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Abstract—Up to not so long ago, Loop-Free Alternates (LFA)
was the only viable option for providing fast protection in pure
IP and MPLS/LDP networks. Unfortunately, LFA cannot provide
protection for all possible failure cases in general. Recently, the
IETF has initiated the Remote Loop-Free Alternates (rLFA)
technique, as a simple extension to LFA, to boost the fraction
of failure cases covered by fast protection. Before further stan-
dardization and deployment, however, it is crucial to determine
to what extent rLFA can improve the level of protection in a
general IP network, as well as to find optimization methods to
tweak a network for 100% rLFA coverage. In this paper, we take
the first steps towards this goal by solving these problems in the
special, but practically relevant, case when each network link is
of unit cost. We also provide preliminary numerical evaluations
conducted on real IP network topologies, which suggest that rLFA
significantly improves the level of protection, and most networks
need only 2 − 3 new links to be added to attain 100% failure
case coverage.

Index Terms—IP Fast ReRoute, Remote Loop-Free Alternates,
link protection, heuristics, unit link costs

I. INTRODUCTION

In recent years, high availability has become an important

factor in operational networks, since this is required by the in-

creasing number of real-time applications (VoIP, IPTV, online-

gaming). The aim is to recognize the failure and reroute the

packets rapidly avoiding the failed component. The matter of

this is, how fast a router can recognize a failure and can reroute

packets avoiding the failed component.

Formerly, the intra-domain routing protocols (Open Shortest

Path First or Intermediate System To Intermediate System)

handled the failures. The failure information was distributed

throughout the network in order to notify each router to

recalculate shortest paths with the failed component removed

from the topology. This process can take between 150 ms and

a couple of seconds, depending on network size and routers’

shortest path calculation efficiency [1], [2]. Clearly, this re-

covery time is beyond what real-time applications require.

Therefore, the IETF defined a framework, called IP Fast

ReRoute (IPFRR [3]), for native IP protection in order to

reduce failure reaction time to tens of milliseconds in an

intra-domain, unicast setting. In order to achieve this goal,

the IPFRR techniques are based on local rerouting and pre-

computed detours [3]. This allows instant reaction to the

failure and enables the routing protocol to converge in the

background.

In the past few years, many IPFRR proposals have ap-

peared to solve this problem. Unfortunately, the majority of

them require additional management burden, complexity, non-

standard IP forwarding functionality [4]–[9] to existing routing

protocols, evading the possibility to be eventually applied in

commercial routers.

There is one method, called Loop-Free Alternates

(LFA) [10] which made its way into commercial routers [11],

[12]. LFA is simple, standardized and already implemented.

However, it has a significant drawback: it does not guarantee

protection for all possible failure cases, due to strong depen-

dency on actual topology and link costs. Extensive simulations

and numerical studies have shown that LFA can only protect

75−85% of the link failures and 50−75% of the node failures,

respectively.

To improve the level of fast protection provided by LFA
without any modifications to the method or to the underlying

network topology, the IETF has published a generalization

of LFA called Remote LFA (rLFA) Fast ReRoute frame-

work [13]. This method is an extension to the basic LFA
that provides additional backup connectivity when none can

be provided by the basic mechanisms.

However, even if it provides higher failure coverage there

still exist networks, which are not sufficiently protected by

rLFA. Nevertheless, as of now there is no information avail-

able about how it performs in different network topologies,

what are the fundamental lower and upper bounds on failure

case coverage, or how this can be improved [14].

In this paper, we make the first steps in this direction. As a

first approach, we shall limit our attention to the special case

when link costs are uniform. Our earlier studies on LFA [14]

showed that the efficiency of LFA in protecting most failure

scenarios crucially depends on both the graph topology and the

link costs of the underlying network. Unfortunately, it turned

out that it is extremely difficult to consider both at the same

time, due to the complexity of the related graph theoretical

questions. Therefore, it has proven beneficial to study graph

topological concerns separately from the effects of link costs.

In the present paper, we follow the same course: first, we

initiate the analysis for remote LFA in graphs with unit costs,

and in a subsequent study we shall attempt to generalize our

results to arbitrary weighted graphs. Considering unweighted

graphs is fruitful for a number of further reasons, for instance,

this case is highly relevant in real-world networks and, as
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shall be shown, results for LFA can only be generalized to

rLFA if costs are uniform. Finally, we also found this problem

particularly appealing from a theoretical point of view.

In the first part of this paper, we provide the first ever

basic graph theoretical toolset for analyising rLFA failure

case coverage and we establish a sufficient and necessary

condition for a unit cost network to have 100% rLFA failure

coverage. We study the “bad cases” for rLFA in which

coverage is particularly poor and we shall show that there are

2-node-connected graphs in which rLFA cannot protect more

than 50% of the possible failure scenarios, while in 2-edge-

connected networks this can go down to 33%. Furthermore, we

disclose the connectivity between LFA and rLFA and show the

conclusions that can be drawn if information about one of them

exists. Building on [13] we distinguish the term of plain and

extended remote LFA, and we show that the usage of extended

rLFA makes any network 100% protected, in case of uniform

link costs. However, if only plain rLFA capable routers are

present, complete failure coverage cannot be attained in real-

world network topologies.

Our analysis shows that many practically important graph

topologies do not admit 100% rLFA failure coverage, espe-

cially with plain rLFA. Recently, LFA network optimization

methods were proposed [14]–[16] to optimize certain aspects

of the network to obtain maximal failure coverage. These

works, however, are restricted to LFA. In the second part of the

paper, we generalize these methods to rLFA, in particular, we

study the problem of optimizing a network topology for better

rLFA protection and we introduce an algorithm for modifying

the network, by adding the smallest number of new links, to

improve coverage to 100%.

At last but not least, we give a numerical evaluation of the

general protectability of real-world ISP networks. We study

the performance of our network optimization algorithm in real

topologies. As shall be shown, it responds much better than

simple LFA, as in numerous cases less than two additional

links were necessary to achieve 100% failure coverage. More-

over, we find that some networks have full protection without

any modifications.

The rest of the paper is organized as follows: Section II

and Section III gives an overview of remote LFA and provides

a useful mathematical model. Section IV and Section V are

devoted to a graph theoretical remote LFA failure coverage

analysis of different notable networks and Section VI discusses

the remote LFA graph extension problem where numerical

results of many real-world network topologies are described

as well. Finally, in Section VII we conclude our work and

sketch future research directions.

II. ASSUMPTIONS AND MODEL FORMULATION

In Loop-Free Alternates, the backup routes (repair paths) are

precomputed and installed in the router as the backup for the

primary paths. Once a router detects a link or adjacent node

failure, it switches to the backup path to avoid traffic loss.

Remote LFA allows the backup next-hop1 to be more than

one hop away. It means, that after a failure an adjacent node

recognizes it and tries to find a (remote) node whose shortest

path to the destination is not affected by the failed component.

If such node is found then packets will be forwarded to it.

Remote LFA relies on tunnels to provide additional logical

links towards backup next-hops. After the remote node re-

ceives the package it sends it towards the primary destination.

Note that the tunnelled traffic is restricted to shortest paths just

like “normal” traffic, hence the tunnel must avoid the failure

as well.

Perhaps the easiest way to understand remote LFA, and how

it differs from basic LFA, is through an example. Consider

network depicted in Fig. 1 and suppose that router s wishes

to send a packet to a destination d.

a s b d′

d c e f

P-space of sQ-space of d

Figure 1. A sample network topology with uniform link costs. Solid lines
mark the IP network topology, while black dashed line marks the tunnel

The next-hop of s along the shortest path towards d is

a. If, however, the link (s, a) fails, then node s has to find

an alternative neighbor to pass on the packet to. It cannot

send the packet to, say b, as b has an ECMP (Equal Cost

Multiple Path) to destination d and, as it does not know about

the failure, it can send the packet back to s causing a loop.

Therefore, s has no neighbour that would not pass the packet

back to it if chosen as a bypass, so in this case the given

source-destination pair cannot be protected via standard LFA.

However, if a tunnel is created between s and e (marked by

black dashed line in Fig. 1, then e, now being a direct neighbor

of s, would become an LFA for d, thereby protecting the link

(s, a).
Consequently, when a link cannot be entirely protected with

local LFA neighbors, the protecting router seeks the help of a

remote LFA staging point. Note that this tunnel is only used

as a detour, so it does not affect the normal flow of traffic in

any ways. There are numerous tunnelling mechanisms which

fulfills the requirements of this design. In an MPLS/LDP (Mul-

tiprotocol Label Switching-Label Distribution Protocol [17])

enabled network, for instance, a simple label stack can be used

to provide the required tunnel without any additional packet

header modification or any possible IP packet fragmentation

due to increased packet size.

Next, consider node d′ as destination and link (s, b) as the

failed link. Then (s, b) cannot be protected for a lack of a

suitable tunnel since all nodes, whose shortest path does not go

through (s, b), can only be reached from s through (s, b) itself.

For a formal definition, see the next section. This suggests that

while the use of rLFA definitely can provide higher protection

1In routing, the address of the next device along the shortest path to a
destination is called next-hop



level than pure LFA, it still does not facilitate full protection

for all failure cases in a general topology.

Our mathematical model for studying rLFA is as follows.

We model the network topology by a simple, undirected graph

G(V,E), with V being the set of nodes and E the set of edges.

Let n = |V | and m = |E|, and denote the complement edge

set with E. We assume that links are bidirectional and point-to-

point. As mentioned earlier, we further assume that each link

in G is of the same unit cost, as this assumption allows us to

study the purely graph theoretical aspects of rLFA separately

from the effect of link weights. In a subsequent paper, we plan

to relax this assumption. Furthermore, we presume that each

node has a well-defined next-hop towards each destination

even if more than one equal cost shortest paths exist. Since,

according to [18], most unplanned failures in an operational

IP network are transient link failures (about 70%), we shall

limit our attention to single link failures exclusively. Moreover,

since an arbitrary link can only be protected if the graph

describing the network is 2-edge-connected, we also assume

this minimum topological requirement. In this paper, we use

the notation dist(u, v) for any u, v ∈ V to describe the length

of the shortest path from u to v. Let neigh(s) denote the

set of nodes which are the neighbors of an arbitrary node s.

Furthermore, LFA(x, y) denotes the set of nodes protecting

the (x, y) source-destination pair.

During a link failure, the repair tunnel endpoint needs to

be a node in the network reachable from the source without

traversing the failed component. In addition, the repair tunnel

endpoint needs to be a node from which packets will normally

flow towards their destinations without being attracted back to

the failed component. Therefore, the set of routers which can

be reached from the source without traversing the failed link

is termed the P-space [19] of the source with respect to the

failed link. Since the source router will only use a repair path

when it has detected the failure of the link, the initial hop of

the repair path needs not be subject to the source’s normal

forwarding decision process. Therefore, the term extended P-

space was also defined, which is the union of the P-spaces of

each of the source’s neighbors. The usage of extended P-space

may enable the source router to reach potential repair tunnel

endpoints that were otherwise unreachable. The set of routers

from which the destination can be reached, without traversing

the failed link is termed the Q-space of the destination respect

to the failed link (see Fig. 1 and consider s as the source and

d as the destination).

The intersection of the P-space of s and the Q-space of d
defines the viable repair tunnel endpoints, known as PQ nodes,

which are practically the remote LFAs. As can be seen, for the

case of the example network depicted above there is only one

node protecting the link (s, a). However, considering d′ as the

destination the P-space and Q-space turn out otherwise. Now,

there is no intersection of s’ P-space and Q-space of d′, thus

viable PQ nodes do only exist if extended P-space is used.

Therefore, in this work we slightly diverge from the spec-

ification [13] and we say that a node is remote LFA if it

is in the intersection of the “simple” P-space and Q-space

and we shall use the term “Extended remote LFA” henceforth

when extended P-space is also considered for defining PQ

nodes. “Plain” rLFA can be easily implemented and deployed

since it does not require any profound modifications to the

forwarding plane, while extended rLFA requires sophisticated

functionality. Thus, we expect, implementations to provide

only the plain rLFA initially.

In the rest of the paper, rLFA(x, y) denotes the set of nodes

which protects source x and destination y with remote LFA

under the assumption that only “simple” P-space is used.

From the above discussion, it is clear that in general not all

nodes have LFA or even remote LFA protection to every other

node. To measure rLFA coverages in a graph G, we adopt the

simple metric from [10]:

µ(G) =
#rLFA protected (s, d)pairs

#all (s, d) pairs
(1)

For LFA, the coverage η(G) can be defined in a similar way.

III. PRELIMINARIES

An arbitrary failed link along the shortest path between

a source and a destination can only be protected if the

intersection of P-space of the source and the Q-space of the

destination is not empty. At first, we show an alternative char-

acterization for rLFAs that, as shall be seen, is more amenable

to theoretical analysis, if we reformulate this requirement in

terms of the shortest path distance function dist.

Observation 1. For each source s and next-hop e some n ∈ V
is in P-space(s, e) if and only if

dist(s, n) < dist(s, e) + dist(e, n) , (2)

and for each source s and destination d, some n ∈ V is in

Q-space(s, d) if and only if

dist(n, d) < dist(n, s) + dist(s, d) . (3)

One can easily see, that (3) is the basic loop-free criterion

of link-protecting LFAs [10], while (2) means that the repair

tunnel cannot traverse the failed link. The notion of extended

P-space could also be expressed with distance functions:

Observation 2. For each source s and next-hop e, some

n ∈ V is in the extended P-space(s, e) if and only if ∃v ∈
neigh(s) : dist(v, n) < dist(v, s) + dist(s, e) + dist(e, n).

It should be noted that the conditions above hold for

arbitrary weighted graphs as well.

Next, we formulate an important corollary of the previous

observations. In particular, we show that if an arbitrary node

on the shortest path between a source and a destination is

rLFA protected, then every further node along that shortest

path is protected as well.

Lemma 1. Let (s, d) be a source-destination pair and let

q be a node along the default shortest path from s to d. If

rLFA(s, q) 6= ∅, then rLFA(s, d) 6= ∅.



Proof: Suppose that ∃n ∈ rLFA(s, q) and consider the

source-destination pair (s, d). For n to be n ∈ rLFA(s, d), it

has to fulfill Obs. 1. First, it satisfies (2) for (s, d) since P-

space does not depend on the destination node. Additionally,

it only needs to satisfy (3), notably dist(n, d) < dist(n, s) +
dist(s, d). We know that dist(n, q) < dist(n, s) + dist(s, q)
and due to triangle inequality2 dist(n, d) ≤ dist(n, q) +
dist(q, d). Therefore, dist(n, d) < dist(n, s) + dist(s, q) +
dist(q, d)⇒ dist(n, d) < dist(n, s) + dist(s, d).

An important consequence of Lemma 1 is the simple

observation that a graph has full rLFA protection, if and only

if each node has an rLFA to each of its next-hops.

Corollary 1. Let G be a graph with unit link costs. Then,

µ(G) = 1, if and only if for each (u, v) ∈ E, u has an rLFA
to v and v has an rLFA to u.

Next, we show that there is a deep connection between basic

LFAs and remote-LFAs in unit cost networks.

Theorem 1. Let G(V,E) be a graph with unit link costs. If

an arbitrary node u ∈ rLFA(s, d) and u ∈ neigh(s), then

u ∈ LFA(s, d).

Proof: First, verify the forward direction. It is easy to

observe that u ∈ rLFA(s, d) implies u is in the Q-space,

which precisely coincides with the condition for u to be a

link-protecting LFA. Second, if u ∈ LFA(s, d) then u fulfills

(3) and since link costs are uniform, when u ∈ neigh(s)
then u ∈ rLFA(s, d) as well because from an arbitrary node

a to b ∈ neigh(a) the default shortest path traverses the

neighboring link.

IV. ANALYSIS OF EXTENDED REMOTE-LFA

First, we show that extended rLFA (usage of extended P-

space) ensures 100% failure coverage in every network.

Theorem 2. Let G be an arbitrary 2-edge-connected graph

with uniform link costs and suppose that remote-LFA can use

the extended P-space option. Then, µ(G) = 1.

Proof: We show that for each edge (u, v) ∈ E, u has

an rLFA to v (and vice versa). This will mean that every

node has an rLFA to each of its next-hops, which guarantees

µ(G) = 1 by Corollary 1. Since G is 2-edge-connected,

we know that (u, v) is contained in at least one chordless

cycle. Let the length of this cycle be k. If k is odd, then

the single node at distance k−1
2 from v along the cycle

is an rLFA to u. If, on the other hand, k is even, then

the P-space(u, (u, v)) ∩ Q-space(u, v) is empty. Observe,

however, that the single node of distance k
2 from u is contained

both in Q-space(u, v) and the extended P-space(w, (u, v)),
where w is the neighbor of u other than v along the cycle,

and so it is an rLFA in terms of the extended P-space option.

This completes the proof.

2The triangle inequality states that for any triangle, the sum of the lengths
of any two sides must be greater than or equal to the length of the remaining
side. It is one of the defining properties of the distance function which is used
in shortest path routing.

Consequently, if remote-LFA implementations support ex-

tended P-space, then unit cost networks have full failure

coverage. This may be an important factor to consider by an

operator willing to deploy rLFA and to an IP device vendor to

implement extended rLFA in its router products. If using the

extended P-space is not an option due to the implementation

complexity or the lack of support in the routers, however, then

we can attain substantially lower protection as shall be seen

in the next section.

V. ANALYSIS OF “PLAIN” REMOTE LFAS

In this section, we turn to plain remote LFAs i.e. we con-

sider only standard P-spaces and Q-spaces. We give a graph-

theoretical characterization of rLFA coverage, as measured

by µ(G). Our main aim is to identify the attainable lower and

upper bounds of plain rLFA failure coverage. We describe

some methods to easily calculate failure coverages in different

notable graph topologies depending only on the number of

nodes. Nevertheless, we generalize previous propositions of

LFAs from [14]–[16] to rLFA as well.

A. Graphs with good coverage

Network operators facing with the challenge of deploying

rLFA need to ask the question, whether their current network

topology is amenable to rLFA or not. Therefore, it is crucial

to separate graph topologies that are “good” for rLFA (i.e., the

ones with µ(G) = 1) away from those that attain a particularly

low coverage. First, we characterize the good cases for rLFA.

Theorem 3. Let G be an undirected, simple graph with

uniform link costs. Now, µ(G) = 1, if and only if for each

(i, j) ∈ E : ∃ n 6= i, j so that dist(i, n) = dist(j, n).

Proof: The result comes from applying (2) and (3)

directly to (i, j).

Further notable graph topologies with 100% failure cover-

age include chordal graphs [20], infinite grids and “Möbius

ladder”. The latter two are similar to grids with the difference

that first and last nodes are directly connected.

B. LFA worst-case graphs with rLFA

In the following, we turn to discuss lower bounds for

rLFA, that is, we seek worst-case graphs in which coverage

is particularly poor. It has been observed previously that

quintessential worst-case graphs for IPFRR are rings, i.e. cycle

graphs in which all nodes are of degree two [6], [21].

Consequently, we consider odd rings first, and then we shall

treat even rings. Before that, we repeat a previous proposition

from [14], which proved the lower bounds of LFA, measured

by η(G):

Proposition 1. For an even ring on n nodes η(G) = 1
n−1 ,

and for an odd ring on n nodes η(G) = 2
n−1 .

Next, we generalize these results to rLFA. In fact, we shall

do a bit more, as our analysis will account for the length of



the repair tunnel, which is an important factor in provisioning

remote-LFA3.

Theorem 4. Let Cn be an odd ring on n nodes with n ≥ 3,

and let 1 ≤ k ≤ n−1
2 denote an upper bound on the length of

the tunnel from the source node to its rLFA. Then, µ(Cn) =
2k
n−1 .

Proof: Consider a ring topology on n nodes, n odd, let

(s, d) ∈ E be a neighboring source-destination and suppose

that the link between them went down. In this case s needs

to find a possible remote loop-free alternate since it cannot

use its other neighbor because it will pass back the packet.

Thus, the possible repair tunnel endpoints are situated on the

other side of the ring regarding to the failed link, i.e. if an

arbitrary node u ∈ rLFA(s, d) then dist(s, u) ≤ n−1
2 which

is tight if d ∈ neigh(s). One can observe that if maximal

tunnel length is permitted i.e. k = n−1
2 then such kind of

repairing node always exists (µ(Cn) =
n(n−1)
n(n−1) = 1). However,

if the tunnels need to be shorter than an arbitrary node u can

only be an rLFA is dist(s, u) ≤ n−1
2 − l, where l is the

tunnel shortening coefficient, i.e. the greater the l, the shorter

the tunnel. Trivially, shortening the tunnel with l dissolves

the protection among ∀(s, d) pairs, where dist(s, d) = l.
Therefore, rLFA failure coverage can be modified as follows:

µ(Cn) =
n(n−1−2l)
n(n−1) . Now, consider dist(s, u) ≤ k, where k

represents the length of the tunnel. In this manner l = n−1
2 −k

meaning that µ(Cn) =
n−1−n+1+2k

n−1 = 2k
n−1 .

Note that k = 1 means that only neighboring nodes can be

used as repair tunnel endpoints, which essentially corresponds

to LFA. In this case, Theorem 4 yields the same result as

Prop. 1 stated for LFA for odd rings.

Theorem 5. Leg Cn be an even ring on n nodes with n ≥ 4,

and let 1 ≤ k ≤ n−2
2 denote an upper bound on the length of

the tunnel from the source node to its rLFA. Then, µ(G) =
2k−1
n−1 .

Proof: Consider a ring on n nodes, n even, and suppose

that link between an arbitrary neighboring (s, d) source-

destination pair went down. According to the case of odd ring,

s need to pass the packet to the other side of the ring, however,

the possible repair tunnel endpoints cannot be reached without

traversing the failed component. Thus, for ∀(s, d) pairs, where

d ∈ neigh(s) : the link (s, d) cannot be protected. One can

observe, if dist(s, d) ≥ 2 then tunnels, avoiding the failed link

exist. Therefore, for an arbitrary source s has remote LFAs

to ∀d destination excluding its neighbors (µ(Cn) =
n(n−3)
n(n−1) ).

However, assuming shorter tunnels results that for possible

u ∈ rLFA(s, d) : dist(s, u) ≤ n
2 − l, where l is a shortening

coefficient as it was in the case of odd rings. Now, l = n
2 − k

meaning that µ(Cn) =
n−1−n+2k

n−1 = 2k−1
n−1 .

As before, supposing k = 1 results the corresponding

statement in Prop. 1 for LFA for even rings. In this regard,

rLFA can be seen as a natural generalization of LFA.

3See the remote-lfa maximum-cost option on [22]
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Figure 2. Illustration topologies for Theorem 6 and Theorem 7

C. rLFA worst-case scenarios: 2-node-connected graphs

Below, we continue our analysis towards finding 2-node-

connected graphs with low rLFA failure coverage. In what

follows, we suppose that there is no constraint on the length

of the rLFA tunnel.

Since the simplest 2-node-connected network with low

failure coverage is a 4-cycle (µ(C4) = 1
3 ), we examined

notable networks that contain a large number of 4-cycles as

subgraphs. We considered the networks depicted in Fig. 2(a)

where k denotes the number of 4-cycles, and Fig. 2(b) where

k marks the number of node pairs. The following theorem

concludes the results:

Theorem 6. For any k > 2 there is a 2-node-connected graph

G on n = 2k nodes with µ(G) = k−1
2k−1 .

As a proof, we show that grids (Gk) and complete bipartite

graphs (Kk,k) attain this limit. In grids, ∀(s, d) pairs: d ∈
neigh(s) or d ∈ S(s) cannot be protected, where S(s) denotes

the set of nodes situated on the same side. It is easy to see, that

every node is in a 4-cycle wherein neighbors as destinations

are not protectable and the shortest paths to every node on the

same side traverses one of the neighbors. Thus, such nodes

are unprotected according to Lemma 1.

Similar is the case for Kk,k as well. Each d ∈ S(s) are

protected while ∀d′ /∈ S(s) are neighbors of s and, due to the

property of bipartite graphs that every cycle is even, neighbors

cannot be protected either.

D. 2-edge-connected graphs

Theorem 7. For any k ≥ 1 there is a 2-edge-connected graph

G on n = 3k + 1 nodes with µ(G) = 1
3 .

As a proof, we show that the so called “4-propeller graph”

(Pk) attains this limit. Thus, consider (Pk) depicted in Fig. 2(c)

where k denotes the number of blades. One can see that the

nodes on the pitch of the propeller blades have remote LFAs

to every destination except the neighbors, since they are on

an even cycle. Nodes on the side of the blades considered as



Table I
LOWER BOUNDS IN WORST-CASE GRAPHS ON n NODES

n µ(G)2e Bl µ(G)2n Bl

3 1 1 1 1

4 1

3

1

3

1

3

1

3

5 2

5

2

5

6 2

5

2

5

2

5

7 1

3

1

3

3

7

8 19

56

3

7

3

7

9 1

3

31

72

sources can only protect adjacent link failures if the nodes

in the face of them are considered as destinations. Finally, the

node in the middle has remote LFAs only for destination nodes

situated on the pitch of the blades. Thus,

µ(G) = k(3k−1)+2k+k

3k(3k+1) = k+1
3k+1 = 1

3 .

So far, we have sought for graphs with low rLFA coverage.

Our aim has been to give a tight characterization for the lower

bound on µ(G) for any unweighted graph G. At the moment,

we do not have clear answers to these intriguing but hard

graph-theoretical questions. What we could prove, however, is

that in certain 2-node-connected unweighted graphs µ(G) can

be as low as 1
2 , and in 2-edge-connected graphs an even lower

threshold of 1
3 is also realizable. So far, we have not been able

to identify any 2-node-connected or 2-edge-connected graph

with smaller rLFA coverage. Thus, we conjecture that k−1
2k−1 is

an actual lower bound on µ(G) for 2-node-connected graphs,

while 1
3 is a lower bound on µ(G) for 2-edge-connected

graphs. However, we do not have any formal proofs of these

claims as of now.

E. Computational study

It turned out that finding a universal lower bound on rLFA

coverage is a hard problem. Clearly, a computational approach

might be instructive to support or refute our conjectures.

Hence, we generated all non-isomorphic networks on n nodes

where n ∈ {1, 2 . . .9}. Note that the generation is very time

consuming even if only non-isomorphic graphs are created.

Table I summarizes the lower bounds with the following

notations: n denotes the number of nodes, µ(G)2e and µ(G)2n
notes the failure coverage in case of 2-edge-connected and 2-

node-connected networks, columns marked by Bl denote the

conjectural lower bounds. It can be seen that until n ≤ 4
results are the same, and if n ≥ 5 coverages start to increase.

One can observe that in the case of n = 7 the given failure

coverage equals to the coverage attained by 4-propeller graphs

mentioned above. It also shows that lower bounds of 2-edge-

connected networks are the lowest.

VI. REMOTE-LFA GRAPH EXTENSION

As observed, there exist a lot of graphs with small rLFA
coverage. Hence, in this section, we ask to what extent we

need to intervene at the graph topology to improve coverage to

100%. This approach is important since (i) this would answer

how “far” are poorly protected networks from perfect rLFA
coverage, and (ii) would provide an easy way for operators to

boost the protection in their networks. We adapt the formal

description of the LFA graph extension problem from [14] to

rLFA as follows:

Definition 1. rLFA graph extension problem: Given a graph

G(V,E), find the smallest subset F of the complement edge

set E of G such that µ(G(V,E ∪ F ) = 1.

At the moment, we do not know the complexity of this

problem but, based on our former experience with similar

network optimization problems for LFA, it seems highly

probable that it is also NP-complete. Therefore, we adopt

the greedy heuristic from [14] to the rLFA graph extension

problem as follows:

Algorithm 1 Greedy rLFA graph extension for graph G(V,E)

1: while µ(G(V,E)) < 1
2: (u, v)← argmax

(i,j)∈E

µ(G(V,E ∪ {(i, j)}))

3: E ← E ∪ {(i, j)}
4: end while

Theorem 8. Let G(V,E) be a graph with unit link costs.

Alg. 1 terminates with full rLFA coverage regardless of the

input graph.

Proof: Alg. 1 surely terminates when all complement

links are added but at this point µ(G) = 1 as the complete

graphs has full rLFA coverage.

Next, we examine how many links one must add in realistic

graphs to achieve full rLFA coverage. We chose existing

real-world topologies inferred from Rocketfuel [23] database,

SNDLib [24] and Topology Zoo [25]. In all topologies, we set

all link costs uniformly to 1. Note, there were some networks

where inferred link costs were unit costs. The details are in

Table II with the following notations: n is the number of nodes,

m is the number of links, η(G) is the initial LFA coverage,

µ(G) is the initial rLFA coverage, and Gr.ext denotes the

number of new links added to achieve full failure coverage.
The first conspicuous observation is that there were five

networks, which were fully protected with rLFA even without

the need of any graph extension. Second, the number of links

that have to be added to reach full coverage is much less

than when only simple LFA capable routers are present. Such

huge improvements can be seen easily in networks where

η(G) < 0.9 e.g. in the Geant topology. However, in the

Deltacom topology installation of 79 new links was necessary

to achieve full LFA coverage, while with only 4 additional

links full rLFA coverage is attainable. The results also indicate

that (i) more than 50% of the networks lend themselves to

rLFA extension since the maximum number of links needed

is less than 2; (ii) on average 3.6 new links are necessary to

attain 100% rLFA coverage while in case of simple LFA this

number is 14.5.



Table II
REMOTE LFA GRAPH EXTENSION RESULTS

Topology n m η(G) Gr.ext µ(G) Gr.ext

AS1221 7 9 0.833 1 0.833 1
AS1239 30 69 0.898 6 1 0
AS1755 18 33 0.889 4 1 0
AS3257 27 64 0.946 3 0.954 1
AS3967 21 36 0.864 7 0.969 1
AS6461 17 37 0.919 2 1 0
Abilene 12 15 0.56 6 0.833 1
Arnes 41 57 0.595 18 0.731 6
AT&T 22 38 0.823 6 0.8875 2
Deltacom 113 161 0.542 79 0.885 4
Gambia 28 28 0.037 16 0.111 8
Geant 37 55 0.646 20 0.827 4
Germ 50 50 88 0.801 22 1 0
Germany 27 32 0.695 1 0.882 1
InternetMCI 19 33 0.877 3 0.888 2
Italy 33 56 0.784 12 0.951 2
NSF 26 43 0.86 9 1 0

VII. CONCLUSIONS

Currently, Loop-Free Alternates is the best choice for pro-

viding fast protection in pure IP and MPLS/LDP networks. It is

a well-known fact that LFA cannot protect every single failure.

In our previous works, we showed that improvements can be

made by altering the existing network topology. If modifying

the network is not an option, remote LFAs may be a better

approach.

As in the case of LFA, the number of failure cases protected

by rLFA crucially depends on both the graph topology and

the link costs. As it seems difficult to consider both at the

same time, we studied graph topological concerns separately

from the effect of link costs in this paper. This restriction is

plausible as a first approach, and we definitely will generalize

our results to weighted graphs.

We showed that, under the unit-cost assumption, “extended

P-space” results full rLFA failure coverage in every network.

This can be an important pointer for operators, currently in

the position to deploy rLFA, on how to actually choose link

costs. We gave a sufficient and necessary condition for a

unit cost graph to be 100% protectable with rLFA. Then, we

studied general lower bounds for rLFA coverage. We found

that for 2-node-connected graphs on 2k nodes the value k−1
2k−1

is realizable by grids and complete bipartite graphs and we

confirmed computationally that thus is a valid lower bound as

long as the number of nodes n is smaller than 10. We also

found that for 2-edge-connected graphs, this “conjectured”

lower bound is 1
3 . We defined the rLFA graph extension

problem as the task to augment an unweighted graph with

the fewest new links to obtain 100% rLFA protection. We

gave a simple greedy algorithm, and we found that, even in

very big real-world ISP topologies, adding only 2-3 new links

is enough to attain 100% failure coverage.

In the future, we plan to study further remote-LFA re-

lated network optimization questions. For instance, in the

unweighted case improving rLFA coverage is possible with

modifying link costs as well, which looks another intriguing,

and practically relevant, network optimization problem.
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