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We have shown that continuous maternal exposure to the complex mixture of environmental

chemicals (ECs) found in human biosolids (sewage sludge), disrupts mRNA expression of genes

crucial for development and long-term regulation of hypothalamic-pituitary gonadal (HPG) func-

tion in sheep. The present study investigated whether exposure to ECs only during preconcep-

tional period or only during pregnancy perturbed key regulatory genes within the hypothalamus

and pituitary gland and whether these effects were different from chronic (life-long) exposure

to biosolid ECs. The findings demonstrate that the timing and duration of maternal EC exposure

influences the subsequent effects on the foetal neuroendocrine system in a sex-specific manner.

Maternal exposure prior to conception, or during pregnancy only, altered the expression of key

foetal neuroendocrine regulatory systems such as gonadotrophin-releasing hormone and kis-

speptin to a greater extent than when maternal exposure was ‘life-long’. Furthermore, hypotha-

lamic gene expression was affected to a greater extent in males than in females and, following

EC exposure, male foetuses expressed more ‘female-like’ mRNA levels for some key neuroen-

docrine genes. This is the first study to show that ‘real-life’ maternal exposure to low levels of a

complex cocktail of chemicals prior to conception can subsequently affect the developing foetal

neuroendocrine system. These findings demonstrate that the developing neuroendocrine system

is sensitive to EC mixtures in a sex-dimorphic manner likely to predispose to reproductive dys-

function in later life.
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It is evident from human and animal studies that many factors,

including maternal nutrition and stress during pregnancy, can alter

normal foetal development and programme risk of disease in later

life (1,2). The Developmental Origins of Health and Disease (DOHaD)

paradigm has been one of the most rapidly expanding areas of

biomedical research during the last decade (3). Maternal pregnancy

exposure to exogenous chemicals/drugs either voluntarily [e.g.

cigarette smoking and alcohol consumption (4–7)] or unintention-

ally [e.g. ubiquitous environmental chemicals (ECs)] is associated

with altered foetal development leading to reproductive dysfunction

in both males and females (8–10). Indeed, EC exposure is a candi-

date contributory factor to recently observed changes in human

reproductive health, including an increased incidence of cryp-

torchidism and hypospadias (11–13) and reduced semen quality

(14–16) in males. In females, the same link has been made to pre-

cocious puberty (17,18), early menopause (19) and breast cancer

(20,21). Many ECs are classified as endocrine disrupting chemicals

(EDCs), because they can enter the body and disrupt normal

endogenous hormone release/action via a range of mechanisms

(22). Some ECs can be stored in fat but are mobilised during peri-

ods of increased metabolism, such as during pregnancy. However,

the potential impact of maternal chemical exposure prior to con-

ception on subsequent foetal development has not been studied

extensively.
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When considering the factors that might influence the effects of

ECs on foetal development, it is important to remember that

humans are rarely exposed to high levels of individual chemicals

but rather to mixtures of different chemicals. Such ECs are at low

individual concentrations and potentially can have synergistic or

additive effects (23) at the same time as also varying in concentra-

tion across gestation. Therefore, the physiological responses associ-

ated with exposure can differ according to the sensitivity of the

foetus at the time of exposure (i.e. which critical developmental

windows are affected) (24). Exposure to various exogenous or/and

endogenous changes during specific windows of developmental

programming may affect the long-term health of the offspring with

a disparity between males and females in the timing of onset and

severity of disease outcomes, often with a long latency (25,26).

To address the importance of pregnancy exposure relative to life-

long exposure to environmentally-relevant, low levels of chemical mix-

tures, the present study builds on previously published work that used

an ovine model of EC exposure, via grazing on pasture treated with

human biosolids (sewage sludge). Biosolids, which are a by-product of

waste water treatment, contain a complex mixture of chemicals and

pollutants with known endocrine disrupting capabilities (27). This

complex mixture represents chemicals from anthropogenic sources

and is thus reflective of everyday human chemical exposure from mul-

tiple sources. We have previously shown that life-long maternal expo-

sure to biosolids is associated with behavioural changes (28) and

reduced bone density (29) in adult offspring, altered foetal testis and

ovary development (24,30,31) and altered mRNA expression of regula-

tory systems within the foetal reproductive neuroendocrine axis

(32,33), whereas more recent studies have reported that the timing of

maternal exposure has significant effects on foetal ovarian develop-

ment (24,34).

Reproductive success depends upon activity within the hypothala-

mic gonadotrophin-releasing hormone (GnRH) neurosecretory sys-

tem, which is dynamically regulated and highly sensitive to the

organisational and activational effects of endogenous steroids

(35,36). The GnRH regulatory centres are therefore significant targets

through which ECs may act to perturb reproductive function (37,38).

We have previously shown that life-long maternal exposure to bioso-

lids treated pastures results in altered expression of hypothalamic

mRNA for GnRH, as well as afferent regulators of GnRH including

galanin. More importantly, kisspeptin, the product of the KISS1 gene

and proposed gatekeeper of puberty, which plays a critical role in the

steroidogenic regulation of GnRH (39), is also affected (32). The aim

of the present study was to determine how the timing of maternal EC

exposure, relative to pregnancy, impacts upon the expression of

GnRH, oestrogen receptor (ER)a, KISS1 and KISS1 receptor (KISS1R)

within the foetal reproductive neuroendocrine system.

Materials and methods

Ethics statement

All animals used in the present study were treated humanely with due con-

sideration to the alleviation of pain, suffering, distress or lasting harm

according to the James Hutton Institute’s Local Ethical Committee and fully

licensed by the United Kingdom’s Animals (Scientific Procedures) Act 1986

under Project License authority (60/3356). All in-vivo components of the

study and euthanasia of animals were conducted at the James Hutton Insti-

tute under this legal framework operating at the highest ethical standards.

Experimental animals, management and monitoring

The experimental design has been described previously (34,40). Briefly, four

experimental groups of ewes were set up in parallel: two groups of ewes

(n = 12 per group) were exposed to either the biosolids treated (TT) or control

(CC) pastures throughout their lives up to the time of mating and thereafter

until the time of slaughter at 110 days gestation. In a cross-over design, an

additional group of ewes that had been raised on control pastures were trans-

ferred to the biosolids-treated pastures 4 days prior to mating and maintained

on these treated pastures until slaughter at 110 days of gestation (CT, n = 11)

and a group of ewes that had been maintained on biosolids-treated pastures

throughout their lives were, 14 days prior to introduction of the rams (wash-

out period to prevent faecal EC contamination of control pasture), transferred

and subsequently maintained on control pastures (TC, n = 10) (See Supporting

information, Fig. S1) as described previously (34,40).

Tissue collection

Prior to slaughter at 110 days of gestation, ewe body weight and condition

was determined and a terminal blood sample taken. Ewes were euthanised by

barbiturate overdose and foetuses were then removed, weighed and blood

samples collected. Only one foetus per ewe was used for the present study to

control for maternal or sibling influences. Maternal and foetal blood samples

were centrifuged immediately and plasma was stored at �20 °C for hormone

measurements. Hypothalami and pituitary glands were collected from foetal

animals from each of the four maternal exposure groups, halved, frozen on

dry ice and then stored at �80 °C until mRNA extraction and analysis. When

still frozen, foetal hypothalamic blocks were cut into coronal slices (approxi-

mately 2 mm) as described previously (36). The most rostral slice was cut

approximately 1 mm in front of the optic chiasm and encompassed the preop-

tic area (POA). A slice was also harvested approximately 1 mm dorsal to the

mediobasal hypothalamus/median eminence, which encompassed the arcuate

nucleus (ARC). From each of these tissue slices, approximately 20–30 mg of

tissue was harvested, using a tissue punch, for RNA extraction from an area

close to the ventricle that would encompass each of these two nuclei. Approxi-

mately 20–30 mg of tissue was also harvested from the mid sagittal face of

the foetal pituitary gland for RNA extraction (33).

RNA extraction

Total RNA was extracted from hypothalamic and pituitary gland tissue using

TRIzol� (Invitrogen, Carlsbad, CA, USA) in accordance with the manufac-

turer’s instructions, and mRNA (200–300 ng) was reverse transcribed using

Moloney-murine leukaemia virus reverse transcriptase (Invitrogen), random

hexamers (Promega, Madison, WI, USA) and Rnasin (Promega) as described

previously (41). Purity and quantity of mRNA and cDNA were assessed using

an ND-1000 spectrophotometer (NanoDrop, Wilmington, DE, USA).

Hormone measurements

Maternal and foetal plasma concentrations of oestradiol, testosterone, proges-

terone follicle-stimulating hormone (FSH), luteinising hormone (LH) and inhibin

A were estimated, in duplicate, as described previously (34) using protocols vali-

dated in sheep. For oestradiol, mean intra- and inter-assay coefficients of varia-

tion (CV) were 8.5% and 6.15%, respectively, and the assay sensitivity averaged

0.27 pg/ml. The mean intra-assay CV was 7.5% and assay sensitivities were 0.1
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and 0.2 ng/ml for FSH and LH, respectively, and the assay sensitivity averaged

0.19 ng/tube. For plasma testosterone, the mean intra- and inter-assay CV was

9.4% and 9.6%, respectively, over three assays and the assay sensitivity aver-

aged 0.015 ng/ml. For progesterone, the mean intra- and inter-assay CV was

1.9% and 3.2%, respectively, and the assay sensitivity was 0.67 nM.

Quantitative PCR (qPCR)

mRNA expression in the hypothalamus and pituitary gland was quantified

using SYBR green real-time qPCR, in a 96-well plate format using an

MX3000 cycler (Stratagene, La Jolla, CA, USA). Reactions contained 5 ll of
2 9 SYBRII mastermix (Stratagene), primer (100 nm) and template in a total

volume of 10 ll. At the end of the amplification phase, a melting curve

analysis was carried out on the products formed. mRNA expression of genes

of interest was quantified using the comparative CT (cycle threshold)

method (42) and gene expression was calculated relative to the reference

gene (b-actin). Primers for all genes were designed using PRIMER EXPRESS, ver-

sion 2.0 (Applied Biosystems, Foster City, CA, USA) to span intron/exon

boundaries and to have an annealing temperature of 65 °C.

Statistical analysis

All data are presented as the mean � SEM. Expression data were analysed

using a generalised linear model where, within each hypothalamic region, the

dependent variables were sex and treatment. Graphics were produced using

R STUDIO, version 2.15.0 (R Development Core Team, 2013) with the additional

packages SCIPLOT and PMCMR (43,44). All of the explanatory variables were anal-

ysed for covariance and variance inflation and none were found. Foetus num-

ber per ewe was included as an explanatory variable and had no significant

effect on the results. P < 0.05 was considered statistically significant.

Results

Maternal morphology and endocrinology

Data on maternal and female foetal morphology and endocrinology at

day 110 of gestation have been reported previously as part of a related

study (34) and are provided in the Supporting information (Fig. S2). Of

relevance to the present study, maternal body condition scores were

indicative of a normal nutritional state for the stage of gestation in all

groups and there were no differences in number or in the sex ratio of

foetuses produced between the four different exposure groups.

Foetal morphology and endocrinology

As reported previously for females (34) and summarised in Table 1

(to allow comparison of sex differences), there was no significant

effect of either treatment or sex on foetal gross morphology.

Timing of maternal exposure and effects on foetal HPG axis

GnRH and GnRH receptor (GnRHR) expression

Hypothalamic GnRH mRNA expression levels in control (CC) males

were not statistically different from females in the POA, although,

in the ARC, GnRH mRNA expression was significantly (P < 0.05)

higher in males compared to females (Fig. 1A). Biosolids exposure

had significant effects on GnRH mRNA expression in both the POA

and ARC, with the effects differing between the two nuclei and not

following the same trend in males and females.

In the hypothalamus in female foetuses, the effects of exposure

to biosolid EDs were observed only in the POA. The pregnancy

exposure alone group (CT) and life-long exposure (TT) groups had

significantly (P < 0.05) higher expression of GnRH mRNA compared

to the CC group (Fig. 1A). In the ARC, there was no effect of treat-

ment on GnRH expression in female foetuses.

In males, effects were observed in both hypothalamic regions. GnRH

mRNA expression in the POA was significantly (P < 0.05) reduced in the

TT relative to the CC group In the ARC, GnRH mRNA expression in male

foetuses was significantly (P < 0.05) lower in all biosolid exposed (CT, TC,

TT) groups relative to the CC group. In the ARC, in which males from the

CC group had significantly (P < 0.05) higher GnRH expression than

females, this sex difference was reversed in the preconception only expo-

sure (TC) and TT groups, such that GnRH mRNA expression was signifi-

cantly (P < 0.05) lower in males compared to females (Fig. 1B).

In the pituitary gland, there were no significant sex differences in

GnRHR expression in any of the treatment groups (Fig. 1C). In female

foetuses, GnRHR mRNA expression was significantly (P < 0.05) lower

in the CT and TT groups relative to the CC group (Fig. 1C). In male

Table 1. Comparison of effects of of biosolids exposure on day 110 male (M)

and female (F) fetuses: morphological and endocrine characteristics (female

characteristics have been previously published (34). Values are mean�SEM.

Treatment

groups
Constant exposure profile Cross-over exposure profile

Sex CC(n = 12) TT(n = 12) CT(n = 11) TC(n = 10)

Morphology

Body weight (g)

Female 1845 � 50 1829 � 84 1922 � 84 1827 � 73

Male 1979 � 119 1966 � 54 1801 � 107 1911 � 64

Endocrinology

LH (ng/ml)

Female 1.65 � 0.33 1.79 � 0.37 1.73 � 0.75 2.49 � 0.92

Male 2.5 � 0.5a 1.9 � 0.3 2.8 � 0.6b 3.4 � 0.8b

FSH (ng/ml)

Female 1.28 � 0.08 1.52 � 0.11a 1.18 � 0.13b 1.37 � 0.16

Male 0.72 � 0.05 0.73 � 0.06 0.79 � 0.1 0.59 � 0.07

Testosterone (ng/ml)

Female 0.11 � 0.01 0.11 � 0.01 0.12 � 0.01 0.12 � 0.01

Male 0.29 � 0.05 0.34 � 0.03 0.34 � 0.06 0.36 � 0.05

Oestradiol (pg/ml)

Female 5.7 � 2.4a 1.5 � 0.9b 7.6 � 4.4a 4.0 � 1.5

Male 19.1 � 3.7a 33.9 � 4.6b 12.2 � 1.9a 16.8 � 3.2a

Inhibin A (pg/ml)

Female 7.69 � 0.69a 12.99 � 1.89b 8.69 � 1.69a 9.95 � 1.60

Male 173 � 6 168 � 7 152 � 10 159 � 6

FSH, follicle-stimulating hormone; LH, luteinising hormone.

CC, control; CT, raised on control pastures, then transferred and maintained

on biosolids-treated pastures; TC, biosolids-treated, then transferred and

maintained on control pastures; TT, continuous biosolids treated.

Different superscripts denote differences at P < 0.05 across exposure groups.

Italics represent significant differences at P < 0.05 between sexes within

each exposure group.
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foetuses, the only significant difference in GnRHR mRNA expression

was seen in the CT group, in which expression was significantly

(P < 0.05) lower than the CC group, as found in females (Fig. 1C).

KISS1 and KISSR

There was no sex difference in hypothalamic KISS1 mRNA expres-

sion in the POA or ARC (Fig. 2A,B) within the control group.

In the POA of females, there were no significant effects of bioso-

lids exposure on KISS1 mRNA expression (Fig. 2A). By contrast, in

the POA of male foetuses, KISS1 mRNA expression was significantly

(P < 0.05) increased in the TC and CT compared to the CC group

(Fig. 2A) but was significantly (P < 0.05) reduced in the TT group

compared to the CC group (Fig. 2A).

In the ARC, there was no effect of biosolids exposure on KISS1

expression in female foetuses; however, in the males, KISS1 mRNA

expression was significantly (P < 0.05) higher in the CT group, and sig-

nificantly (P < 0.05) lower in the TT group, relative to the CC group

(Fig. 2B).

For hypothalamic KISS1R mRNA expression, there were no sex

differences in mRNA expression in the CC groups in either the POA

or the ARC (Fig. 2C,D). In the POA in female foetuses, there was no

significant effect of biosolids exposure on KISSR mRNA expression

levels. In male foetuses, however, KISSR mRNA expression in the

POA was significantly (P < 0.05) lower in the TT group relative to

CC group (Fig. 2C). In the ARC, there were no statistically significant

effects on KISSR expression in either males or females. In both the

POA and the ARC in the TT group, females expressed significantly

higher levels of KISSR compared to males (Fig. 2A).

Gonadotrophins

As reported previously and summarised in Table 1, there was no

effect of treatment on plasma LH concentrations in the female

foetuses. In males, however, LH was significantly higher in the CT

and TC groups compared to the CC group. When comparing LH

concentrations between males and females, there was no signifi-

cant difference in the CC and TT groups but both CT and TC males

had significantly higher LH concentrations compared to females of

the same treatment groups. In the females, the FSH concentration

in the TT group was significantly higher than the CT group, which

had the lowest FSH concentration of all groups but was not differ-

ent to the CC or TC groups. In male foetuses, FSH concentrations

were significantly lower than the females in all of the treatment

groups but FSH concentrations did not differ between treatment

groups.

Gonadal hormones

As expected, in all groups, male foetuses had significantly

(P < 0.05) higher testosterone concentrations compared to females.

However, the plasma testosterone concentrations in both female

and male foetuses were not significantly different between treat-

ment groups. In female foetuses, the oestradiol concentration was

significantly (P < 0.05) higher in the CT group than in the CC and

TT groups. Plasma inhibin A concentrations in females were signifi-

cantly (P < 0.05) higher in the TT group than in both CC and CT

groups but not the TC group. In male foetuses, inhibin A concentra-

tions were not significantly affected by treatment but were signifi-

cantly (P < 0.05) higher than the females in all exposure groups.

Timing of maternal exposure and effects on foetal
oestrogen and aryl hydrocarbon receptor mRNA expression

In both the POA and ARC regions of the hypothalamus, control

males had significantly (P < 0.05) higher ERa mRNA expression

compared to control females (Fig. 3A,B). Effects of exposure to bio-

solids on foetal ERa mRNA expression were again different between

CT
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Fig. 1. Maternal exposure to biosolids chemicals before conception only (TC), during pregnancy only (CT) or life-long (TT) has sex- and region- specific effects

on foetal male and female gonadotrophin-releasing hormone (GnRH) mRNA expression in the hypothalamus. In the preoptic area (POA) (A), a divergent effect
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difference compared to respective control group (P < 0.05). #Significant sex difference within a particular group (P < 0.05).
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the POA and ARC regions and did not follow the same trend in

males and females.

In the POA in males, there was no significant effect of exposure

to biosolids on ERa mRNA expression (Fig. 3A), whereas in female

foetuses, the TT group had significantly (P < 0.05) higher expression

of ERa mRNA in the POA relative to the CC group (Fig. 3A). In the

TT group, there was also no significant sex difference in ERa mRNA

expression, which contrasts with the CC, CT and TC groups in which

significantly (P < 0.05) higher ERa mRNA expression was seen in

males compared to females for both POA and ARC.
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In the ARC, biosolids exposure did not affect ERa mRNA expres-

sion in females but, in the males, ERa mRNA expression was signif-

icantly (P < 0.05) lower in the TC and TT groups relative to the CC

group (Fig. 3B). In the TT group, as in the POA, this meant that the

significantly (P < 0.05) higher ERa mRNA expression seen in the

ARC in CC males compared to females was no longer evident

(Fig. 3B).

In the pituitary gland, a significant sex difference was seen in

ERa mRNA expression in the CC group, with levels being signifi-

cantly lower (P < 0.05) in males compared to females (Fig. 3C);

however, this difference was not evident in any of the biosolids

exposed groups, and ERa mRNA expression was significantly

(P < 0.05) lower in female foetuses from the CT, TC and TT groups

compared to the CC group (Fig. 3C). There was no significant differ-

ence in ERa mRNA expression in the ARC between any of the male

exposure groups.

For AhR, in both hypothalamic regions, CC males had signifi-

cantly (P < 0.05) higher aryl hydrocarbon receptor (AhR) expression

compared to females (Fig. 4A,B).

In the POA, there was no effect of biosolids exposure on AhR

mRNA expression in either sex (Fig. 4A). In the ARC, in the females,

there was a similar absence of effect of biosolids exposure on AhR
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Fig. 3. Maternal exposure to biosolids chemicals before conception only (TC), during pregnancy only (CT) or life-long (TT) has sex- and region- specific effects

on foetal male and female oestrogen receptor (ER)a mRNA expression in the (A) preoptic area (POA) and (B) arcuate nucleus (ARC) regions of hypothalamus

and (C) in the pituitary gland relative to each other and to unexposed foetuses (CC). In both the POA and ARC, there is sexually dimorphic expression between

CC males and females that is subsequently lost in the TT group. Interestingly, pituitary gland ERa expression is only affected in females exposed to biosolids

chemicals; n = 12 (CC and TT); n = 11 (CT); n = 10 (TC). *Significant difference compared to respective control group (P < 0.05). #Significant sex difference

within a particular group (P < 0.05).
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Fig. 4. Aryl hydrocarbon receptor (AhR) mRNA expression in the (A) preoptic area (POA) and (B) arcuate nucleus (ARC) regions of hypothalamus. An effect of

exposure was only seen in pregnancy only (CT) exposed males in the ARC relative to controls (CC) with no effect of exposure in the preconception (TC) or life-

long (TT) exposure groups. Interestingly, female foetal hypothalamic AhR expression was not affected by treatement, which contrasts with the effects on AhR

expression in the pituitary gland (C) where expression was reduced in all exposed groups relative to controls, whereas male AhR expression was unaffected;

n = 12 (CC and TT); n = 11 (CT); n = 10 (TC). *Significant difference compared to respective control group (P < 0.05). #Significant sex difference within a par-

ticular group (P < 0.05).
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mRNA expression, whereas, in males, AhR mRNA expression was

significantly (P < 0.05) increased in the CT relative to the CC group,

although this was not evident in the TC and TT groups, relative to

the controls (Fig. 4B). There was a significant sex difference in pitu-

itary gland AhR expression in the CC group, with expression being

notably higher in female foetuses (P < 0.05). However, this differ-

ence was not evident in any of the biosolids exposed groups

(Fig. 4C). In female foetuses, AhR mRNA expression was significantly

lower in the TC, CT and TT groups compared to the CC group. There

was no effect of biosolids exposure on AhR mRNA expression in

male foetal pituitary glands (Fig. 4C).

Discussion

This is the first study to address the effects of the timing of mater-

nal exposure to environmentally relevant chemical mixtures on the

foetal reproductive neuroendocrine system. The findings from this

ovine model are significant for the following reasons. They show

that: (i) the effects of maternal exposure to mixtures of ECs in bio-

solids on the foetal neuroendocrine system are sexually dimorphic;

(ii) the timing and duration of maternal EC exposure is critical in

determining its effects on the foetal neuroendocrine system; in par-

ticular EC exposure prior to conception, but then not during preg-

nancy, can affect development of the foetal reproductive

neuroendocrine system; (iii) the effect of maternal exposure to EC

mixtures during pregnancy alone on the foetal neuroendocrine sys-

tem can be different compared to those seen when maternal expo-

sure has been life-long (i.e. prior to and during pregnancy); and (iv)

life-long maternal exposure to chemical mixtures does not neces-

sarily mean greater/more effects on gene expression in the foetal

neuroendocrine system.

Specifically, the inhibitory effects of EC exposure on GnRH and

KISS1 (POA and ARC), ERa (ARC) and KISSR (POA) mRNA expression

in the male hypothalamus are more pronounced and, indeed, were

in the opposite direction relative to the observed increase in GnRH

and ERa mRNA expression within the female, and were not sup-

pressed but were increased in the POA. The suppression of KISS1

expression in foetal males is consistent with our previous studies

and studies in rodents exposed to endocrine disruptors during foe-

tal development (47,48) and demonstrates that the kisspeptin sys-

tem is a potential target for endocrine disruption. Although our

results in females are in contrast to those in males, they are con-

sistent with previous studies in rodents exposed prenatally. The

most striking similarity was an increase in GnRH mRNA expression

that has been observed in the POA in response to in utero exposure

to chemical mixtures (PCBs) in Aroclor 1221, methoxyclor and

chloropyrifos (45), and increased ERa mRNA expression was

observed following exposure to bisphenol A in female rodents (49)

and sheep (50). However, these findings contrast with those of

Mahoney and Padmanabhan (50), who showed a consistent sup-

pression of GnRH expression in the POA following prenatal expo-

sure to BPA and methoxyclor in both male and female sheep.

Because biosolids represent largely unquantifiable low-level mixed

exposure, it is difficult to draw direct comparisons to the effects on

the foetal hypothalamus of other ‘known dose’ exposure studies on

exposures in different species. Furthermore, there is a cocktail effect

between the different molecules from a mixture that does not boil

down to the sum of the effects but may be responsible for diver-

gent/inverse effects of single molecules. Nevertheless, the observa-

tion that GnRH expression is altered by life-long low-level maternal

EC exposure in the current study is important because increased

GnRH expression may be a contributory factor in precocious pub-

erty in females (45,46) and therefore may have implications for

later adult reproductive function.

For some of the hypothalamic genes investigated in the present

study (GnRH (POA), KISS1 and KISSR), mRNA expression showed

sex-specific disturbances after life-long EC exposure. However, for

others, the sexually differentiated pattern seen in controls was

reversed (GnRH, ARC) or lost (ERa) in the foetuses of ewes that

had been exposed to ECs throughout their lifetime. These effects on

sexually differentiated gene expression were not seen in our previ-

ous study that used the same life-long EC exposure paradigm.

Although this could be a result of lower numbers of animals in our

previous study, we cannot rule out the possibility that animals in

the two studies were exposed to different chemical concentrations

or chemical mixtures as a result of variation in biosolids composi-

tion or grazing patterns.

The sexually dimorphic effects of EC exposure were not limited

to the hypothalamus, because life-long EC exposure also signifi-

cantly affected mRNA expression in the pituitary gland. However, in

this tissue, the effects were more pronounced in females, in which

expression of all investigated genes (GnRHR, ERa, AhR) was signifi-
cantly reduced compared to males in which GnRHR mRNA expres-

sion was reduced only in the pregnancy exposed group (CT). The

results for GnRHR and ERa in the female pituitary gland are con-

sistent with our previous studies in foetuses from life-long biosolids

exposed mothers (32,33).

These results provide compelling evidence that the foetal neu-

roendocrine system is altered following life-long maternal exposure

to EC mixtures in biosolids and, critically, that the reproductive

neuroendocrine axis of male and female foetuses may react differ-

ently to EC exposure. Sexually dimorphic differences in the brain

are present in foetal life, and are found in almost every region of

the brain, particularly the hypothalamus (51,52). It is therefore not

surprising that the effects of life-long chemical exposure on expres-

sion levels of key reproductive neuroendocrine systems are sexually

dimorphic. Numerous studies in rodents have demonstrated sex-

specific endocrine disrupting effects on brain development, as well

as differential effects on different brain regions, as also shown in

the present study (53). In particular, studies on rodents exposed,

during gestation, to the PCB mixture Aroclor 1221 showed altered

expression of numerous oestrogen-sensitive genes in the

anteroventral periventricular nucleus in females but not in males

(47); in contrast, the ARC was affected in males but not females.

Although there are critical species differences to be taken into

account, it is well established that sexual differentiation of the

hypothalamus is an oestrogen-dependent process (41). During the

developmentally critical sensitive period, oestrogen induces a per-

manent alteration in the neural control of physiological functions

that persist into adulthood (54,55). Accumulating evidence suggests
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an important role for oestrogen and kisspeptin receptors in the

hypothalamus for sexual differentiation of the brain and behaviour

(56). Many of the chemicals found in biosolids have been shown to

have oestrogenic effects and the present study provides evidence

that oestrogen sensitive genes in the hypothalamus and pituitary

gland may be a target for EDCs, which could potentially have long-

term effects on neuroendocrine function.

The present study specifically addressed the question as to

whether the timing of maternal exposure is critical for determining

subsequent effects of EC exposure on the foetal neuroendocrine

axis. In the groups in which maternal exposure took place during

pregnancy alone, significant sexually differentiated, region-specific

effects on the expression of key neuroendocrine genes were also

observed. However, the total number of changes in mRNA expres-

sion (relative to controls) was less in the pregnancy alone exposure

group compared to the continuous maternal exposure group, as

might be expected given that exposure was shorter. The differential

effects between the pregnancy exposure alone and life-long expo-

sure groups could be related to adaptive responses such as

increases in xenobiotic metabolising enzyme expression or activity

(57), which may have been induced by the preconception exposure

and then maintained during pregnancy, thereby mitigating the

effects of biosolids exposure on the foetus.

When maternal EC exposure occured only prior to pregnancy,

this also resulted in lower expression of mRNA for GnRH and ERa
in the ARC (males only). Similarly, for the pituitary gland, precon-

ception biosolids exposure significantly reduced ERa and AhR

expression to an extent the same as that resulting from life-long

exposure in females. However, the exposure effects on other genes

were different; for example, POA KISS1 mRNA expression in males

was increased after preconception exposure, whereas life-long

exposure reduced KISS1 mRNA expression. These results are consis-

tent with our previous findings of effects in the ovaries of foetuses

from mothers exposed to biosolids only prior to conception (34).

This result is of specific concern because foetal EC exposure in this

paradigm is likely to be mostly attributable to mobilisation of

chemicals from maternal fat stores. Worryingly, these would have

been laid down prior to mating and then released later in preg-

nancy when energy demands in the mother are increased. As might

be expected, the overall number of effects of exposure was lower

in the foetuses born to mothers exposed to ECs prior to pregnancy,

and the pattern of changes observed, differed from that seen in

the life-long maternal exposure group. This is likely to reflect the

fact that the foetus may be exposed to varying levels and mixtures

of ECs as they are released from adipose stores throughout several

important windows of development. This is important because it

has recently been shown that there is differential temporal sensitiv-

ity across gestation where maternal exposure to biosolids during

different gestational windows has varying effects on the foetal

ovary (24), with this being difficult to predict or measure.

Another explanation is that the oocyte/embryo product during

the pre-and peri-conceptional period was affected by EDC exposure.

Profound epigenetic modifications to the genome occur in the late

folliculogenesis and in early embryo as a normal part of develop-

ment. Recent evidence suggests that environmental signals acting

during early development may also result in epigenetic changes,

which may play a role in mediating the association between early-

life exposures and later phenotype (58,59). Most evidence of peri-

conceptional ‘programming’ has emerged not only from maternal

nutritional models, but also other in vivo and in vitro conditions,

including assisted reproductive treatments, showing consistent out-

comes (60). To support the hypothesis of a release of stored EDCs

by the mother or epigenetic alteration of the oocyte/zygote, crossed

embryo transfer would be necessary.

The mechanisms by which chemicals in biosolids may affect neu-

roendocrine function are likely to be numerous given the mixture of

different chemicals present in biosolids and the importance of the

timing of exposure. Determination of the potential mechanisms

underlying neuroendocrine disruption is therefore difficult, although,

given the similar effects of exposure on both ERa and AhR, the pre-

sent study would suggest that the activation of both of these recep-

tors may be involved. Several chemicals found in biosolids, such as

PCB congeners, are well known ligands for AhR, which is involved in

the detoxification of endogenous and exogenous substrates by cyto-

chrome P450 enzymes and cell regulation, oxidative stress and

apoptosis (61). Several previous studies have demonstrated that AhR

is expressed in the hypothalamus and pituitary gland and activated

by endocrine disruptors in these tissues (62–64). In addition, AhR

expression in the hypothalamus is sexually dimorphic during late

gestation in rodents (64), with males expressing higher levels of AhR

compared to females, which is in agreement with the results of the

present study. Moreover, in the present study, pregnancy exposure

to biosolids also increased AhR expression in males but not females,

which is also in accordance with previous studies of mixed prenatal

PCB exposure in rats (64). The similar effects of biosolids exposure

on AhR and ERa are perhaps not surprising because activation of

the AhR pathway can interfere with ERa pathways through a num-

ber of mechanisms. There are complex interactions between AhR,

ERa and gonadotrophin release and synthesis by direct actions on

gonadotrophs (63). Induction of ERa and AhR may represent puta-

tive pathways through which biosolids exposure may alter neuroen-

docrine hormone release.

A critical question is whether alterations to the expression of genes

involved in regulation of gonadotrophin release are adaptive or may

impact on normal reproductive function in later life. In the present

study, gonadotrophin concentrations were quantified in the EC

exposed foetuses and, although it is recognised that foetal gonado-

trophin secretion may not mirror what would be seen in the adult, it

was interesting to note that gonadotrophin concentrations were sig-

nificantly affected by EC exposure; however, the present study mea-

sured plasma concentrations at a single time point, and it is unclear

how this concentration corresponds to the pulsatility of LH secretion,

which is likely to be different in each animal. In addition, we have

previously shown that, in adult males exposed to biosolids in utero,

significantly altered testis structure is not reflected in gonadrotrophin

or steroid hormone concentrations, which were unaffected. Although

the present study cannot confirm whether altered neuroendocrine

gene expression in response to biosolids exposure is related to

changes in gonadotrophin release, our previous study would suggest

that altered foetal reproductive neuroendocrine development may
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have long-term consequences for reproductive function, at least in

males; however, this warrants further investigation.

The results of the present study not only support and extend our

previous neuroendocrine findings (32) but, crucially, also demon-

strate that foetal sex and the timing of maternal exposure are criti-

cal when assessing the effects of exposure to low levels of

mixtures of chemicals.
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Additional Supporting Information may be found online in the sup-

porting information tab for this article:

Fig. S1. Diagrammatic summary of the study design.

Table S1. Effects of chemical cocktails in sewage sludge on mor-

phological and endocrine characteristics maternal ewes on day 110

of pregnancy.
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