
OPEN

ORIGINAL ARTICLE

A central role for hepatic conventional dendritic cells in
supporting Th2 responses during helminth infection

Rachel J Lundie1,2, Lauren M Webb3,6, Angela K Marley1,6, Alexander T Phythian-Adams3, Peter C Cook3,
Lucy H Jackson-Jones1, Sheila Brown3, Rick M Maizels1, Louis Boon4, Meredith O’Keeffe2,5

and Andrew S MacDonald3

Dendritic cells (DCs) are the key initiators of T-helper (Th) 2 immune responses against the parasitic helminth Schistosoma
mansoni. Although the liver is one of the main sites of antigen deposition during infection with this parasite, it is not yet clear

how distinct DC subtypes in this tissue respond to S. mansoni antigens in vivo, or how the liver microenvironment might

influence DC function during establishment of the Th2 response. In this study, we show that hepatic DC subsets undergo

distinct activation processes in vivo following murine infection with S. mansoni. Conventional DCs (cDCs) from schistosome-

infected mice upregulated expression of the costimulatory molecule CD40 and were capable of priming naive CD4+ T cells,

whereas plasmacytoid DCs (pDCs) upregulated expression of MHC class II, CD86 and CD40 but were unable to support the

expansion of either naive or effector/memory CD4+ T cells. Importantly, in vivo depletion of pDCs revealed that this subset was

dispensable for either maintenance or regulation of the hepatic Th2 effector response during acute S. mansoni infection. Our
data provides strong evidence that S. mansoni infection favors the establishment of an immunogenic, rather than tolerogenic,

liver microenvironment that conditions cDCs to initiate and maintain Th2 immunity in the context of ongoing antigen exposure.

Immunology and Cell Biology (2016) 94, 400–410; doi:10.1038/icb.2015.114

Dendritic cells (DCs) are a heterogeneous population of pathogen-
sensing antigen presenting cells (APCs) that have a central role in the
initiation of immune responses and the polarization of CD4+ T
cells.1,2 Current understanding of the process of DC activation and
function is heavily biased toward studies using model antigens (Ags)
or components of pathogens such as bacteria, viruses or protozoan
parasites that typically induce T-helper (Th) 1/Th17 responses, while
the interaction between DCs and Th2-inducing organisms remains less
well defined.3–5

Helminth parasites are the most potent natural inducers of Th2
immune responses and murine infection with Schistosoma mansoni is a
well-characterized experimental model for studying the development
of Th2 immunity in vivo.4,6 During S. mansoni infection, development
of the Th2 response coincides with the onset of egg production by
female parasites living in the portal vasculature.7 S. mansoni eggs
are metabolically active and highly immunogenic and, while many
successfully exit the host by traversing the lumen of the gastrointestinal
tract, some eggs are carried by the blood flow into the liver, where they
become trapped in the sinusoids and induce inflammation and
granuloma formation.4,8 The liver is therefore one of the main sites
of Ag exposure during S. mansoni infection and the Th2-dominated

granuloma response, which serves to protect hepatocytes from toxins
released by tissue-trapped eggs, is thought to be essential for host
survival.9–11 Development of the egg-specific Th2 response begins
4–6 weeks after infection, with the peak of the ‘acute’ response
occurring around week 8, before a combination of regulatory
mechanisms and T-cell exhaustion combine to dampen down the
response during the ‘chronic’ stage from approximately week 12
onwards.4,7,12,13 Although Th2 responses are protective during the
initial stages of acute schistosomiasis, prolonged production of
interleukin (IL)-4/IL-13 contributes to liver inflammation, fibrosis
and immunopathology during chronic infection, and host survival is
dependent on mounting a balanced T-helper response.4,14

Tissue-resident DCs can be broadly divided into conventional DC
(cDC) and plasmacytoid DC (pDC) populations based on differential
use of transcription factors for development, expression of various cell
surface markers and their responses to pathogen molecules.1,15

Although cDCs are highly efficient at priming naive T-cell responses,
pDCs are best known for their ability to rapidly produce large
amounts of type I interferons (IFN) in response to viruses, bacteria
and certain toll-like receptor (TLR) agonists.16 In the steady state,
the liver is considered an immunosuppressive or tolerogenic
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microenvironment, and liver-resident DCs have been reported to
express lower basal levels of MHC class II and costimulatory molecules
than their splenic DC counterparts.17 Importantly, the liver is highly
enriched with pDCs, which, in their non-activated state, appear to be
immunoregulatory, functioning to suppress immune responses and
mediate oral tolerance in vivo.18 Furthermore, pDCs have also been
shown to have an anti-inflammatory role in Th2-mediated experi-
mental models of airway inflammation and asthma.19 In this context,
pDCs were recruited to the lungs of allergen-challenged mice and their
selective depletion enhanced Th2 cytokine production in the draining

lymph nodes and exacerbated the degree of immunopathology.19

Whether pDCs also function to down-modulate immune responses
in a Th2 infection setting is not known.
We have previously shown that CD11c+ DCs are the key initiators

of Th2 immune responses in the liver during acute S. mansoni
infection.20 Global depletion of cDC and pDC populations during the
priming stage of the Th2 response against parasite eggs (weeks 4–6
post infection) markedly impaired CD4+ T-cell production of IL-4,
IL-13 and IL-10, but had little effect on the Th1 cytokine IFN-γ.20
Although this work established the fundamental importance of DCs in
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Figure 1 The liver is a major effector site during S. mansoni infection. (a) The total number of S. mansoni eggs per gram of liver or intestine tissue isolated
from mice infected with S. mansoni for 6 weeks. (b) Liver weights of naive and infected mice represented as a proportion of total body weight. (c) The total
number of leukocytes isolated from the livers of naive and infected mice. (d) Gating strategy to identify DC populations and quantification of the total number
of cDCs and pDCs in the livers of naive and infected mice. The cDC population was defined as F4/80−CD11chighCD317− cells, whereas the pDC population
was defined as F4/80−CD11cintCD317+Ly6C+CD11b− cells. (e) Quantitative RT-PCR was used to measure mRNA transcripts in whole-liver tissue from naive
and infected mice. Data are expressed relative to the housekeeping gene Ubiquitin. Data are pooled from two experiments. Error bars indicate mean± s.e.m.

Conditioning of hepatic DCs in helminth infection
RJ Lundie et al

401

Immunology and Cell Biology



orchestrating Th2 development against S. mansoni infection in vivo,
it did not address how hepatic cDCs and pDCs respond to egg Ags or
how the liver microenvironment might influence the function of DC
populations in terms of their capacity to present Ag to CD4+ T cells.
A limited analysis of the activation phenotype of DCs over the course
of S. mansoni infection in vivo showed that CD11c+MHC class II+ cells
isolated from the spleen displayed only minor upregulation of
expression of conventional activation markers, even at the peak of
the Th2 response.21 However, this study did not separate DC
populations into cDC and pDC subsets or include a comparison of
hepatic DCs isolated directly from the liver effector site.
Here we have characterized the activation status of cDCs and pDCs

isolated from the liver during acute S. mansoni infection, both in terms
of their numbers and activation state, as well as their ability to present
Ag to naive or effector/memory CD4+ T cells. Our results demonstrate
that acute S. mansoni infection is associated with the recruitment of
both DC populations to the liver effector site and dramatic transcrip-
tional changes to the liver microenvironment. Importantly, hepatic
cDCs displayed increased CD40 expression during S. mansoni infec-
tion and were capable of priming naive CD4+ T-cell responses ex vivo,
suggesting that they are the major DCs responsible for Th2 induction.
In contrast, although pDCs isolated from the livers of S. mansoni-
infected mice also upregulated surface markers associated with Ag
presentation they were unable to support the proliferation of either
naive or effector/memory CD4+ T cells. Notably, depletion of pDCs
during murine S. mansoni infection did not significantly impact
hepatic Th2 responses, demonstrating that pDCs neither promote
nor suppress Th2 immunity in the effector site. Together, these data
extend our previous work20 and indicate that cDCs are likely to be the
critical cell population for Th2 effector cell development, function and
maintenance during S. mansoni infection.

RESULTS

S. mansoni infection is associated with increased numbers of DCs in
the liver effector site and dramatic changes in gene expression
The liver is one of the principal effector sites during S. mansoni
infection, with parasite eggs that are carried there by the blood flow
becoming trapped in the sinusoids and forming the foci of immune-
mediated granulomas.4 To investigate the impact of S. mansoni
infection on hepatic DC populations during the acute phase of disease,
livers were harvested from mice 6 weeks after infection for enumera-
tion of DC numbers and characterization of gene expression in the
liver microenvironment. This time point was selected based on our
previous work, which demonstrated that CD11c+ DCs were critical for
Th2 induction at weeks 4–6 post infection.20 As expected, S. mansoni
eggs were present in both livers and intestines of infected mice,
confirming the successful establishment of infection (Figure 1a).
Furthermore, acute S. mansoni infection was associated with hepato-
megaly, defined as an increase in liver weight as a proportion of overall
body weight (Figure 1b), and an increase in the total number of
leukocytes present in the liver (Figure 1c). To quantify the total
number of DCs in the liver, the number of viable leukocytes was
multiplied by the percentage of cDCs (F4/80−CD11chighCD317−)
and pDCs (F4/80−CD11cintCD317+Ly6ChighCD11b−) as determined
by flow cytometry (Figure 1d). Importantly, although there were
no significant differences between the proportion of cDCs (naive
2.31± 0.34% vs infected 2.14± 0.38%; P= 0.7532) and pDCs (naive
1.21± 0.13% vs infected 0.75± 0.20%; P= 0.0585) in the liver
preparations, there was a significant increase in the total number of
both populations (Figure 1d), indicating that DCs are recruited to, or

differentiate within, this major effector site during acute S. mansoni
infection.
To characterize gene expression in the liver microenvironment at

this stage of the response to S. mansoni infection, RNA was purified
from whole-liver tissue and quantitative reverse transcription PCR
(RT-PCR) was performed to determine transcript levels of key DC and
macrophage growth factors and cytokines that drive regulatory/Th1/
Th2 immune responses.6,22 Consistent with the increased number of
DCs in the liver at week 6 post infection (Figure 1d), gene transcripts
for both CD11c and granulocyte/macrophage colony-stimulating
factor (GM-CSF) were significantly upregulated at this time point
(Figure 1e), indicating that the liver microenvironment favors the
differentiation and proliferation of myeloid lineage cells23 during
establishment of the Th2 response. In contrast, acute S. mansoni
infection was associated with a significant downregulation in tran-
scription of FMS-related tyrosine kinase 3 ligand (Flt3-L), a cytokine
that mobilizes various DC subsets in vivo and promotes expansion of
both cDC and pDC subsets from progenitor cells24–26 (Figure 1e).
Importantly, M-CSF gene expression was not altered during acute
S. mansoni infection (Figure 1e), consistent with its role in promoting
the differentiation and survival of macrophage populations that
further the development of liver fibrosis during the later stages of
disease.27 Acute S. mansoni infection also had dramatic effects on the
Th2 and regulatory cytokine milieu in the liver, with elevated
transcription of genes encoding IL-4, IL-13 and IL-10 detected at
week 6 post infection, as expected (Figure 1e). Similarly, expression of
IFN-γ was also elevated in infected livers (Figure 1e), consistent with
the characteristic mixed Th1/Th2 immune response induced against
the parasites at this time point.4

Hepatic DCs respond to S. mansoni by upregulating surface
markers associated with Ag presentation
To examine the activation phenotype of the DC subsets recruited
to the liver at week 6 post infection, CD11c+ DCs were enriched
from liver leukocyte preparations, subdivided into cDC and
pDC populations based on surface markers CD11c, CD317
(PDCA-1/BST-2), Ly6C, CD11b, NK1.1 and F4/80 (Figure 2a),
and then assessed for expression of MHC class II and costimulatory
molecules CD86 and CD40 by flow cytometry (Figure 2b).
Although hepatic cDCs did not upregulate MHC class II or CD86
in response to infection, surface levels of these markers were
significantly increased on hepatic pDCs isolated from S. mansoni-
infected mice compared with naive mice (Figure 2b). In contrast,
CD40 expression was upregulated on both cDCs and pDCs isolated
from infected livers (Figure 2b), consistent with a requirement
for CD40:CD154 interaction for Th2 induction in vivo.21,28,29

Importantly, overall marker expression remained significantly higher
on cDCs, despite infection-induced activation of the pDC population
(Figure 2b).
As a comparison, DCs were also purified from the spleen and their

activation phenotype examined at week 6 of S. mansoni infection.
Splenic cDCs expressed significantly higher levels of CD40 during
infection, however, consistent with previous work,21 MHC class II and
CD86 expression remained unchanged compared with naive controls
(Supplementary Figure 1). It is likely that our more refined DC
enrichment protocol, combined with further separation of CD11c+

cells into cDC and pDC subsets, accounted for our ability to detect the
subtle but statistically significant changes in cDC CD40 expression at
this time point during S. mansoni infection. MHC class II, CD86
and CD40 expression on splenic pDCs remained unchanged during
S. mansoni infection (Supplementary Figure 1), indicating that the
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liver is a major site of pDC activation in this infection model.
Consistent with the liver data (Figure 2b), the overall levels of
expression of these three surface markers were significantly higher
on splenic cDCs compared with pDCs (Supplementary Figure 1).
Together, these data demonstrate that DC populations have distinct
activation profiles in response to S. mansoni depending on their
anatomical location. Furthermore, the upregulation of surface markers
associated with Ag presentation and T-cell costimulation on pDCs
isolated from the liver during S. mansoni infection suggests that this
population might have an immunogenic, rather than tolerogenic, role
in Th2 infection settings.

Hepatic cDCs isolated from S. mansoni infection are highly efficient
professional APCs
As hepatic DCs upregulated MHC and costimulatory molecules
associated with Ag presentation during S. mansoni infection
(Figure 2), we next investigated their ability to prime naive CD4+

T-cell responses ex vivo. To do this, DCs were purified from the livers
of naive or infected mice, FACS (fluorescence-activated cell sorting)
purified into cDC (CD11c+CD317−F4/80−NK1.1−) and pDC (CD11c+

CD317+F4/80-NK1.1−) populations (497% purity), and assessed

for their ability to present Ags to naive CD4+ T cells using a
well-described transgenic CD4+ OT-II T-cell co-culture system.30–32

This approach was necessary due to a lack of schistosome-specific TCR
transgenic mice. Hepatic cDCs from either naive or S. mansoni-infected
mice were highly efficient at inducing naive OT-II T-cell proliferation
in vitro in response to unrelated (third-party) peptide and protein Ags,
indicating that, despite a relatively ‘muted’ activation phenotype,33–35

the Ag uptake, processing and presenting function of these cDCs was
not compromised during S. mansoni infection (Figure 3). In contrast,
hepatic pDCs from S. mansoni-infected mice were unable to induce
proliferation of naive OT-II T cells, even at high concentrations of
ovalbumin (OVA) peptide or protein (Supplementary Figures 2a and
b). This was likely due to the overall lower levels of surface expression
of MHC class II and costimulatory molecules on pDCs compared with
cDCs isolated from infected livers (Figure 2b), and is consistent with
previous studies demonstrating that pDCs are poor initiators of naive
T-cell proliferation in response to exogenous Ags.16,30,36–38

Hepatic cDCs isolated from S. mansoni infection support
effector/memory CD4+ T-cell responses
In addition to their unrivaled ability to activate naive T cells, DCs can
also function to direct and maintain effector T-cell responses.1,20 As
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the liver acts as a major effector site wherein effector/memory CD4+

T cells are continuously exposed to schistosome eggs and egg Ags,4 we
next investigated the ability of hepatic DCs to support effector/
memory-like CD4+ T-cell responses ex vivo. Purified cDCs and pDCs
were sorted from naive or S. mansoni-infected livers and assessed for
their ability to present both peptide and protein Ags to pre-activated
effector/memory-like OT-II cells in vitro. Once again, cDCs from S.
mansoni-infected mice were fully functional APCs, able to support the
expansion of pre-activated OT-II T cells as effectively as cDCs from
naive mice, in response to either peptide or protein Ags (Figures 4a
and c). Furthermore, pre-activated OT-II cells produced equivalent
amounts of IL-4, IL-13, IL-10 and IFN-γ after co-culture with OVA
peptide or protein and cDCs isolated from the livers of either naive or
infected mice (Figures 4b and d). This indicates that
S. mansoni infection does not alter the fundamental ability of
hepatic cDCs to process and present Ag to support effector/memory
CD4+ T-cell responses. In contrast, hepatic pDCs from naive or
S. mansoni-infected mice activated the proliferation of only a small
proportion of pre-activated OT-II cells, and only at the highest
concentration of peptide tested (10 μM; Supplementary Figures 2c
and d). Consequently, cytokine production in pDC co-cultures was
markedly reduced compared with that of cDC co-cultures
(Supplementary Figures 2e and f). Interestingly, however, IL-13
production by pre-activated OT-II cells was significantly enhanced
in the presence of pDCs isolated from S. mansoni-infected livers
(Supplementary Figure 2e), suggesting that pDCs might have a
supporting role in shaping some aspects of the Th2 response during
infection.

The impact of in vivo pDC depletion on development of Th2
immunity against S. mansoni
To determine whether pDCs influence any aspect of Th2 development
in vivo during active S. mansoni infection, we specifically depleted this
DC population using two well-established approaches. Firstly, B6 mice
were treated with the pDC-depleting monoclonal antibody 120G8
every 48 h from day 28 (week 4) to day 42 (week 6) after S. mansoni
infection. Although this treatment regime successfully depleted
60–70% of pDCs from the spleen (Supplementary Figure 3a), as
previously reported,39 it was much less effective at depleting pDCs
from the liver, where 120G8-treated mice displayed only a 15–20%
reduction in hepatic pDCs compared with isotype control-treated
mice (Supplementary Figure 3b). Analysis of schistosome-specific
(SEA) recall responses revealed that this level of pDC depletion had
no impact on the Th2 and regulatory cytokine response by cultured
leukocytes from the liver (Supplementary Figure 3c; similar results
were obtained for IFN-γ (data not shown)). Intracellular cytokine
staining further confirmed that the ability of hepatic CD4+ T cells to
produce IL-4, IL-13 or IL-10 in response to phorbol myristate acetate
and ionomycin stimulation was not altered in 120G8-treated mice
(Supplementary Figure 3d).
Due to the inefficiency of the 120G8 monoclonal antibody depletion

strategy in the liver effector site (Supplementary Figure 3b), we next
used an alternative approach to deplete pDCs using BDCA2-DTR
(blood dendritic cell Ag 2-diphtheria toxin receptor) transgenic mice,
which express the DTR under the control of the human pDC gene
promoter, BDCA2.40 Administration of DT every 48 h from day 32 to
day 40 after S. mansoni infection significantly depleted pDCs from the
livers of naive and S. mansoni-infected BDCA2-DTR transgenic mice,
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with 480% efficacy (Figure 5a). Importantly, DT treatment was
highly specific for pDCs and had no measurable impact on cDCs,
Ly6Chi monocytes or F4/80+ macrophage populations (Supplementary
Figure 4). Additionally, pDC depletion did not affect overall egg
burdens, the total number of leukocytes, or CD4+CD25+Foxp3+

regulatory T cells present in the liver (data not shown). Analysis of
S. mansoni-specific recall responses showed that the high level of pDC
depletion achieved in the BDCA2-DTR transgenic mice had no
significant impact on the Th2 cytokine response by cultured liver
leukocytes (Figure 5b; similar data were obtained for IFN-γ (data not
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shown)). These results were confirmed using intracellular cytokine
staining to directly assess ex vivo cytokine production by hepatic CD4+

T cells (Figure 5c and data not shown for IFN-γ). Together, these data
demonstrate that pDCs do not have a major role in promoting,
sustaining or regulating Th2 immunity in the liver between weeks 4
and 6 of S. mansoni infection.

DISCUSSION

S. mansoni parasitic helminths are complex, multicellular pathogens
that induce a Th2 immune profile characterized by production of the

cytokines IL-4, IL-5, IL-13 and IL-10 by CD4+ T cells. Although the
precise molecular events and signaling pathways leading to Th2 cell
differentiation in vivo remain poorly defined, we and others have
demonstrated that the initiation of adaptive Th2 responses against
helminths or allergens is dependent on and driven by CD11c+

DCs.20,41–43 However, much of our knowledge of the interaction
between Th2-inducing pathogens such as S. mansoni and DCs is
derived from studies using bone marrow-derived DCs generated
in vitro, which capably induce Th2 responses despite displaying a
non-classical maturation phenotype following exposure to schistosome

Naive Infection

B6

DTR

CD45R

C
D

31
7

Naive Infection
0

20

40

60

80

100

pD
C

 d
ep

le
tio

n 
(%

)

IL-4

Naive Infection Naive Infection
0

0.5

1.0

1.5

2.0

2.5

ng
/m

l

B6 DTR

IL-13

Naive Infection Naive Infection
0

5

10

15

20

25

B6 DTR

IL-10

Naive Infection Naive Infection
0

1

2

3

4

B6 DTR

Media
SEA

IL-13

C
D

4+ IL
-1

3+  T
 c

el
ls

 (%
)

IL-4

C
D

4+ IL
-4

+  T
 c

el
ls

 (%
)

InfectionNaive

B6

DTR

CD4

IL
-4

InfectionNaive

B6

DTR

CD4

IL
-1

3

InfectionNaive

B6

DTR

CD4

IL
-1

0

Naive Infection Naive Infection
0

20

40

60

B6 DTR

Naive Infection Naive Infection
0

10

20

30

40

B6 DTR

Naive Infection Naive Infection
0

5

10

15

20

B6 DTR

C
D

4+ IL
-1

0+  T
 c

el
ls

 (%
)

IL-10

1.24 1.56

0.11 0.23

2.54 38.76

2.62 36.58

0.79 19.84

0.78 16.17

0.93

1.13 9.63

13.71

Figure 5 pDC depletion has no impact on Th2 responses in the liver. (a) DT treatment effectively depleted the CD11cintCD317+CD45R+ pDC population from
the livers of BDCA2-DTR mice, when administered every 48 h from day 32 to day 40 post infection. (b) Cells isolated from the livers of naive or infected
DT-treated B6 or BDCA2-DTR mice were restimulated with medium alone or SEA and supernatants were analyzed by enzyme-linked immunosorbent assay for
schistosome egg-specific recall responses. (c) Intracellular cytokine staining was used to directly assess liver CD4+ T-cell cytokine production. Data represent
one of three experiments. Error bars indicate mean± s.e.m.

Conditioning of hepatic DCs in helminth infection
RJ Lundie et al

406

Immunology and Cell Biology



Ags.33–35 In the present study, we have examined the direct impact of
acute S. mansoni infection on the two major functional classes of
CD11c+ DCs found in the liver effector site in vivo. We have
conducted a comprehensive assessment of the liver microenvironment
at week 6 post infection, including transcript levels of known DC
growth factors and Th1/Th2/regulatory cytokines, enumeration
of cDC and pDC numbers, evaluation of their activation states
and—most importantly—functional analysis of their ability to act as
professional APCs ex vivo and in vivo. Our data suggest that, although
the liver is a site of activation of both cDCs and pDCs, it is hepatic
cDCs that are likely to have a key role in CD4+ T-cell activation and
Th2 immunity during acute S. mansoni infection.
At ~ 6 weeks post S. mansoni infection, mature female worms living

in the portal vasculature are releasing eggs, the soluble Ags of which
are highly immunogenic and promote Th2 responses.4,7 Eggs that
become trapped in the liver sinusoids cause dramatic changes to the
overall liver microenvironment, including the development of
granulomas, composed of CD4+ T cells, macrophages, eosinophils
and CD11c+ DCs, around the individual eggs.4,11 In our study,
S. mansoni infection was associated with hepatomegaly and an increase
in the total number of leukocytes in the liver (Figures 1b and c). As a
result of this enhanced immune response, overall numbers of both
cDCs and pDCs were also increased in the liver effector site at 6 weeks
post infection (Figure 1d), indicating expansion or recruitment of
these APCs in response to S. mansoni egg Ags. This is likely driven by
elevated expression of the growth factor GM-CSF (Figure 1e), which
has a known role in recruitment, development and homeostasis of
non-lymphoid tissue DCs.41,44,45

This is the first study to characterize the activation phenotype of
cDC and pDC populations isolated directly ex vivo from the liver
during S. mansoni infection. Our data demonstrate that hepatic DC
populations display distinct activation profiles following exposure to
S. mansoni parasites; whereas cDCs exhibited increased levels of the
costimulatory molecule CD40 during establishment of the Th2
response, pDCs responded to S. mansoni infection by upregulating
surface expression of MHC class II, CD40 and CD86 (Figure 2b).
Interestingly, pDCs from the spleen displayed more limited pheno-
typic activation at the 6 week time point (Supplementary Figure 1a),
indicating that the liver is a major site of pDC activation at this acute
stage of S. mansoni infection. Importantly, our data demonstrating
that MHC class II expression was not significantly upregulated on the
surface of hepatic or splenic cDCs in response to S. mansoni parasites
is consistent with previous work examining the activation status of
splenic CD11c+MHC II+ cells over the course of S. mansoni
infection.21 Although Straw et al.21 also reported no significant
changes in CD40 expression at week 6 post infection, our refined
DC enrichment protocol and extensive panel of cell surface markers to
further subdivide the CD11c+ DC populations revealed a significant
increase in CD40 expression on both hepatic and splenic cDCs
(Figure 2b and Supplementary Figure 1a). As the focus of our study
was to address the role of hepatic DCs in the early phase of the Th2
immune response to S. mansoni parasites, we concentrated only on the
week 6 time point. However, it is highly likely that DC populations in
the liver and spleen will undergo dynamic changes as the infection
progresses from acute to chronic stage.
A central role for hepatic cDCs in initiating Th2 immune responses

during S. mansoni infection was first supported by our ex vivo studies
in which hepatic cDCs, but not pDCs, isolated from infected mice
were found to be highly effective professional APCs, efficient at
processing and presenting Ag to both naive and effector/memory
CD4+ T cells (Figures 3 and 4). In addition to priming naive T cells

and promoting the expansion of effector/memory T cells, cDCs from
S. mansoni-infected livers also effectively supported Th1/Th2 cytokine
production by ‘unpolarized’ effector/memory T cells (Figure 4). These
data indicate that S. mansoni does not compromise the uptake,
processing or presentation of Ag by hepatic cDCs, or their ability to
promote adaptive immune responses, during acute infection. As
helminth infections are generally chronic, further studies are required
to determine whether soluble proteins released from schistosome eggs
trapped in the liver have long-term immunomodulatory effects on the
ability of hepatic cDCs to initiate and maintain adaptive immune
responses. This will be particularly important for understanding the
potential negative impact of helminths on immune responses to
vaccines and other major pathogens that coexist in schistosome
endemic areas.46

In comparison to hepatic cDCs, pDCs from S. mansoni-infected
livers displayed significantly lower absolute levels of expression of
MHC II and costimulatory molecules (Figure 2) and, in functional
terms, this resulted in poor naive T-cell stimulatory capacity ex vivo
(Supplementary Figures 2a and b). This can been attributed to the
continuous synthesis of MHC II molecules and turnover of MHC
II-peptide complexes in activated pDCs, which continues long after
activation, rendering this DC population inefficient in the presentation
of exogenous Ags but still capable of presenting intracellular Ags in
their activated state.38 Our results are also consistent with published
studies demonstrating the poor ability of ex vivo-isolated pDCs to
present Ags to naive CD4+ T cells in the context of both Th1 and
allergic Th2 immune responses.16,30,36–38 Intriguingly, hepatic pDCs
isolated from naive or infected mice were equally poor at supporting
the expansion of effector/memory CD4+ T cells (Supplementary
Figures 2c and d), which respond to lower doses of Ag and are less
dependent on DC costimulation than naive CD4+ T cells.47 However,
pDCs from S. mansoni-infected mice showed increased ability to
support low level IL-13 production by effector/memory OT-II T cells
at the highest pDC:OVA323–339 peptide tested (Supplementary Figure
2e). These data imply that schistosome infection may confer on
hepatic pDCs a limited ability to support some key facets of Th2
functionality.
Although our ex vivo sorting experiments strongly suggested that

hepatic pDCs from schistosome infection did not have a dominant
role in Ag processing and presentation to CD4+ T cells, it was
important to investigate the contribution of this DC population to the
development of Th2 immunity during active infection in vivo.
Schistosome-specific Th2 recall responses in the liver were neither
reduced nor enhanced in pDC-depleted mice compared with controls
(Figure 5). These novel data build upon our previous work showing
that global depletion of both cDCs and pDCs dramatically impairs the
hepatic Th2 response during murine schistosome infection,20 strongly
suggesting that cDCs rather than pDCs are likely to be the major APCs
responsible for Th2 induction during S. mansoni infection. Our data
are in agreement with a study demonstrating that depletion of lung
pDCs had no impact on the priming of naive CD4+ T cells in an
allergic Th2 model of mouse asthma.36 In that setting, where pDCs
failed to induce T-cell division, they functioned to downregulate the
immune response by suppressing the generation of effector T cells.36

In contrast, in our studies we found no evidence that pDCs from
S. mansoni-infected livers inhibited the Th2 activating ability of cDCs:
firstly, in our DC:OT-II T-cell co-culture experiments, CD4+ T-cell
proliferation was equally efficient in the presence of cDCs alone or
following re-addition of pDCs (1:1 ratio; data not shown); secondly,
Th2 cytokines were not elevated following pDC depletion of
schistosome-infected mice (Figure 5). However, we cannot rule out
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the possibility that pDCs may develop tolerogenic capacity at later
stages of S. mansoni infection.
It remains to be determined precisely which cDC subtype(s) are

responsible for Th2 initiation during S. mansoni infection. Two recent
studies have identified a specialized subset of CD11b+ cDCs that
promote Th2 differentiation in the lung (in response to innocuous
allergens) or in the skin-draining lymph nodes (in response to the
parasitic helminth Nippostrongylus brasiliensis).48,49 In these studies,
Th2 induction was dependent upon DC-specific expression of
the transcription factor IFN regulatory factor 4,48,49 and further
investigation is now required to assess whether S. mansoni-specific
Th2 responses are also mediated by an IFN regulatory factor
4-dependent population of hepatic cDCs. Connor et al.50 have also
recently demonstrated that CD11c+ MHC class II+ DCs from the
skin-draining lymph nodes of N. brasiliensis-treated mice upregulated
expression of IFR4, programmed death ligand 2 and CD301b, and
acquired the ability to prime IL-4 responses in vivo without the
cooperation of additional cell populations. This data supports the
notion that DCs exposed to the appropriate parasite-conditioned
environment express all of the signals required to instruct Th2
differentiation.50

In conclusion, this is the first comprehensive study of the activation
phenotype and function of hepatic DC populations during infection
with a Th2-inducing pathogen. Our data suggest that, despite a low
level of phenotypic activation, cDCs are capable of stimulating naive
and effector/memory CD4+ T cell responses and supporting hepatic
Th2 immunity during acute S. mansoni infection. Furthermore, our
results demonstrate that pDCs neither promote nor regulate hepatic
CD4+ T cell responses at this stage of infection. We propose that the
liver microenvironment conditions recruited and/or resident cDCs to
support the induction and maintenance of both naive and effector Th2
responses. This would ensure that effective Th2 immunity is generated
in the face of persistent and ongoing Ag exposure, which is critical for
host survival against this chronic helminth infection.

METHODS

Animals, infections and immunizations
C57BL/6 (B6) mice, and B6 background transgenic OT-II and BDCA2-DTR40

mice, were bred and maintained under specific-pathogen-free conditions at the

University of Edinburgh, UK. Experimental mice were infected percutaneously

with ∼ 80 S. mansoni cercariae from Biomphalaria glabrata snails. For the first

pDC depletion strategy, B6 mice were injected i.p. every 48 h from day 28 to 40

with 200 μg 120G8 or IgG1 control monoclonal antibodies (courtesy of

L. Boon, EPIRUS Biopharmaceuticals, Utrecht, The Netherlands). For the

second pDC depletion strategy, BDCA2-DTR mice were injected i.p. every 48 h

from day 32 to 40 with 8 ng g− 1 DT (Sigma-Aldrich, St Louis, MO, USA) in

phosphate-buffered saline. Endotoxin-free soluble egg Ag (SEA) was prepared

in-house from S. mansoni eggs harvested from the livers of infected B6 mice as

previously described.33 All experiments were approved by Project Licences

granted by the Home Office (UK) and were conducted in accordance with local

guidelines.

S. mansoni egg counts
Livers and intestines from infected mice were digested in 4% potassium

hydroxide (15 ml g− 1 of liver tissue; 7.5 ml g− 1 of intestine tissue) at 37 °C

overnight. A total of 100 μl aliquots of the digests were evaluated on gridded

Petri dishes and the eggs counted at 10x magnification. Each digest was

examined in triplicate and the mean results were used to extrapolate the total

number of eggs per gram of tissue.

RNA isolation and RT-PCR
Total RNA from liver tissue was prepared using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) and the RNeasy Mini Kit (Qiagen, Venlo, Limburg,
The Netherlands). RNA was translated into cDNA using Superscript III Reverse
Transcriptase and Oligo (dT) (Invitrogen). Quantitative RT-PCR was per-
formed using a Light Cycler 480 II Real-Time PCR machine (Roche, Nutley,
NJ, USA) and LightCycler-DNA master SYBR Green I (Roche). The relative
amounts of mRNA for genes of interest were normalized to Ubiquitin. The
following primers were used: Ubiquitin, 5′-TGGCTATTAATTATTCGGTCTG
CAT-3′, 5′-GCAAGTGGCTAGAGTGCAGAGTAA-3′; CD11c, 5′-ATGGAG
CCTCAAGACAGGAC-3′, 5′-GGATCTGGGATGCTGAAATC-3′; GM-CSF,
5′-GCATGTAGAGGCCATCAAAGA-3′, 5′-CGGGTCTGCACACATGTTA-3′;
Flt3-L, 5′-CCTAGGATGCGAGCCTTGT-3′, 5′-TGTTTTGGTTCCCAAC
TCG-3′; M-CSF, 5′-CAACAGCTTTGCTAAGTGCTCTA-3′, 5′-CACTGCTAG
GGGTGGCTTTA-3′; IL-10, 5′-CAGAGCCACATGCTCCTAGA-3′, 5′-TGT
CCAGCTGGTCCTTTGTT-3′; IL-4, 5′-GAGAGATCATCGGCATTTTGA-3′,
5′-TCTGTGGTGTTCTTCGTTGC-3′; IL-13, 5′-CCTCTGACCCTTAAGGAG
CTTAT-3′, 5′-CCTCTGACCCTTAAGGAGCTTAT-3′; IFN-γ, 5′-GGAGGA
ACTGGCAAAAGGAT-3′, 5′- TTCAAGACTTCAAAGAGTCTGAGG-3′.

Ex vivo DC enrichment and flow cytometric sorting
Spleen and liver tissues were harvested from citrate saline buffer-perfused mice
and digested at 37 °C (with tilting and shaking) for 20 min (spleen) or 45 min
(liver) with 0.4 U ml− 1 Liberase CI (Roche) and 80 U ml− 1 DNase I type IV
(Sigma-Aldrich). Single-cell suspensions were then prepared by mechanically
disrupting the organs through a 70 μm (spleen) or 100 μm (liver) filter.
Low-density cells were enriched from the spleen using NycoPrep
(1.077 g ml− 1; Axis-Shield, Oslo, Norway). Liver leukocytes were isolated by
centrifugation in 33% Percoll (GE Healthcare, Piscataway, NJ, USA), followed
by filtration through a 40 μm cell strainer to remove contaminating S. mansoni
eggs before RBC lysis. For characterization of phenotypic activation and DC
sorting, non-DC lineage cells were then coated with biotinylated monoclonal
antibodies against murine CD2, CD3ε, CD49b, mIgM and erythrocytes
(Ter-119), and depleted using MyOne Streptavidin Dynabeads (Dynabeads
Mouse DC Enrichment Kit; Invitrogen). Dead cells were excluded by staining
with LIVE/DEAD Fixable Aqua Dead Cell Stain (Invitrogen). After FcR-block
(2.4G2), cells were surface stained with combinations of the following
monoclonal antibodies: F4/80, NK1.1, CD11c, CD317 (PDCA-1/BST-2),
Ly6C, CD11b, MHC class II, CD86 and CD40. Live, non-doublet,
F4/80−NK1.1− cells that were CD11chighCD317− were gated as cDCs, whereas
pDCs were defined as CD11cintermediateCD317+Ly6ChighCD11b− cells. For CD4+

T-cell co-culture experiments, hepatic cDC and pDC populations were sorted
from DC-enriched preparations of livers that had been rested overnight at 4 °C,
using a BD FACS Aria (San Jose, CA, USA). All antibodies for flow cytometry
were purchased from BD Biosciences (San Jose, CA, USA), eBioscience
(San Diego, CA, USA), Biolegend (San Diego, CA, USA) or Miltenyi Biotech
(Bergisch Gladbach, Germany). Samples were acquired on FACS Canto II or
LSR flow cytometers using BD FACS Diva Software and analyzed with FlowJo
(Tree Star Inc., Ashland, OR, USA).

Restimulation assays and intracellular cytokine staining
Single-cell suspensions of liver leukocytes (1× 106 cells per ml) were cultured in
ex vivo 15 medium (Lonza, Walkersville, MD, USA) containing 2 mM

L-Glutamine and 50 μM 2-ME (Invitrogen) in 96-well plates at 37 °C 5%
CO2 with or without 15 μg ml− 1 SEA. After 72 h, supernatants were harvested
and analyzed for IL-4, IL-13, IL-10 and IFN-γ using paired capture and
detection antibodies (produced from hybridomas in-house or purchased from
R&D Systems (Minneapolis, MN, USA), BD Biosciences or eBioscience) and
recombinant cytokine standards (Peprotech (Rocky Hill, NJ, USA) or BD
Biosciences). For intracellular cytokine staining of liver leukocytes, cells were
rested overnight at 4 °C and then stimulated with 10 ng ml− 1 phorbol
myristate acetate and 1 μg ml− 1 Ionomycin (Sigma-Aldrich) for 2 h, followed
by treatment with Golgi stop (BD Biosciences) for an additional 3 h. After FcR-
block, cells were surface stained with monoclonal antibodies against CD3 or
TCR-β and CD4, fixed with 1% PFA, permeabilized with Perm/Wash buffer
(BD Biosciences), and then stained intracellularly with anti-IL-4, anti-IL-13 and
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anti-IL-10. Identification of cytokine-positive cells was determined using
appropriate isotype and Fluorescence Minus One controls (data not shown).

Ag presentation assays
Naive OT-II CD4+ T cells were purified using Dynal Mouse CD4 Cell Negative
Isolation Kit (480% purity; Invitrogen). Pre-activated ‘effector/memory’ OT-II
CD4+ T cells (490% purity) were generated by culturing OT-II spleen cells in
RPMI containing 10% FCS, 200 mM L-Glutamine, 50 μM 2-ME and 1 mg ml− 1

OVA protein (Sigma-Aldrich) at 37 °C 5% CO2 for 7 days. On days 3 and 5,
cultures were supplemented with 10 ng ml− 1 IL-7, 10 ng ml− 1 IL-15 and
2 ng ml− 1 IL-2 (Peprotech). Cells were examined by flow cytometry for an
effector/memory-like phenotype by surface staining with monoclonal anti-
bodies against CD4, Vα2, CD44 and CD69 (data not shown). For carboxy-
fluorescein succinimidyl ester (CFSE) labeling, purified OT-II CD4+ T cells
were labeled with 5 μM CFSE for 15 min at 37 °C, and washed three times
before use. For presentation of OVA323-339 (OT-II) peptide, FACS-sorted liver
DC populations were incubated for 45 min with various concentrations of
OVA323–339, washed and then 5000 cDCs or pDCs were co-cultured with
50 000 naive or pre-activated CFSE-labeled OT-II cells in 96-well V-bottom
plates. For presentation of soluble OVA protein, 5000 cDCs or pDCs were
co-cultured with 50 000 naive or pre-activated CFSE-labeled OT-II cells in the
presence of various concentrations of endotoxin-depleted soluble OVA protein
in 96-well V-bottom plates. After culture for 60–65 h at 37 °C 5% CO2,
supernatants were harvested for analysis of cytokine production by enzyme-
linked immunosorbent assay and OT-II cells were surface stained with anti-
CD4 and anti-Vα2 for analysis of proliferation by flow cytometry.

Statistical analysis
Statistical analysis was performed using a two-tailed Student’s t-test or one-way
analysis of variance with Bonferroni post hoc test in Prism (GraphPad Software,
Inc., La Jolla, CA, USA). For the ex vivo Ag presentation assays, analysis of
pooled data from experimental repeats conducted on different days was carried
out using a mixed model analysis, labeling the day of the experiment as a
random factor (JMP statistical analysis software 11.1.1; SAS Institute Inc., Cary,
NC, USA). Differences between groups were determined by analysis of variance
followed by a Tukey–Kramer honest significant difference multiple comparison
test. Asterisks denote statistically significant differences (*Po0.05; **Po0.01;
***Po0.001).
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