larval soluble; E: gut membrane antigens. Group means are 

presented ± standard deviation from the group mean.  

 

Figure 6(A-E): Tick specific IgG2 antibody levels of control (solid line, diamond), resistant (dashed 

line, square) and susceptible (dotted line, triangle) animals against: A: salivary membrane; B: salivary 

soluble; C:larval membrane; D: larval soluble; E: gut membrane antigens. Group means are presented 

±standard deviation from the group mean for control and resistant groups. Susceptible animals are 

depicted individually as dotted lines. 
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Figure 7(A-D): Antibody avidity indices for tick-specific IgG1 from control (solid line, diamond), 

resistant (dashed line, square) and susceptible (dotted line, triangle) groups. A: salivary membrane 

(SM); B: salivary gland soluble (SS); C: larval membrane (LM); D: larval soluble (LS). Avidity 

indices are presented as the group mean percentage ± standard deviation from the group mean.  

 

 

Table 1: Monoclonal antibodies used in flow cytometric analysis of cellular subsets.  

Specificity Identity Source Isotype 

Isotype control IgG1 Dako IgG1 

CD4 IL-A11 Cell culturea IgG2a 

CD8 IL-A51 Cell culturea IgG1 

CD14 MM61A VMRDb IgG1 

CD25 (IL-2Rα) IL-A111 Cell culturea IgG1 

MHCII IL-A21 Cell culturea IgG2a 

WC3 CC37 Cell culturea IgG1 

WC1 IL-A29 Cell culturea IgG1 

Goat anti-mouse IgG-FITC Calbiochem IgG 
 

a Monoclonal antibodies obtained from cell culture were derived from hybridomas sourced from the 

International Livestock Research Institute in Kenya 

b VMRD, Veterinary Medical Research and Development, Inc 
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