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Abstract 

Both photons and electrons may be used to excite surface plasmon polaritons, the collective 

charge density fluctuations at the surface of metal nanostructures. By virtue of their nanoscopic 

and dissipative nature, a detailed characterization of surface plasmon (SP) eigenmodes in real 

space-time ultimately requires joint nanometer spatial and femtosecond temporal resolution. 

The latter realization has driven significant developments in the past few years, aimed at 

interrogating both localized and propagating SP modes. In this mini-review, we briefly highlight 

different techniques employed by our own groups to visualize the enhanced electric fields 

associated with SPs. Specifically, we discuss recent hyperspectral optical microscopy, tip-

enhanced Raman nano-spectroscopy, nonlinear photoemission electron microscopy, as well as 

correlated scanning transmission electron microscopy-electron energy loss spectroscopy 

measurements targeting prototypical plasmonic nanostructures and constructs. Through 

selected practical examples from our own laboratories, we examine the information content in 

multidimensional images recorded by taking advantage of each of the aforementioned 

techniques. In effect, we illustrate how SPs can be visualized at the ultimate limits of space and 

time.  
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Brief Overview  

 The resonant interaction between electromagnetic radiation and surface plasmon (SP) 

eigenmodes in nanostructured noble metals is a phenomenon of ever-growing interest.  SPs 

have found applications in fields as diverse as ultrasensitive chemical detection and nanoscale 

chemical imaging, targeted drug delivery and therapeutics, photovoltaics, as well as 

photocatalysis, to name a few.1,2,3 The enhanced electromagnetic fields associated with 

localized surface plasmons (LSPs) have enabled (i) establishing the chemical identity of a single 

molecule, through surface-enhanced Raman scattering (SERS),1 (ii) ultrasensitive nanoscale 

(bio)chemical imaging, using tip-enhanced Raman spectroscopy (TERS),2 and more recently, (iii) 

the observation of vibrational wavepacket motion on a single molecule in real-time, via surface-

enhanced coherent anti-Stokes Raman scattering.4 Light waves trapped on metallic surfaces in 

the form of propagating surface plasmons (PSPs) exhibit other unique features that are 

attractive for on-going quests aimed at constructing mesoscale plasmonic circuitry, with 

tunable nanometric sub-components.5 Because of momentum mismatch, the direct coupling of 

light waves, incident onto a metal-vacuum interface, into PSP modes cannot be achieved 

without intermediary coupling designs.6 Such motifs include nanoscale lithographic patterns,7 

which provide an additional source of momentum for coupling light waves into the metal. 

Subsequently, PSPs can be manipulated over subwavelength length scales,8 and even 

(coherently) transported to distances hundreds of microns away from their initial coupling 

sites.9   
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 Nanometric variations in the structures of SP-supporting constructs may completely 

alter their overall plasmonic properties. In the context of single molecule SERS and TERS, where 

the interaction between SP-enhanced local electric fields and molecular polarizability tensors 

governs the observables, the aforementioned variations obfuscate the analysis of the recorded 

spectra.1 The commonly adopted practice of correlating structural/topographic images of 

plasmonic nanostructures with molecular SERS/TERS spectra is often insufficient; the need for 

analytical tools that can be used to gain independent access to the SP-enhanced local electric 

fields presents itself in this context. The latter is one of the major drives behind the works 

described herein. By virtue of their polaritonic nature,6 both photons and electrons may be 

used to excite and probe SPs, as demonstrated in recent reviews.10 Of the various techniques of 

choice, the inherent simplicity and rich information content in far-field techniques based on 

optical microscopy are attractive. Previous works have demonstrated that a combination of 

dark field optical microscopy and spectroscopy (dark field micro-spectroscopy) can be used to 

detect and spectroscopically characterize single plasmonic nanostructures.10,11  Motivated and 

inspired by the prior works, we very recently developed a hyperspectral optical microscope, 

which allows us to record 3D images (wavelength resolved 2D micrographs) of plasmonic 

nanostructures.12 Diffraction-limited hyperspectral dark field optical microscopy constitutes the 

starting point of our discussion. This is followed by describing another all-optical measurement 

in which light reflected off a metallic probe of an atomic force microscope reports on SP-

enhanced electric fields, with a spatial resolution an order of magnitude finer than the 

diffraction limit of light. We then discuss time-integrated and time-resolved nonlinear 

photoemission electron microscopy, whereby nanoscale maps of LSP-enhanced electric fields 
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are recorded, and PSPs are imaged with joint femtosecond temporal and nanometer spatial 

resolution. Finally, we describe high resolution electron energy loss spectroscopy 

measurements that characterize plasmonic fields with joint sub-nm spatial and meV energy 

resolution.   

Hyperspectral Dark Field Optical Microscopy of Single Silver Nanospheres 

 That many physical, chemical, and biological processes can be better understood from 

single particle studies is a premise that has motivated significant advances in the field of 

plasmonics.1,2,4,10,11 Spectrally resolved optical microscopy is not a novel concept.10,11 Our 

approach to the problem is nonetheless distinct from prior demonstrations.12 Namely, we rely 

on the combination of a hyperspectral detector (SOC710-VP, Surface Optics Corporation) 

equipped with an internal scanning design and a confocal optical microscope (Leica, DM4000M) 

to record spectrally (400 nm ≤  ≤ 1000 nm, Δ < 4.69 nm) and spatially (diffraction-limited, 

sampled at 85 nm2/pixel) resolved optical micrographs. In this scheme, hyperspectral images 

are obtained by scanning a line detector (at a rate of 30 lines/second) containing 512 pixels (85 

nm2/pixel) over the field of view dictated by the microscope objective (herein, 100X, NA=0.75). 

Each element comprising the aforementioned line contains spectral information in the 400-

1000 nm region, at a spectral resolution of 4.69 nm. In principle, our setup allows us to record 

spectrally resolved transmission, reflection, fluorescence, and dark field optical micrographs. 

The following is focused on the latter imaging mode. As illustrated below, ample signal-to-noise 

is obtained, allowing us to analyze both the scattering profiles as well as the optical response of 

plasmonic nanoparticles. What distinguishes our setup from its previously described 
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analogues10,11 is that it affords multi-modal hyperspectral optical microscopy without resorting 

to sample scanning or point by point detection schemes, which (i) are typically more time 

consuming, which may introduce uncertainties (e.g. as a result of image drifting under ambient 

laboratory conditions), and (ii) often involve more convoluted setups and subsequent numerical 

analyses.  

 Operating our optical microscope in dark field mode allows us to record a real color 

image of the scattering from an isolated silver nanoparticle (diameter = 100 nm) on glass, see 

Figure 1A.  Our goal is to spectrally resolve this dark field optical image using the above-

described hyperspectral microscope, as schematically illustrated in Figure 1B, and 

subsequently, to spectrally resolve the SP resonances of individual plasmonic nanoparticles. 

The information content in a hyperspectral image can be extracted either by analyzing images 

recorded at different wavelengths and/or by inspecting the optical response contained in each 

pixel. Figure 1C shows the dark field optical image of an isolated silver nanoparticle at 503 nm, 

a horizontal cross-section of which is plotted in Figure 1E. A Gaussian fit of the recorded 

scattering profile gives a full width at half maximum of 381 nm, consistent with, but somewhat 

larger than the diffraction-limited ~335 nm value expected based on a numerical aperture of 

0.75. The experimental value depends on the choice of physical model used and overall quality 

of the resulting fit. For instance, the deviation of the Gaussian fit from the experimental profile 

towards the maximum is noted, see Figure 1E. Alternatively, we may analyze the scattering 

profile of the isolated plasmonic silver nanoparticle using a statistical method which solely 

relies on intensity counts to examine image texture.13  Namely, we opt to apply a texture filter 

based on a co-occurrence matrix.13 Our filter of choice for this demonstration is statistical 
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variance in a 3x3 pixel window, which is scanned over the field of view. This allows us to rapidly 

locate the center and edges (in the diffraction-limited far field image projection) of the isolated 

scatterer from its hyperspectral dark field image. Namely, applying a variance filter to the 503 

nm dark field micrograph shown in Figure 1C yields the filtered image shown in Figure 1D. The 

2D scattering profile in the former, best described as a 2D normal distribution, is transformed 

into a doughnut-shaped spatial distribution in the latter. This is a consequence of low local 

variance at the center of the scattering profile, as compared to high local variance towards its 

edges, or more accurately, at the inflection points of the 2D normal intensity distribution. The 

effect is further bolstered in Figure 1E, where a horizontal cross-section of the variance-filtered 

image is plotted. Here, the scattering diameter measured from the variance-filtered image as 

the distance between the two points of highest variance is 340 nm, in close agreement with the 

theoretical value based on the numerical aperture of the objective used in this measurement.  

 Applying a variance filter based on a co-occurrence matrix also allows us to rapidly 

pinpoint the center of the scatterer in 2D, in this case to within one pixel (85 nm2), see Figures 

1D and 1E. Subsequently, the spectra recorded in a 3x3 pixel area around the identified particle 

center can be extracted from the hyperspectral optical image and averaged, as shown in 

Figures 1C and 1F. The signal-to-noise achieved in the spatially averaged dark field scattering 

spectrum enables us to accurately resolve the optical response of a single plasmonic silver 

nanoparticle, see Figure 1F, which in this case is governed by the SP resonance of the spherical 

silver nanoparticle. Zooming out of the region of analysis shown in Figure 1 exposes hundreds 

of plasmonic nanoparticles in the field of view, see Figure 2. As such, the same analysis carried 

out on the isolated plasmonic silver nanoparticle can be repeated for hundreds of individual 
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scatterers in our field of view in parallel (analysis detailed elsewhere12). Not surprisingly,10,11,14 

we observe marked differences between the optical signatures of the different isolated 

particles in terms of (i) their relative scattering efficiencies, (ii) their resonance maxima, and (iii) 

their derived peak widths which can be used to derive the plasmon dephasing time of each of 

the particles in our field of view.12,14 Evidently, the spatial resolution obtained using this 

diffraction-limited optical technique is not sufficient to examine the nanometric structural 

specifics which govern the optical response of each particle, a concept eluded to in prior 

works10,11,14 and further bolstered in the following sections. Correlating the recorded spectral 

images with topographic scanning/transmission electron micrographs is one option. Beyond 

resorting to correlated topographical and optical measurements,10,11,14 the need for techniques 

that can be used to map SPs on much finer length scales presents itself in this context.  

Simultaneous Topographic and Local Electric Field Imaging via Frequency-

Resolved TERS 

 We recently reported frequency-resolved TERS imaging measurements in which a 

Raman-active 4,4’-dimercaptostilbene (DMS)-coated gold tip of an atomic force microscope 

was employed to simultaneously (i) map the topography, and (ii) image the LSP-enhanced 

electric fields sustained in the vicinity of nanometric slits (20 and 5 nm-wide) lithographically 

etched in a silver thin film, see Figure 3A.15  Bi-modal imaging is feasible by virtue of the nature 

of the optical response of the chemically functionalized metal probe. Namely, the probe 

position-dependent optical signal can be sub-divided into two components, see Figure 3A. The 

first is a 500-2250 cm-1 Stokes-shifted signal, characteristic of the tip-bound DMS molecules. 
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The molecular signal reports on topography through the intensity contrast observed as the tip 

is scanned across the lithographically patterned ultrafine slits, see Figure 3B. The variation in 

molecular TERS activity is a consequence of the absence/formation of a plasmonic junction 

between the scanning probe and patterned silver surface, which translates into 

dimmed/enhanced Raman signatures of DMS. Using these signals, we experimentally 

demonstrated that sub-15 nm (topographic) spatial resolution is attainable using a DMS-coated 

gold tip with a 30 nm radius, see Figure 3B.15 The second optical response consisted of two 

correlated sub-500 cm-1 signals arising from mirror-like reflections of (i) the incident laser field, 

and (ii) the Raman scattered response of an underlying glass support (at 100-500 cm-1) off the 

gold tip. We demonstrated that these reflected signals trace the local electric fields in the 

vicinity of the nanometric slits, see Figure 3C. We found that the recorded local electric field 

maps are convoluted with the full tip radius.15 Although this limits the attainable spatial 

resolution to the tens of nanometers length scale, the spatial resolution demonstrated in our 

recent work is at least an order of magnitude finer than the diffraction limit of light.15 That said, 

as molecular Raman spectra are simultaneously recorded at every tip position, this approach is 

potentially much more informative, particularly if it were to be extended to the single molecule 

regime.1,16  For instance, by taking advantage of the tensorial nature of single molecule Raman 

scattering, it may be possible to image the vector components of the localized electric fields 

across a plasmonic substrate.16 In the same vein, the absolute magnitude of the local electric 

field can also be gauged from vibrational Stark shifts, previously observed in TERS from 

molecular reporters coaxed into plasmonic tip-sample nanojunctions.16 Cross-checking the 

insights gained from the aforementioned molecular scattering measurements would require 
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independent access to the immediate local environment (electric fields) of a single molecule. 

This motivates the following sections, where plasmonic fields are imaged at the ultimate (joint) 

space-time and space-energy limits.  

Imaging Localized and Propagating Surface Plasmons with Nonlinear 

Photoemission Electron Microscopy 

 A photoemission electron microscope powered by a femtosecond laser source is a 

powerful tool that can be used to image both LSP-enhanced electric fields in plasmonic 

nanoparticles14,17 as well as PSPs launched on metallic surfaces using lithographically patterned 

coupling structures,9,18 with a spatial resolution on the order of ten nanometers. We recently 

employed time-integrated nonlinear photoemission electron microscopy (PEEM) to map the 

LSP-enhanced electromagnetic fields in the vicinity of plasmonic silver nanoparticles supported 

on a silver thin film.14 Under 400 nm fs laser irradiation, a two-photon excitation process is 

required to exceed the work function of silver (~4.2 eV19). The photoelectron yield is thus 

proportional to the square of the laser intensity, or the fourth power of the local electric field. 

When normalized to the two-photon PEEM image of a reference, such as a nominally flat silver 

film, LSP-enhanced electromagnetic fields can be directly visualized.14 Figure 4 shows correlated 

two-photon PEEM and scanning electron microcopy (SEM) images of an isolated silver 

nanoparticle supported on a silver thin film. The two-photon PEEM enhancement images 

recorded following p- and s-polarized 400-nm femtosecond laser irradiation are shown in 

Figures 4A and 4B, respectively. Notice how the latter image is reminiscent of the dipolar 

plasmon resonance of an isolated silver nanosphere. That said, the inequivalent enhancement 
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factors and dissimilar spatial profiles of the upper and lower lobes are noted. These differences 

can be rationalized on the basis of the SEM image of the same particle shown in Figure 4C; the 

particle is slightly oblong and features nanometric irregularities that are (faintly) visible in its 

SEM image. Of some 27 particles featuring comparable diameters that were analyzed in the 

original report,14 only 16 exhibited a dipolar pattern similar to the one shown in Figure 4B. The 

remaining 11 particles featured irregular photoemission patterns that were traced back to their 

unique nanometric structural specifics, as evidenced from correlated SEM imaging 

experiments.14 The main conclusion of this work is that nanometric structural defects that are 

often finer that the typical resolution afforded by SEM govern the recorded non-linear PEEM 

images, and hence, the 2D profiles of the LSP-enhanced electric fields. As illustrated in the next 

sub-section, finer spatial resolution can be obtained using electron energy loss spectroscopy 

(EELS).     

 In the above-described multi-photon PEEM scheme, photoemission is induced by a 

nonlinear process. By splitting the driving femtosecond laser source into two equal parts and 

subsequently recombining the resulting two pulses in an interferometer, it is possible to record 

time-resolved nonlinear PEEM (tr-PEEM)9,18 images in a pump-probe fashion. We recently 

employed tr-PEEM to image PSPs launched from a rectangular trench lithographically milled 

into flat gold surface. Notably, joint nanometer spatial and sub-femtosecond temporal 

resolution was achieved in our prior work.9 Our tr-PEEM scheme involved a pair of identical, 

spatially offset, and interferometrically-locked femtosecond laser pulses, termed ‘pump’ and 

‘probe’ pulses from hereon. Figure 5A shows a PEEM image recorded following combined pump 

and probe excitation. The spatially offset probe pulse is temporally delayed by approximately 
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43.3 fs with respect to the pump pulse, such that it arrives at the gold surface at the same time 

as the PSP generated by the pump pulse at the trench position.8 Photoemission from the 

polarization state prepared by the probe pulse and the PSP wave packet is clearly observable in 

the upper right region of Figure 5A. This demonstrates that the PSP wave packet propagates at 

least 150 m from its original launching point, namely the trench coupling structure illustrated 

in the lower left of Figure 5A, without significant dephasing. The 2D spatial profile of the 

imaged PSP is affected by (i) the elliptical profiles of the laser spots, incident onto the sample 

surface at a low angle of incidence, (ii) the profile of the launched PSP, (iii) convolution with 

pump and probe pulses, and (iv) interference with PSP waves packets launched from the upper 

and lower corners of the trench.9  The last effect is most evident in the first interference fringe 

closest to the trench, where a double-lobed pattern and a nodal plane are clearly visible, see 

Figure 5A. Figure 5B shows photoemission intensity as function of pump-probe time delay, at a 

position located 135 μm away from the plasmonic coupling structure. The two Gaussian fits of 

the field envelope indicate the time when the probe pulse interferes with the pump (blue) and 

PSP wave packet (green).9 Using these intererometric time traces, we were able to directly 

measure various properties of the surface-bound wave packet, including its carrier wavelength 

(783 nm) and group velocity (0.95c).  

Imaging Surface Plasmons with Electron Energy Loss Spectroscopy 

 SP resonances are sensitive to nanometric structural variations in metal nanostructures; 

an observation alluded to in the previous sections. By virtue of its flexibility, the (scanning) 

transmission electron microscope ((S)TEM) has become the instrument of choice for the 
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structural and chemical characterization of metal clusters and nanoparticles, with high spatial 

resolution.20 Using the electron beam in a STEM setup equipped with an electron energy loss 

(EEL) spectrometer, energy-resolved maps of the enhanced electric fields associated with SPs 

can be recorded.21 In STEM, the local varying electric field produced by an incident fast electron 

(typically 60-300kV) polarizes a metal nanostructure as it passes near or through it. The 

characteristic resonant oscillations (plasmons) in turn generate induced local electric fields that 

act back on the moving electrons.22 The signal detected by the EEL spectrometer is the energy 

loss suffered by the individual beam electrons due to the force exerted by the induced local 

electric field. EEL spectra can be recorded from selected locations around a nanoparticle, or can 

be acquired in a serial fashion by scanning the probe across an area of interest pixel by pixel; 

producing what is essentially a hyperspectral (energy resolved) image. In this fashion, the 

spatial distribution of the induced electric fields can be mapped.23 Using spherical aberration-

corrected microscopes, it is now possible to produce intense electron probes 1 Ångström or 

smaller in diameter; the ultimate spatial resolution achieved using this technique is of utmost 

importance to the fields of ultrasensitive chemical detection and imaging. In addition, electron 

monochromators can be used to reduce the energy spread of the electron beam to achieve 

energy resolutions as low as <10 meV,24 vide infra. For extended reviews on EELS (and of 

cathodoluminescence in STEM) applications in plasmonics, the reader is referred to the works 

of Garcia de Abajo as well as Kociak and Stéphan.21  

 The ability to spatially resolve highly localized plasmon resonances using STEM-EELS has 

provided experimental evidence for the size and shape dependence of the LSP response of 

individual particles,21,25 the excitation of multipole modes in larger particles,26 and the 
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hybridized plasmonic response of interacting plasmonic nanoparticles,23,24,27 to name a few 

applications. EELS can also provide valuable information about current-carrying quantum 

plasmons, namely charge transfer plasmons,28 and ultrasmall plasmonic nanoparticles.29 

Additional advantages of using STEM-EELS to probe the plasmonic response of sub-wavelength 

metal nanoparticles include: (i) the technique’s ability to provide information from the interior 

of the sample as signals are collected in transmission, (ii) the possibility of manipulating 

interparticle distances with the electron beam,26 and (iii) the possibility to take advantage of 

the many analytical capabilities (imaging, diffraction, chemical characterization by EEL and 

energy-dispersive X-ray spectroscopies) that are available in a STEM instrument.  

 As an exemplary demonstration of STEM-EELS, we discuss measurements targeting a 

single-crystal {100}-facetted Ag nanobar (aspect ratio ~3.5) supported on a 5 nm amorphous Si 

layer, see Figure 6. It is important to note that although similar structures have been 

investigated in prior EELS studies, using the current monochromated system allows us to obtain 

much higher signal-to-noise ratios and to continuously vary our energy resolution. 

Hyperspectral EELS maps and high angle annular dark field (HAADF) images of the Ag nanobar 

were acquired using a Cs-corrected and monochromated Nion UltraSTEM 100MC (‘Hermes’) 

microscope operated at 60kV and equipped with a Gatan Enfinium ERS spectrometer. The 

resolution (full-width at half-maximum of the zero-loss peak) was 40meV for the results in 

Figure 6, 7A, 7B and 7F and 16meV for the data shown in Figures 7D and 7E. The probe size for 

the 40meV data was smaller than 1.4 Å; the {220} Ag planes were resolved in our experiments. 

The HAADF image shown in Figure 6A illustrates the projected geometry of the structure 

probed using hyperspectral EELS, namely, the Ag nanobar structure. The contrast in such 
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images is to a good approximation proportional to the atomic number of the material as ~Z1.7 

and to local thickness, such that the nano-bar appears bright, surrounded by dim grey areas 

corresponding to the ultrathin Si support. An average EEL spectrum obtained by summing over 

all the individual EEL spectra collected within the highlighted area of interest is shown in Figure 

6B. Two main plasmon resonances are visible at 1.45 eV and 3.45 eV, corresponding to the two 

characteristic LSP resonances of the rod along its long (longitudinal) and short (transverse) axes, 

respectively.30 The narrower peak at 3.85 eV corresponds to the bulk plasmon of the structure. 

The corresponding numerical simulations shown in Figures 6D and 6E were performed using the 

finite-element method (FEM), as implemented in a commercially available software package 

(COMSOL Multiphysics v5.2). The simulated construct includes the nanobar and the underlying 

5nm-thick amorphous Si substrate; the geometry and dimensions used in the simulation closely 

resemble their experimental analogues (see the inset of Figure 6E). As shown in Figure 6E, the 

longitudinal and transverse plasmon modes are apparent in the simulations for the parallel 

(longitudinal) and horizontal (transverse) incident polarizations, respectively, and the simulated 

values are in good agreement with their experimental analogues.  

 The enhanced electric fields associated with SP eigenmodes can be directly visualized 

using EELS, see Figures 6C. For instance, the familiar dipolar response of the rod in the 1.4-

1.5eV energy range is clearly distinguishable from its quadrupole (anti-symmetric) resonance in 

the 2.1-2.2eV energy range. Note that the wavenumbers of the resonances measured are large. 

This is a result of the relatively small length of the nanowire used herein. The wavenumbers can 

be conveniently derived from our EELS data as  kp=π/(2dEELS), where dEELS is the distance 

between intensity maxima.31 As such, lower order modes begin to converge towards the 
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plasmonic response of an extended planar surface.31,32 As shown in Figure 6C, we spatially 

resolve the planar surface plasmon in the 3.4-3.5eV energy range.  

 More recently, the use of electron energy monochromators has enabled the detection 

of LSPs in the infrared spectral region, namely,  below 1eV.31 By taking advantage of the 

improved energy resolution, EELS can be potentially used as a quantitative tool, for instance, to 

gauge damping effects in single particles and/or to measure the electron kinetics of single 

plasmonic modes.33 Prerequisite to achieving quantitative LSP analysis is attaining an 

experimental energy resolution that is finer than the natural line width of the plasmon 

resonance of interest. In Figure 7, we illustrate the effect of energy resolution (and signal-to-

noise) ratio on EELS observables, by examining the spectra collected at proximal locations 

on/around the nanobar using different microscope settings (integrated over a four times larger 

area at the lower energy resolution). Figure 7A and 7D display the zero-loss EELS peaks 

comparing the 40 and 16 meV resolution obtained in Figures 7B and 7E, respectively. The 

locations at which the spectra were acquired – both through (position 4) and in the vicinity of 

the nanobar (positions 1-3) – are highlighted in Figure 7C. Whilst resolving faster processes 

would require higher energy resolution, in this particular example, we note that the measured 

width of the narrowest feature probed, i.e. the bulk plasmon mode, is unaffected by the 

nominal instrument resolution, as indicated by the dotted lines sketched in Figures 7B and 7E. 

As such, an energy resolution of 40meV appears to be narrower than the natural line width of 

this (bulk) plasmon resonance. An increased energy resolution at the cost of a smaller signal-to-

noise ratio is therefore not required in this particular example.  
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Brief Conclusions and Outlook 

 Through select practical examples from our own laboratories, we demonstrated how 

localized and propagating surface plasmons can be visualized over length (and time scales 

dictated by their nanoscopic and dissipative nature. We reviewed recent works from our own 

groups which take advantage of various techniques powered by photons, photoelectrons, and 

electrons to image surface plasmon-enhanced electric fields. Hyperspectral optical micrographs 

are inherently diffraction limited. Nonetheless, the simplicity of our recently developed 

scattering micro-spectroscopy capability, which can be trivially incorporated into a surface/tip-

enhanced Raman nano-spectroscopy setup is attractive. On the other hand, non-linear 

photoemission electron microscopy affords joint nanometer-sub-fs resolution, which is ideal to 

follow surface plasmons propagating on the surface of a nanostructured plasmonic metal. 

Single particle spectral images (optical) and local electric field maps (PEEM) both suggest that 

each plasmonic nanoparticle has its own unique character that can be traced back to its 

nanometric structural specifics. This motivates the use of hyperspectral EELS microscopy, where 

the ultimate spatial resolution is achieved in local electric field imaging experiments. 

 In the realm of electron microscopy, we note that there is much more to hyperspectral 

EELS than visualizing the local electric fields associated with SP excitation. For instance, 

estimations of the decay lengths of the evanescence fields can also be made using this 

technique.31 That said, the relationship between the local electric field strength and electron 

energy loss continues to be a subject of debate.34 A quantitative analysis of EELS maps, such as 

the one shown in Figure 7F, which shows the longitudinal dipole mode recorded at a low 
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magnification, could ultimately answer outstanding questions such as (i) how do SP localized on 

adjacent plasmonic nanostructures interact/hybridize, and (ii) how far do LSP fields extend? 

Answering both questions is particularly valuable for surface- and tip-enhanced Raman 

scattering measurements specifically, and the field of plasmonic sensing more broadly. 

Dephasing times may also be reliably estimated from EELS maps obtained at high spectral 

resolution, where the equivalent of a temporal resolution of 1 fs is achieved with a 16 meV 

energy resolution at 3.95eV, see Figures 7D and 7E. At this resolution, the vibrational signatures 

from a range of materials24 were directly  measured, and the derived vibrational signatures 

were correlated with molecular infrared spectra.35  Although many organic materials are 

sensitive to electron beam induced radiation damage, organic molecules can be preserved by 

performing EELS using the so-called aloof-beam mode, where the electron beam is placed at a 

distance from the area of interest;36 this provides sufficient signal-to-noise for vibrational EEL 

spectroscopy, all while retaining a degree of spatial localisation.24 We finally note that the 

prospect of characterizing either bare or chemically functionalized plasmonic nanostructures at 

the ultimate limits of space and time through a combination of all of the aforementioned tools 

is a most exciting prospect and goal that we hope to achieve in the near future.  
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FIGURES 

 

 

Figure 1. A) Real color image of the scattering from an isolated silver nanoparticle (diameter = 

100 nm) on glass. B) Schematic illustration of the information content in hyperspectral dark 

field scattering optical microscopy. C) Single particle scattering image at 503 nm, which after 

applying a variance filter based on a co-occurrence matrix (3x3 pixel window) yields the image 

shown in panel D. E) Horizontal cross-sections taken from panels C and D. Also shown in this 

panel is a Gaussian fit to the scattering cross-section taken from panel C. F) 9 dark field 

scattering spectra extracted from individual pixels contained in the 3x3 pixel area highlighted 

using a dashed square in panel of C. The thick red line represents the average of all nine 

spectra. 
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Figure 2. 3D representation of a hyperspectral dark field image of 100 nm silver nanospheres 

dispersed on a glass microscope slide is shown in the left panel. The field of view in this panel is 

~44 x 59 m2. Images slices, namely dark field optical images recorded at different wavelengths, 

are stacked in the right panel.  
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Figure 3. A) Left panel: Hyperspectral TERS cross-section of three adjacent 20 nm wide slits 

lithographically etched in a silver thin film using helium ion lithography. Middle panel: Helium 

ion microscopy image of the three milled slits. Right panel: Selected area TEM image illustrating 

that well-defined sub-10 nm slits with rather sharp edges can be fashioned using helium ion 

lithography. B) The recorded intensities at 1628, 1580, and 1087 cm-1 (molecular signals) as the 

AFM tip is scanned across the three slits. C) A reflected low-frequency signal is compared to the 

finite-difference time domain- (FDTD, Lumerical FDTD Solutions) simulated local electric fields 

(Etotal/E0) sustained near isolated 15 and 20-nm wide slits following focused (40 X objective, 0.7 

NA) 514 nm irradiation. Note that the FDTD simulations assume perfect surface and slit 

structures. The reader is referred to reference [15] for more specifics. 
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Figure 4. A) High magnification (x105) multi-photon PEEM image of a 114 nm diameter 

silver nanoparticle supported on a silver thin film. The sample is illuminated by p-

polarized, 400 nm fs laser pulses at an incidence angle of 75°. B) PEEM image recorded 

following s-polarized laser irradiation. The field of view in Panel A is preserved. C) 

Correlated SEM image of the silver nanoparticle imaged in Panels A and B. Note that the 

relative orientation of the nanoparticle on the surface is preserved throughout all three 

Panels. An outline of the nanoparticle derived from the SEM image is overlaid in Panels 

A and B. 
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Figure 5. A) PEEM image of a photoemission interference pattern, observed when both 

the pump and probe pulse are incident onto the sample, but are spatially separated. The 

pump is incident onto a trench (red dashed squares in the lower left) lithographically 

etched in a nominally flat gold thin film. The probe is centered towards the upper right 

corner of the image, as schematically illustrated. The pattern observed at the probe 

beam position is a result of the interference between the probe beam and the PSP wave 

packet launched from the trench by the spatially separated pump beam. Both pump and 

probe pulses are polarized with an electric vector parallel to the out-of-plane axis (p-

polarized). B) Interferometric photoemission intensity as function of pump-probe delay 

time, at a position 135 μm from the plasmonic trench, designated by a dashed red circle 

in panel A. The two Gaussian fits of the field envelope designate the time delays at 

which the probe pulse interferes with pump (blue, t=0) and PSP wave packet (green, Δt 

= 43.3 fs). The reader is referred to reference [9] for more specifics. 
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Figure 6. A) Dark-field (Z-contrast) image of a silver nanobar (length x width= 129 nm x 36 nm, 

AR ≈ 3.5) supported on a 5nm thick amorphous silicon substrate. The additional bright dots that 

are noticeable on the substrate are attributed to impurities in the colloidal suspension used to 

prepare the sample. B) EELS spectrum obtained by averaging the spectra in each pixel 

comprising the EELS map taken in area A (total = 100 x 181 pixels). C) STEM-EELS maps at the 

designated energy ranges. The experimental maps are normalized to the maximum intensity in 
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each case. D) Calculated z-component of the electric field, |Ez|2, following vertically polarized 

(left) and horizontally polarized optical irradiation (middle and right). The intensity scale for the 

simulated maps is the same for all, except for the 1.95eV, which has been multiplied by 2. E) 

Averaged electric field map obtained by summing the magnitudes computed for each of the 

aforementioned incident polarizations. The inset shows a perspective view of the simulated 

construct comprising a 36 nm x 129 nm nanobar supported on a 5nm thick Si substrate. 
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Figure 7. A) Zero-loss EELS peak obtained by averaging the spectra in a ~4nm x 4nm area, which 

is comparable to the areas used for spectral averaging (averaged spectra shown in B) at 

locations 1-4 (designated in C). D-E are similar to A-B, but in this case an ~8nm x 8 nm area is 

used to get the zero-loss EELS peak and the spatially averaged spectra in the same vicinity 

(locations 1-4 in C). F) EELS map at 1.45eV, in which the longitudinal dipolar LSP mode can be 

observed at low magnification (spectral image of 100 x 100 pixels size and 0.01 eV dispersion).  
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