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Fat-associated lymphoid clusters control local
IgM secretion during pleural infection and lung
inflammation
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Henry J. McSorley1,3, Judith E. Allen1,4,* & Cécile Bénézech2,*

Fat-associated lymphoid clusters (FALC) are inducible structures that support rapid

innate-like B-cell immune responses in the serous cavities. Little is known about the

physiological cues that activate FALCs in the pleural cavity and more generally the

mechanisms controlling B-cell activation in FALCs. Here we show, using separate models of

pleural nematode infection with Litomosoides sigmodontis and Altenaria alternata induced acute

lung inflammation, that inflammation of the pleural cavity rapidly activates mediastinal and

pericardial FALCs. IL-33 produced by FALC stroma is crucial for pleural B1-cell activation and

local IgM secretion. However, B1 cells are not the direct target of IL-33, which instead requires

IL-5 for activation. Moreover, lung inflammation leads to increased IL-5 production by type 2

cytokine-producing innate lymphoid cells (ILC2) in the FALC. These findings reveal a link

between inflammation, IL-33 release by FALC stromal cells, ILC2 activation and pleural B-cell

activation in FALCs, resulting in local and antigen-specific IgM production.
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T
he serous membranes covering the viscera and the wall
of the body cavities define three fluid-filled cavities: the
peritoneal, pleural and pericardial cavities. These serous

cavities constitute important reservoirs of innate-like B-cell
subsets, also called B1 cells, the major innate function of which
is to ensure early immune protection from infection by rapid
secretion of natural IgM. How and where natural IgM are
secreted is not fully understood. Natural IgM antibodies do not
undergo affinity maturation and thus bind antigens with overall
low affinity. Although pentameric structures highly increase
the avidity of IgM1, such arrangements also limit diffusion into
tissues, meaning that secretion into the circulation does not
guarantee efficacy at the site of infection. Paradoxically, many
studies have reported that peritoneal cavity B1 cells do not secrete
antibodies either at steady state or upon peritoneal cavity
challenge2–5. Upon activation, peritoneal B1 cells can relocate
to the red pulp of the spleen, where they start producing IgM
enabling secretion into the circulation4,6–9, or to the intestine
for secretion of IgM and IgA at the mucosal barrier9–11. Immune
protection of the peritoneal cavity is orchestrated by inducible
lymphoid structures found within certain visceral adipose tissue
deposits: the milky spots of the omentum and fat-associated
lymphoid clusters (FALC) of the mesenteries9,12–15. Upon
immune challenge, these structures support rapid activation of
serous B cells and germinal center formation13,15. The existence
of similar lymphoid structures has been reported in the adipose
deposits of the pleural cavity, the mediastinum13,16–18 and the
pericardium13. Although the density of FALCs in pericardium
and mediastinum is high13, the functional role of these clusters
has not been investigated. Critically, the pleural cavity is an
immune site of medical importance for the understanding
of airway associated diseases19, but little is known about the
role of pleural B cells or the mechanisms controlling their
function.

In an earlier study, we demonstrated that during inflammation,
tumour-necrosis factor, IL-4R signalling and invariant Natural
Killer T (iNKT) cells control the inducible formation of
mesenteric FALCs13. However, the mechanisms controlling
serous B-cell activation in FALCs and milky spots during
immune challenge have not been fully defined. IL-33, a
cytokine central to the activation of type 2 immune responses,
has been shown to activate B1 B-cells to proliferate and secrete
IgM in vitro and in vivo after intraperitoneal injection of
recombinant IL-33 (ref. 20). Moreover, mesenteric FALCs are
associated with the presence of ILC2s14. However, a direct in vivo
link between type 2 inflammation, IL-33 release, ILC2s and serous
B-cell responses has not been demonstrated.

As FALCs and milky spots are central to serous B-cell
homeostasis and activation13,15, here we investigate the
physiological link between IL-33 signalling, FALCs and serous
B-cell activation. We focus our study on the pleural cavity and the
role of pericardial and mediastinal FALCs in pleural infection and
airway inflammation. To understand the role of FALCs in pleural
B-cell activation, we take advantage of the tissue tropism of the
filarial nematode Litomosoides sigmodontis (Ls), a parasite that is
restricted to the pleural cavity in its first stages of development21.
In this study, we demonstrate that during Ls infection,
mediastinal and pericardial FALCs support the activation of
pleural B cells ensuring local secretion of IgM in the pleural
space at the site of infection. Furthermore, we demonstrate that
FALC B-cell activation during Ls infection is highly dependent
on IL-33R signalling. Finally, using a model of lung allergic
airway inflammation initiated by an extract of the fungus
Alternaria alternata (Alt) , we reveal a connection between lung
inflammation and pleural FALC B-cell activation, in which IL-33
is crucial for rapid activation and localized secretion of IgM into

the pleural space by FALC B cells. Importantly, we show that the
stromal cells of pericardial and mediastinal FALCs produce IL-33
and that activation of FALC B1 cells by IL-33 is not direct, but
requires secretion of IL-5 by IL-33 responsive cells.

Results
FALC B cells respond to parasite infection and secrete IgM.
Most studies to date that investigate B-cell responses to body
cavity perturbations assessed the systemic production of
antibodies within the serum15,22–24. After subcutaneous delivery
of infective larvae, Ls migrate rapidly through the lymphatic
system to the pleural cavity where the parasite resides. We
reasoned that to be protective IgM would have to be produced
locally by mediastinal and pericardial FALC B cells and secreted
directly into the pleural space. We chose to assess resistant
C57BL/6 mice at days 8–18 post infection, a time before
immune mediated parasite killing but at which point an active
immune response is occurring in the pleural cavity25,26. We
compared the level of total and Ls-specific IgM secreted within
the local environment (the lavage fluid of the pleural cavity), with
the levels found in the serum and within lavage fluid of the
peritoneal cavity, a site not related to the infection (Fig. 1a,b).
Pleural lavage fluid had significantly increased levels of both
antigen specific and total IgM 11 days post infection; whereas the
peritoneal cavity showed no increase in IgM (Fig. 1a). Similarly,
there was no infection-dependent increase in either total or
antigen-specific IgM in the serum at this time point (Fig. 1b).
These results indicated that during Ls infection, IgM production
is initiated at the site of infection and that B cells present in the
pleural environment were able to secrete IgM.

To determine if the FALCs of the pericardium and
mediastinum (Fig. 1c) were involved in the pleural B-cell
response against Ls, we analysed the effect of infection on the
number, size and cell content of FALCs (Fig. 1d–f). Whole-mount
immunofluorescence staining of mediastinal FALCs showed that
both the size and number of CD45þ clusters increased
profoundly upon filarial infection by day 11 (Fig. 1d,e). In
contrast, the number of FALCs of the mesenterium within the
peritoneal cavity did not increase, indicating that the activation of
FALCs is limited to the site of infection (Fig. 1e). We found that
Ls infection induced a significant accumulation of immune cells
both in pericardial FALCs and pleural exudate cells (PLEC), that
continued to increase between day 0, day 11 and day 18 (Fig. 1f,
first column). The differential expression of CD19, CD11b and
CD5 was used to identify the innate like CD19þCD11bþ

CD5þ B1a and CD19þCD11bþCD5� B1b-cell populations
and the conventional CD19þCD11b�CD5� B2 cells (gated as
shown in Supplementary Fig. 1). We found that all B-cell subsets
were significantly increased in pericardial FALCs and PLEC upon
infection (Fig. 1f, second, third and fourth columns).

To prove that FALCs were the source of antigen-specific IgM,
equivalent numbers of peritoneal exudate cells, PLEC, digested
pericardial FALC and lymph node cells from naive and
Ls-infected animals were placed in overnight culture. Remarkably,
all of the Ls-specific IgM was secreted by the pericardial
FALC B cells, significantly more even than the cells of the
draining mediastinal lymph node at this day 18 post-infection
time point (Fig. 1g). These results indicated that during Ls
infection, IgM production is initiated at the site of infection by
FALC B cells.

To determine which of the B-cell subsets were producing IgM,
pericardial and mediastinal FALC B1a, B1b and B2-cell popula-
tions isolated at day 18 post Ls infection were cell-sorted. After
overnight culture, the amount of secreted Ls-antigen-specific and
total IgM was determined by enzyme-linked immunosorbent
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assay (ELISA). While B1a, B1b and B2 cells had similar total IgM
secretion capacity, B1b cells produced slightly more Ls-specific
IgM than B1a cells (data not shown). When normalized to their
relative cell numbers in FALCs, B2 cells were found to secrete the

majority of the total and antigen-specific IgM (Fig. 1h). Thus the
adipose depots of the pleural cavity support B1a, B1b and B2-cell
antibody production, to enable provision of local IgM at the site
of infection.

a

ge

Production of Ls-specific IgM

Production of total IgM

B2B1a B1b

8.2%

20.5%

71.3%

6.6%

26.2%

67.2%

b c

d

T
itr

e

Naive Day 18

Ls-specific IgM

0

50

100

150 ********
****

C
lu

st
er

 c
ou

nt

Mediastinum Mesenterium

Day 11 PEC
PLE

C
FALC LN

Naive Day 8

0

10

20

30
****

****

0

20

40

60
ns

ns

Ls-specific IgM

T
itr

e 
× 

10
4

Naive Day 11

Total IgM

μg
 m

l–1

p Lav pl Lav p Lav pl Lav SerumSerum
0.00

0.02

0.04

0.06

0.08

ns

****
*

0

20

40

60

ns

****
*

0

20

40

60
ns

0

2

4

6

8 ns

Day 18Naive Day 11

B1b B2B1a
Pericardium

PLEC

Total

# 
C

el
ls

 ×
 1

06
# 

C
el

ls
 ×

 1
06

0

2

4

6

8

10
*** ****

0

10

20

30

40 ********

0

2

4

6

** ns

0

2

4

6

ns

****

0

2

4

6

ns

****

0.0

0.2

0.4

0.6 ** *** ***

0

2

4

6
****

0.0

0.2

0.4

0.6

* **

CD45

N
ai

ve
D

ay
 1

1

Mediastinum

Mediastinum

Pericardium

T

L
L

H

hf

Figure 1 | FALC B cells secrete parasite-specific IgM locally upon infection. (a,b) Peritoneal lavage (p Lav), pleural lavage (pl Lav) and serum of naive and

day 11 Ls-infected C57BL/6 mice were assessed for the presence of Ls antigen specific (a) and total IgM (b) by ELISA. Data shown combined from two

representative experiments of 45 independent experiments n¼6 or 12 per group. (c) Location of the pericardium and mediastinum within the pleural

cavity, thymus (T), Lungs (L) and Heart (H). (d) Representative whole-mount immunofluorescence staining of mediastina of naive and day 11 Ls-infected

C57BL/6 mice showing CD45þ clusters in green imaged with a fluorescence stereomicroscope. Original magnification �4. (e) Quantification of the

number of FALCs per mediastinum (left) and mesenterium (right) of naive, day 8 and day 11 Ls-infected C57BL/6 mice. Data combined from at least two

independent experiments; symbols represent individual mice, nZ11 per time point. (f) Flow-cytometric analysis of digested pericardial FALC cells and PLEC

of naive and day 11 or 18 Ls-infected C57BL/6 mice. Numbers of each B-cell subset were quantified. Data combined from two independent experiments,

symbols represent individual mice, n¼ 12 per time point. (g) Isolated peritoneal exudate cell (PEC), PLEC, FALC and lymph node (LN) cells of naive and day

18 Ls-infected C57BL/6 mice were cultured overnight and Ls antigen-specific IgM production quantified by ELISA. Data representative of two independent

experiments; symbols represent individual mice n¼ 2, 4, 5 or 6 per group. (h) B1a, B1b and B2-cell populations isolated from pericardial and mediastinal

FALCS from five individual day 18 Ls-infected C57BL/6 mice were cell-sorted as in (Supplementary Fig. 1) and total and Ls-specific IgM secretion was

determined for each population by ELISA. The relative quantity of total and Ls-specific IgM produced by each cell type is shown. Data combined from two

independent experiments. ns not significant, *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001 (normally distributed data analysed by one-way ANOVA

with Sidak multiple comparisons post test, non-normally distributed data analysed using the Kruksal–Wallis test with Dunn’s multiple comparisons post

test). Error bars represent mean with s.e.m. in all graphs.
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FALC B2 cells differentiate into plasma cells in infected mice.
To further investigate the role of FALCs in B-cell activation, we
performed whole-mount staining and confocal analysis of
mediastinal FALCs from Day 11 Ls-infected mice. Staining
of proliferative cells with the nuclear marker Ki67 revealed
intense proliferation of IgMþ and B220þ B cells in FALCs
of the infected mice (Fig. 2a confocal pictures and bar chart
quantification of Ki67þ pixels within FALCs). IgM staining
revealed that a large proportion of B cells show accumulation
of intra-cellular IgM, characteristic of IgM-secreting plasma
cells (Fig. 2a). This was further confirmed by the induction of
the plasma cell marker CD138 in FALCs of the infected mice
(Fig. 2b).

As B2 cells produced the vast majority of Ls-specific IgM in
FALCs, we focused our flow-cytometric analysis on the
emergence of plasmablasts in the B2-cell subset from pericardial
FALCs, PLEC and mediastinal LNs at day 11 post Ls infection. B2
plasmablasts were defined by the high expression of Ki67,
accompanied by loss of membrane IgD (Fig. 2c, upper panel).
Because CD138 is cleaved during collagenase digestion of FALCs,
we identified plasma cells as SSChighIgD� (Fig. 2c, lower panel).
FALCs were the only compartment where active proliferation and
B2-plasma cell differentiation occured (Fig. 2c–e). B2 cells of the

PLEC and mediastinal LNs in contrast, were not within active cell
cycle (Fig. 2c,d). The large plasma cell population (30% of B2-cell
subset) found in pericardial FALCs was not present in the
draining LNs or the PLEC (Fig. 2c,e). Furthermore, we found a
small population of GL7þKi67þ germinal centre-like B2
cells within the pericardium at day 11 post infection (Fig. 2f).
Taken together, these results provide evidence that pleural
FALCs enable the formation of plasma cells-secreting antigen-
specific IgM at the site of infection, outwith a classical secondary
lymphoid organ.

Parasite-specific IgM within pleural FALCs is dependent upon
IL-33R. IL-33, a cytokine central to the induction of type 2
responses has previously been shown to activate B1 cells to
proliferate and secrete IgM in vitro and in vivo following
intra-peritoneal injection of recombinant IL-33 (ref. 20).
However, no direct in vivo link between type 2 immunity and
IL-33-dependent activation of innate B-cell responses has been
demonstrated so far. We thus assessed the role of the IL-33R in
the activation of FALC B cells during Ls infection, which induces
a type 2 immune response. Whole-mount immunofluorescence
staining showed that the induction of B-cell proliferation in
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Figure 2 | FALC B2 cells differentiate into plasma cells in parasite infected mice. (a,b) Representative immunofluorescence staining of mediastinal FALCs

of naive and day 11 Ls-infected C57BL/6 mice showing Ki67 (red), B220 (blue) and IgM (green in a) or CD138 (green in b) and quantification of the

percentage area of Ki67 staining (a). Scale bar, 50mm. (c–e) Flow-cytometric analysis of digested pericardial FALC cells and PLEC from naive and day 11

Ls-infected C57BL/6 mice showing Ki67high B2 cells (c, upper panel); and SSChighIgD� plasma cells (c, lower panel). Quantification of % of Ki67high and

Ki67int (d) and plasma cells (e, left graph) in B2 cells and plasma cell number (e, right graph) in pericardial FALCs, PLEC and lymph node (LN) are shown.

(f) Flow-cytometric analysis of digested pericardial FALC cells from naive and day 11 Ls-infected C57BL/6 mice showing Ki67highGL-7þ germinal centre

(GC) B cells and quantification of germinal centre B cells as a % of the total B2-cell population. Data in a–f are combined from two independent

experiments, symbols in the graph in a represent individual clusters, data in d–f represent individual mice, n¼ 12 per time point. ns not significant,

**Po0.01, ****Po0.0001 (normally distributed data analysed by one-way ANOVA with Sidak multiple comparisons post test, non-normally distributed

data analysed using the Kruksal–Wallis test with Dunn’s multiple comparisons post test). Error bars represent mean with s.e.m. in all graphs.
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mediastinal FALCs of BALB/c mice was impaired in IL-33R-
deficient BALB/c mice (Il1rl1� /� ) at day 11 post
infection (Fig. 3a). Immunofluorescence staining indicated that
mediastinal FALCs of naive Il1rl1� /� mice are smaller
than their BALB/c counterparts, flow cytometric analysis of
digested pericardial FALCs showed a trend for fewer cells in
the mediastinal adipose but this did not reach significance
(Fig. 3b). Next, we showed that in Il1rl1� /� mice, none of
the pericardial FALC B-cell subsets increase in number
following Ls infection, unlike their wild type BALB/c
counterparts (Fig. 3c). This suggested that IL-33R signalling is
specifically needed for the accumulation of B cells in FALCs.
Even though B2 cells failed to accumulate in pericardial FALCs
of Il1rl1� /� mice, the differentiation of B2 cells into
SSChighIgD�plasma cells was not completly abrogated
(Fig. 3d,e), suggesting that IL-33R is not, or only partially,
involved in plasma cell differentiation. However, overall the
total number of plasma cells found in FALCs was severely
reduced (Fig. 3e). ELISA analysis confirmed the defect in pleural
FALC B-cell activation with impaired IgM accumulation in the
pleural lavage of Il1rl1� /� mice (Fig. 3f). Taken together,
these results revealed that IL-33R signalling is essential for
pleural B-cell antigen-specific IgM secretion during infection with
the filarial nematode Ls.

IL-33 is produced by FALC stromal cells. Since B-cell activation
in FALCs was so highly dependent on IL-33, we investigated
whether pleural FALCs and milky spots could be a physiological
source of IL-33. We compared the quantity of IL-33 released
spontaneously by naive lung tissue (a known source of IL-33), the
mediastinum, the omentum (peritoneal cavity adipose tissue
containing milky spots) and the gonadal adipose tissue (GAT)
(adipose tissue with few FALCs)13, using a 1 h in vitro culture
assay (Fig. 4a). Per gram of tissue, the mediastinum released 17
times more IL-33 than the GAT, and the omentum 7 times more
IL-33 than the GAT. This suggested that the lymphoid clusters
associated with adipose tissue of the visceral cavities are
themselves a source of IL-33. The levels of IL-33 released by
the mediastinum were comparable to the levels released by the
lung. Since IL-33 expression has been previously reported in
lymph node fibroblastic reticular cells27, we performed whole-
mount immunofluorescence staining and confocal analysis of
mediastinal FALCs. The staining revealed that Gp38þ stromal
cells from mediastinal FALCs express high levels of nuclear IL-33
(Fig. 4b). Notably, we could also detect low levels of extra-nuclear
IL-33 that colocalized with membranous Gp38 suggesting a basal
release of IL-33 by FALC stromal cells. The same pattern of IL-33
expression was found in stromal cells of pericardial FALCs and
omental milky spots (data not shown). We next addressed
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Il1rl1� /� mice showing frequency of SSChighIgD� B2 plasma cells (d) and quantification of frequency and number of SSChighIgD� B2 plasma cells (e).

(f) ELISA of total and Ls antigen-specific IgM in the pleural lavage of naive and day 11 Ls-infected BALB/c and Il1rl1� /� mice. Data are combined from two
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whether FALC stromal cells contained IL-33 during Ls infection
(Fig. 4c). Flow cytometric analysis of digested pericardial FALCs
confirmed that 495% of CD45�GP38þ stromal cells from
C57BL/6 mice expressed intracellular IL-33 (Fig. 4d) compared
with only B2% of CD45þ cells, when gated based on a
secondary antibody only control (Fig. 4d). At day 11 following Ls

infection, no difference in the levels of IL-33 within stromal or
haematopoietic cells was detected by flow cytometry (Fig. 4d),
ELISA analysis of spontaneous IL-33 release during 1 h in vitro
culture of the mediastinum (Fig. 4e) or whole-mount
immunoflouresence staining as compared with naive controls
(Fig. 4f).
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IL-33 controls pleural IgM secretion upon airway inflammation.
To address whether our findings with Ls were more broadly
relevant, we investigated the activation of pleural FALCs in a
distinct model in which involvement of the pleural cavity has never
previously been addressed. Inhalation of inflammatory agents
results in increased expression and secretion of IL-33 by lung
epithelial cells28 and intra-nasal (i.n.) instillation of the fungal
allergen Alt is known to increase pulmonary IL-33 expression28–31.
Surprisingly, i.n. delivery of Alt induced a noticeable release of IL-
33 in the pleural lavage at 48 h (Fig. 5a) revealing continuity of the
inflammatory IL-33 signal between the lungs and the pleural space.

We thus assessed whether the pleural IL-33 release induced by
Alt instillation was associated with mediastinal B-cell activation.
BALB/c and IL-33R-deficient (Il1rl1� /� ) mice were subjected to
i.n. delivery of Alt, and B-cell activation in FALCs was assessed
48 h after instillation. Whole-mount immunofluorescence
microscopy showed a marked induction of B-cell proliferation
in mediastinal FALCs of BALB/c mice, which was impaired in
IL-33R-deficient mice (Fig. 5b). We next quantified the precise
effect of Alt instillation on B-cell proliferation in collagenase
digested pericardial FALC cells and PLEC by flow cytometry
using the nuclear marker Ki67. B cells in pericardial FALCs but
not the PLEC showed high expression levels of Ki67 characteristic
of cells actively in cell cycle 48 h after Alt instillation (Fig. 5c).
Proliferation was more markedly increased in B1a and B1b cells
(30% of Ki67high B cells) than in B2 cells (3% of Ki67high B2 cells)
(Fig. 5c). Absence of Ki67high B cells in PLEC demonstrated the
importance of FALC to sustain pleural B-cell proliferation. Lack
of IL-33R led to complete impairment in the induction of B1b
and B2-cell proliferation and a fourfold reduction in the level of
proliferation of FALC B1a cells in Il1rl1� /� mice (Fig. 5c). The
marked proliferation of B1a and B1b-cell subsets in FALCs
following Alt delivery in BALB/c mice was correlated with a
significant increase in their number in pericardial FALCs but not
in the PLEC (Fig. 5d). Absence of IL-33R abrogated the
accumulation of B1a and B1b cells in FALCs after Alt instillation
in Il1rl1� /� mice (Fig. 5d).

We then assessed the level of total IgM secreted within the
pleural lavage, with the levels found within peritoneal lavage, a
non-related site, and the serum. Alt instillation induced a
significant increase in total IgM within the pleural lavage, but
not in the peritoneal lavage or serum (Fig. 5e), demonstrating that
the response induced is highly localized. Analysis of Il1rl1� /�

mice showed that induction of IgM secretion upon Alt instillation
in the pleural space is dependent on IL-33R. To confirm that
FALC B cells were the source of the IgM produced in response to
Alt, we placed the same number of wild-type pleural and
mediastinal FALC elicited cells in culture overnight, and
determined the production of total IgM within the supernatant
by ELISA. In all, 200,000 FALC cells from Alt exposed animals
secreted micrograms of IgM overnight (Fig. 5f). In contrast, PLEC
were unable to secrete IgM (Fig. 5f) confirming in another setting
that serous B cells do not secrete antibodies32. Taken together,
these results show that FALCs of the pleural cavity respond to
lung perturbation by supporting localized B1-cell proliferation
and IgM production within the pleural cavity. Furthermore,
IL-33R has a central role in the pleural B-cell response to acute
lung inflammation controlling both FALC B1-cell proliferation
and IgM secretion.

FALC B cells require IL-5 for activation. Peritoneal B cells were
previously shown to express low levels of IL-33R and directly
respond to IL-33 in vitro20, suggesting that during acute lung
inflammation the IL-33 released would act directly on pleural
B cells. To test this, we labelled total PLEC from BALB/c and

Il1rl1� /� donor mice with carboxyfluorescein succinimidyl ester
(CFSE) and CellTrace Violet (CTV) respectively. Labelled PLEC
were co-injected into the pleural space of a recipient BALB/c
animal, Alt instilled 18 h later and the CFSE (wild type) and CTV
(Il1rl1� /� ) labelled B-cell populations compared after 48 h
(Fig. 6a). The injected PLEC were composed on average of 60% B
cells of which 60% were B1 cells and 40% B2 cells. After transfer,
between 2 and 4% of the PLEC were of donor origin. We could
detect both CFSE and CTV-positive CD45þCD19þCD11bþ B1
and CD45þCD19þCD11b� B2 cells within the PLEC and in
the FALCs, indicating that IL-33R signalling was not necessary
for the recruitment of pleural B cells into FALCs (Fig. 6b and not
shown). Following Alt induction, the transferred B1 cells located
within pericardial FALCs showed comparable dilution of CFSE
and CTV, and the same increase in Ki67 expression (Fig. 6b),
whereas the transferred cells found in the PLEC had not divided
(not shown). This indicated that FALC resident Il1rl1� /� B1
cells had no impairment in the induction of proliferation and that
intrinsic IL-33R signalling is not necessary for B1-cell
proliferation upon Alt instillation.

It has been proposed that IL-33’s action on B1 cells is largely
mediated by IL-5 (ref. 20). We thus tested whether the action of
IL-33 on FALC B1 cells was dependent on IL-5 in our model. At
the time of Alt instillation, mice were injected intra-pleurally
(i.pl.) with blocking anti-IL-5 antibody (Fig. 6c). Flow-cytometric
analysis of FALC pericardial cells 48 h later showed that blocking
of IL-5 completely abrogated B1a and B1b-cell proliferation
compared with mice injected with control antibody (Fig. 6d).
Confocal analysis confirmed that the level of proliferation
induced by Alt in mediastinal FALCs was markedly reduced
following i.pl. injection of blocking anti-IL-5 antibody (Fig. 6e,f).
Blocking of IL-5 also led to impaired IgM secretion by B cells
within the mediastinum (Fig. 6g). Taken together, these
results indicate that IL-5 is critical for the activation of FALC
B1 cells during Alt induced lung inflammation. As eosinophils are
the other main target of IL-533,34, we wanted to assess the
contribution of eosinophils to the induction of B-cell proliferation
and IgM secretion. First, we analysed the impact of the delivery of
anti-IL-5 antibody in the pleural cavity. As expected, we found a
reduction in the number of eosinophils within the PLEC and a
trend for reduced eosinophilia within the pericardial FALCs.
However, this did not reach significance (Fig. 6h). To completely
rule out that the effect we were seeing on B cells was dependent
on eosinophils, we performed Alt experiments in DdblGATA mice
that lack eosinophils. At 48 h following delivery of Alt, pericardial
FALC B1a and B1b cells of DdblGATA mice were proliferating
significantly more than their BALB/c counterparts (Fig. 6i), there
was enhanced proliferation within the mediastinum as assessed
by immunofluorescence staining (Fig. 6j) and there was no defect
in the secretion of IgM within the pleural lavage (Fig. 6k). These
data indicated that the induction of B-cell proliferation and IgM
secretion was independent of eosinophils. However, since both B
cells and eosinophils are dependent on IL-5, they may be in
competition for its access. In the absence of eosinophils, B cells
would have more IL-5 available, providing an explanation for the
enhanced B-cell proliferation we found in DdblGATA mice.

FALC ILC2s increase during pleural inflammation. Finally, we
determined the cellular origin of IL-5 in pericardial FALCs during
Ls infection by analysing the intra-cellular levels of IL-5 within
digested pericardium from C57BL/6 mice. We found here that
Lineage�CD90.2þ innate lymphoid cells (ILCs), that represent
0.5–2% of total pericardial CD45þ FALC cells, constitute the
only reservoir of IL-5 producing cells within the pericardium
(Fig. 7a–c). All other pericardial FALC cell populations assessed
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whole-mount immunofluorescence staining of mediastinal FALCs from naive and Alt-treated BALB/c and Il1rl1� /� mice showing IgM (green), Ki67 (red)

and B220 (blue) and quantification of the percentage area of Ki67 staining within individual clusters, scale bar, 50mm. (c,d) Flow cytometric analysis
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individual mice, n¼ 9 or 14 per time point. ns not significant, *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001 (normally distributed data analysed by
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comparisons post test). Error bars represent mean with s.e.m. in all graphs.
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(CD45�Gp38þ stromal cells, CD19þMHC-IIþ B cells,
TCRbþMHC-II�SSClo T cells, CD11bþ F4/80/Ly6cþ myeloid
cells, Ly6G/SigFþSSChi MHC-II� Granulocytes) had no
detectable intracellular IL-5 compared with the fluorescence
minus one control (Fig. 7a). ILCs expressed significantly more
IL-5 than all other cell populations assessed (Fig. 7b), however,
there was no significant difference in the geometric mean fluor-
escence intensity of IL-5 expression when comparing naive and Ls

infection nor an increase in the percentage IL-5 expression within
ILCs following infection (Fig. 7c). There was, however, a sig-
nificant increase in the total number of ST2þ ILC2s within the
pericardium following Ls infection (Fig. 7d). IL-5þ ILCs were
also present within digested pericardium from BALB/c mice and
a trend towards an increase in the number of ST2þ ILC2s was
seen at 48 h following Alt instillation, however, this did not reach
significance (Fig. 7e). Thus, our data indicate that increased
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numbers of IL-5 producing ILC2s are the most likely source of
IL-5 for FALC B cell activation following pleural inflammation
induced by two distinct experimental models.

Discussion
We show in two disparate models of infection and inflammation,
that FALCs are sites of serous B-cell activation and plasma cell
differentiation enabling localized production of IgM at the site of
immune insult. We also demonstrate for the first time the
biological significance of stromal-derived IL-33 for serous B-cell
function. During pleural infection and acute lung inflammation,
FALCs of the pleural cavity sustained pleural B-cell proliferation
and local IgM secretion in an IL-33R-dependent manner. In
response to acute lung inflammation FALC ILC2 rapidly
produced IL-5, which was key to FALC B1-cell activation
following lung inflammation. Therefore, we propose a model
where early release of IL-33 from FALC stromal cells
following pleural or lung perturbations leads to FALC ILC2
activation and IL-5 secretion. This then allows pleural B-cell
recruitment to, and activation in mediastinal and pericardial

FALCs, resulting in active proliferation and increased production
of local IgM (Fig. 8).

During the stage of infection where the filarial nematode Ls is
confined to the pleural cavity, release of IgM in the serous cavity
by FALC B cells represents a crucial source of protective
antibodies, as serum IgM cannot diffuse into the body cavities.
The critical importance of IgM for elimination from the
peritoneal cavity of a closely related filarial larvae has been
demonstrated using sIgM� /� mice24. The protection conferred
by IgM has been shown to be mediated through Fc receptor
engagement and complement activation35,36. In addition, B1 cells
are implicated in resistance to both Ls22 and human filariasis37.
However, it is not practical to remove FALCs from the pleural
space during Ls infection, so we cannot directly address their role
in protection. C57BL/6 mMT mice are not more susceptible to Ls
primary infection38 but these data are difficult to interpret
because B cells are a major source of IL-10 (ref. 22), which is
essential for susceptibility to Ls39 and the development of female
Ls adults is grossly imparied in the absence of IgM23,40. There is
marked accumulation of M2 macrophages in the serous cavities
of Ls mice26 and thus it will be important to use more refined

c

Stromal
cells ILCs B cells T cells

Myeloid
cells Granulocytes

IL-5

%
 o

f m
ax

Day 11
Naive

FMO

a

b

0.0

0.5

1.0

1.5 **

# 
C

el
ls

 ×
 1

04

ST2+ ILC2d

IL
-5

CD90.2

PBS Alt
Lin–CD90.2+ILC

%
IL

-5
+

23.315.4

AltPBS
0

10

20

30

40
ns

# 
C

el
ls

 ×
 1

04

ST2+ ILC2

0.0
0.2
0.4
0.6
0.8
1.0 ns

e f

Day 11Naive

Lin–CD90.2+ILC

IL
-5

CD90.2

Gra
nu

loc
yte

s

M
ye

loi
d 

ce
lls

T ce
lls

B ce
lls

IL
Cs

Stro
m

al

Naive Day 11

%
IL

-5
+

38.944.3

0

20

40

60

80 ns

0

2

4

6

8

10

****
IL

-5
 g

M
F

I
fo

ld
 c

ha
ng

e

Figure 7 | FALC ILC2s increase following induction of pleural inflammation. (a–c) Flow-cytometric analysis of intracellular IL-5 in naive and day 11

Ls-infected C57BL/6 mice. Histogram analysis showing overlays of intracellular staining for IL-5 in naive mice (black histogram), Ls-infected mice (blue

histogram) and fluorescence minus one (FMO) staining (grey histogram) within the indicated pericardial FALC cell populations (gated as described in main

text) (a). Quantification of the geometric mean fluoresence intensity of IL-5 within these populations, expressed as fold change relative to the FMO control

staining. ILC naive and infected samples were all **** increased over all other groups, there was no significant difference between naive and day 11 for any

cell type (b). Dot plot analysis of intracellular IL-5 within pericardial FALC ILCs of naive and Ls-infected mice and quantification of the percentage of IL-5þ

ILCs (c). Data in a–c are pooled from two experiments, symbols represent individual mice, n¼ 9 or 10 per group. (d) Quantification of the number of

Lineage�CD90þST2þ ILC2s within pericardial FALCs of naive and day 11 Ls-infected C57BL/6 mice. Data are pooled from four independent experiments,

symbols represent individual mice, n¼ 10 or 14 per group. (e,f) Flow-cytometric analysis showing intracellular IL-5 within pericardial FALC ILCs following

Alt treatment and quantification of the % of IL-5þ ILCs (e). Quantification of the number of Lineage�CD90.2þST2þ ILC2s within pericardial FALCs in

response to Alt treatment (f). Data in e,f are representative of two independent experiments, symbols represent individual mice, n¼4 or 5 per group. ns

not significant, **Po0.01, ****Po0.0001 (normally distributed data analysed by one-way ANOVA with Sidak multiple comparisons post test, non-normally
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models to determine whether IgM recognition facilitates parasite
killing by macrophages, as has been described in a related parasite
model41.

Transfer of Il1rl1-deficient pleural B cells into the pleural cavity
of IL-33R competent mice showed that IL-33R on B cells is not
necessary to induce pleural B-cell homing to FALCs, nor is it
required for their proliferation (Fig. 3a,b). Furthermore, in
contrast with previous reports20, we could not convincingly
detect ST2 expression on any pleural or FALC B-cell subsets
neither in resting conditions nor upon Ls infection (data not
shown). We think that ST2 expression and direct signalling of
IL-33 in peritoneal B cells can only be achieved after several
rounds of IL-33 injection, but that these doses were not
physiologically achieved during Alternaria induced lung
inflammation or Ls infection20. Although we cannot
conclusively state that ILC2 are the critical source of IL-5 for
pleural FALC B cells during IL-33-dependent responses, our data
converges with Moro et al. 14 whose data show that mesenteric
ILC2 secrete high amounts of IL-5 in response to IL-33. The
importance of IL-5 in the context of pleural immune responses is
supported by previous reports demonstrating that control of
Ls infection is dependent on IL-5 (refs 42–44). Our data further
suggest that antibody mediated protection during filarial infection
may well be controlled by IL-5.

The omentum has an important role in the priming of
peritoneal B1 cells10 which contribute to intestinal immunity by
producing secretory IgA in the gut lamina propria11,45,46. Our
data showing that lung immune inflammation results in pleural
FALC B-cell activation suggests that pleural B cells and pleural
FALCs may be for the lungs what peritoneal B cells and the
omentum are for the gut. Recently, Weber et al. 47 showed that
during microbial lung infection, pleural B1a cells relocate to the
lung to produce IgM further supporting this concept. Natural
IgM has proven to be particularly important for the control of
airway infections of viral48,49, fungal50 and bacterial47 origins but
the mechanisms controlling IgM production and the sites of its
secretion are still unclear. Harnessing the function of pleural
FALCs to increase the protective effect of IgM may prove an
interesting therapeutic target for the control of airway infection.

Methods
Animals and inflammation models. Experiments were performed using male or
female C57BL/6 (C57BL/6JOlaHsd from Harlan), BALB/c (BALB/cOlaHsd from
Harlan), BALB/c Il1rl1� /� (ref. 51) and BALB/c DdblGATA52 mice aged 8–12

weeks. Both lines have been backcrossed 48 times onto the BALB/c background.
All animals were bred and maintained under specific pathogen-free conditions at
the University of Edinburgh Animal Facilities. Mice were infected sub-cutaneously
with 25–30 Ls L3’s or vehicle only or sensitized intra-nasally with 50 mg Alt extract
(Greer) in PBS or PBS alone. All experiments were conducted under a license
granted by the Home Office (UK) that was approved by the University of
Edinburgh ethics committee. All individual experimental protocols are approved
by the staff veterinarian before the start of the experiment.

Cell isolation and culture. Peritoneal exudate cell and PLEC were isolated by
flushing the peritoneal and pleural cavities with RPMI 1640 (Sigma), respectively.
Pericardium and mediastinum were enzymatically digested with 1 mg ml� 1

Collagenase D (Roche) for 35 min at 37 �C in RPMI 1640 containing 1% fetal
bovine serum (Sigma). PLEC, lymph node cells or FALC cells, were cultured
overnight and supernatant used for ELISA. Equivalent weights of lung, whole
mediastinum, whole omentum and GAT were cultured for 1 h before determina-
tion of IL-33 in supernatant by ELISA. For analysis of intracellular IL-5 and IL-33,
pericardium and PLEC cells were used directly ex vivo or rested overnight in RPMI
1640 (Sigma) containing 10% fetal bovine serum (Sigma), 50 U ml� 1 Penicillin
(Sigma) 50mg ml� 1 Streptomycin (Sigma), 2 mM L-glutamine (Sigma), cells were
then stimulated for 4 h at 37 �C with 50 ng ml� 1 phorbol-myristate acetate (Sigma)
and 1 mg ml� 1 Ionomycin (Sigma) including 1� Brefeldin A (eBioscience) for the
final 3 h of incubation.

Flow cytometry. Cells were surface stained, fixed and permeabilized as below.
Cells were stained with LIVE/DEAD (Invitrogen), blocked with mouse serum and
FcR-Block (clone 2.4G2, Biolegend), stained for cell surface markers (See Table 1
for list of antibodies used), and then fixed and permeabilized for intra-cellular
staining with 1� fixation-permeabilization buffer (eBioscience). Ki67 was detected
using antibody clone B56 from BD Biosciences or antibody clone REA183 from
Miltenyi Biotech, both of which allow the detection of Ki67hi cells. In Fig. 7:
Lineage¼ CD19/TCRb/Ly6G/Ly6C/F4/80/CD11c/FceR1a/NK1.1/Ter119/CD5/
CD11b/CD49b. Samples were acquired using a BD Fortessa and analysed with
FlowJo software (Tree Star). Fluorescence activated cell sorting was performed
using a BD FACSAria.

Intra-pleural injections. Total BALBc or Il1rl1� /� PLEC were labelled with
5 mg ml� 1 CFSE (Invitrogen) or 2 mM CellTrace Violet (Molecular probes),
respectively, before injection of 200,000 labelled cells at a 1:1 ratio into the pleural
cavity in 100 ml PBS. Fifty mg of Alt was delivered i.n. 18 h later. To block IL-5
within the pleural cavity, 30 mg of either purified functional grade anti-human/
mouse IL-5 (eBioscience, clone TRFK5), 30 mg of Rat IgG1 (eBioscience, clone
eBRG1) in 100 ml PBS (Sigma), or PBS (Sigma) alone was injected i.pl., immediately
following injection 50 ml PBS or 50mg of Alternaria extract (Greer) in 50 ml PBS
(Sigma) was delivered i.n.

Antibody and cytokine ELISAs. IgM antibodies were detected using goat
anti-mouse IgG/A/M (10100) from AbD Serotec diluted at 1 in 1000, followed by
secondary goat anti-mouse IgM horseradish peroxidase (102005) from Southern
Biotech diluted at 1 in 2000. Purified mouse IgM isotype control (553472) from BD
Pharmingen was used as standard. For antigen-specific antibody detection, ELISA
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Figure 8 | Graphical summary of data presented. FALCs of the pleural cavity provide an IL-33 rich environment for rapid IgM producing B1-cell activation

in response to lung inflammation or pleural infection. T¼Thymus, H¼Heart, L¼ Lung.
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Table 1 | List of antibodies used in the flow cytometry and immunofluorescence stainings

Reagent Clone Conjugate Source Dilution

Armenian hamster anti-CD11c N418 PE Biolegend 1 in 200
APC-Cy7 1 in 200

BV605 1 in 100

Armenian hamster anti-FceRIa Mar_1 PE-Cy7 Biolegend 1 in 200

Armenian hamster anti-TCRb H57–597 Pacific Blue eBiosciences 1 in 200

Donkey anti-Goat Polyclonal AlexaFluor488 Invitrogen 1 in 300*

Donkey anti-mouse IgM Polyclonal Rhodamine Red Jackson Laboratories 1 in 500*

Goat anti-IL33 Polyclonal Unconjugated R&D Systems 1 in 25*

Golden Syrian hamster anti-Podoplanin (Gp38) eBio1.8.1 Biotin eBiosciences 1 in 100*

Mouse anti-CD3 eBio500A2 PE eBiosciences 1 in 200
APC-Cy7 1 in 200

Mouse anti-Ki67 B56 FITC BD Pharmingen 1 in 100
REA183 FITC Miltenyi 1 in 100
REA183 PE 1 in 100
SolA15 APC (IF) eBiosciences 1 in 100*

Mouse anti-NK1.1 PK136 PEVio770 Miltenyi 1 in 200

Rat anti-I-A/I-E M5/114.15.2 AF700 Biolegend 1 in 800
AF780 eBiosciences 1 in 800

Rat anti-B220 RA3-6B2 eFluor450 eBiosciences 1 in 200*

Rat anti-CD11b M1/70 eFluor450 eBiosciences 1 in 200*
PerCP-Cy5.5 1 in 1,200

APC 1 in 800
BV711 Biolegend 1 in 1,000

PE Dazle � 594 1 in 1,000

Rat anti-CD138 281-2 Biotin Biolegend 1 in 200*

Rat anti-CD19 eBio1D3 PE-Cy7 eBiosciences 1 in 200
6D5 PE Biolegend 1 in 200
6D5 BV421 1 in 200

Rat anti-CD4 GK1.5 eFluor660 eBiosciences 1 in 200
RM4–5 BV650 Biolegend 1 in 200

Rat anti-CD45.2 104 FITC eBiosciences 1 in 100*
BV650 Biolegend 1 in 100
PerCP 1 in 100

Rat anti-CD49b DX5 APC-Cy7 Biolegend 1 in 200

Rat anti-CD5 53-7.3 APC-Cy7 eBiosciences 1 in 100
PE-Cy7 1 in 200

Rat anti-CD90.2 30-H12 Pacific Blue Biolegend 1 in 100
PerCP Miltenyi 1 in 50

Rat anti-F4/80 BM8 PE eBiosciences 1 in 200
PE-Cy7 1 in 200

Rat anti-IgD 11–26c eFluor450 eBiosciences 1 in 200

Rat anti-IL-5 TRFK5 PE Biolegend 1 in 100

Rat anti-Ly-6C HK1.4 BV570 Biolegend 1 in 50
PE-Cy7 1 in 200

Rat anti-Ly6G 1A8 BV421 Biolegend 1 in 200
PE BD Pharmingen 1 in 200

Rat anti-Siglec-F E50–2440 BV421 BD Pharmingen 1 in 200

Rat anti-ST2 DJ8 Biotin Mdbiosciences 1 in 100
RMST2-2 APC eBiosciences 1 in 100

Rat anti-Ter119 TER-119 PE-Cy7 eBiosciences 1 in 200

Streptavidin AlexaFluor555 Invitrogen 1 in 400*
PerCP Biolegend 1 in 200
APC 1 in 200

BV711 1 in 200

APC, allophycocyanin; FITC, fluorescein isothiocyanate; IF, immunofluorescence; PE, phycoerythrin.
*Antibodies also used in immunofluorescence.
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plates (Nunc) were coated with Ls Ag or Alternaria (Greer) at a concentration of
5 mg ml� 1 in carbonate buffer. IL-33 was detected using the IL-33 duoset ELISA
(DY3626) from R&D systems following the manufacturers instructions. Plates were
developed using two parts TMB reagent (KPL & Biolegend).

Whole-mount immunofluorescence staining and confocal images. Mediastinal
adipose tissues were fixed in 10% neutral buffered formalin (NBF) for 1 h on ice
and permeabilized in PBS 1% Triton for 30 min on ice prior staining with primary
antibodies for 2 h at room temperature in PBS 0.5% BSA 0.5% Triton. After wash
in PBS, tissues were stained with secondary antibodies for one hour at room
temperature in PBS 0.5% BSA 0.5% Triton. Antibodies used are listed in Table 1.
Confocal images were acquired using a Leica SP5 laser scanning confocal
microscope. Image analysis was performed using ImageJ.

Statistical analysis. Power calculations showed that for our most commonly
measured parameters (lymphoid cluster number and cell number) six mice per
group provide sufficient power (90%) to detect at least a twofold difference between
the groups, which we regard as an acceptable cutoff for identifying important
biological effects. No randomization and no blinding was used for the animal
experiments. Whenever possible, the investigator was partially blinded for assessing
the outcome (cluster counts). All data were analysed using Prism 6 (Graphpad
Prism, La Jolla, CA, USA).

Data availability. The authors declare that all relevant data supporting the finding
of this study are available on request.

References
1. Ehrenstein, M. R. & Notley, C. A. The importance of natural IgM: scavenger,

protector and regulator. Nat. Rev. Immunol. 10, 778–786 (2010).
2. Choi, Y. S., Dieter, J. A., Rothaeusler, K., Luo, Z. & Baumgarth, N. B-1 cells in

the bone marrow are a significant source of natural IgM. Eur. J. Immunol. 42,
120–129 (2011).

3. Fairfax, K. A. et al. Different kinetics of blimp-1 induction in B cell subsets
revealed by reporter gene. J. Immunol. 178, 4104–4111 (2007).

4. Kawahara, T., Ohdan, H., Zhao, G., Yang, Y. G. & Sykes, M. Peritoneal
cavity B cells are precursors of splenic IgM natural antibody-producing cells.
J. Immunol. 171, 5406–5414 (2003).

5. Ohdan, H. et al. Mac-1-negative B-1b phenotype of natural antibody-
producing cells, including those responding to Gal alpha 1,3Gal epitopes in
alpha 1,3-galactosyltransferase-deficient mice. J. Immunol. 165, 5518–5529
(2000).

6. Yang, Y., Tung, J. W., Ghosn, E. E. & Herzenberg, L. A. Division and
differentiation of natural antibody-producing cells in mouse spleen. Proc. Natl
Acad. Sci. USA 104, 4542–4546 (2007).

7. Rauch, P. J. et al. Innate response activator B cells protect against microbial
sepsis. Science 335, 597–601 (2012).

8. Cole, L. E. et al. Antigen-specific B-1a antibodies induced by Francisella
tularensis LPS provide long-term protection against F. tularensis LVS challenge.
Proc. Natl Acad. Sci. USA 106, 4343–4348 (2009).

9. Ha, S. A. et al. Regulation of B1 cell migration by signals through Toll-like
receptors. J. Exp. Med. 203, 2541–2550 (2006).

10. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of
localization and functional polarization of macrophages. Cell 157, 832–844
(2014).

11. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal
mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

12. Ansel, K. M., Harris, R. B. & Cyster, J. G. CXCL13 is required for B1 cell
homing, natural antibody production, and body cavity immunity. Immunity 16,
67–76 (2002).

13. Benezech, C. et al. Inflammation-induced formation of fat-associated lymphoid
clusters. Nat. Immunol. 16, 819–828 (2015).

14. Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-
associated c-Kit(þ )Sca-1(þ ) lymphoid cells. Nature 463, 540–544 (2010).

15. Rangel-Moreno, J. et al. Omental milky spots develop in the absence of
lymphoid tissue-inducer cells and support B and T cell responses to peritoneal
antigens. Immunity 30, 731–743 (2009).

16. Elewa, Y. H., Ichii, O., Otsuka, S., Hashimoto, Y. & Kon, Y. Characterization
of mouse mediastinal fat-associated lymphoid clusters. Cell Tissue Res. 357,
731–741 (2014).

17. Inoue, N. & Otsuki, Y. Lymphocyte subpopulations in mediastinal milky spots
of mice: light- and electron-microscopic immunohistochemical observations.
Arch. Histol. Cytol. 55, 89–96 (1992).

18. Panasco, M. S., Pelajo-Machado, M. & Lenzi, H. L. Omental and pleural milky
spots: different reactivity patterns in mice infected with Schistosoma mansoni
reveals coelomic compartmentalisation. Mem. Inst. Oswaldo Cruz 105, 440–444
(2010).

19. Bhatnagar, R. & Maskell, N. The modern diagnosis and management of pleural
effusions. BMJ 351, h4520 (2015).

20. Komai-Koma, M. et al. IL-33 activates B1 cells and exacerbates contact
sensitivity. J. Immunol. 186, 2584–2591 (2011).

21. Hoffmann, W. et al. Litomosoides sigmodontis in mice: reappraisal of an old
model for filarial research. Parasitol. Today 16, 387–389 (2000).

22. Al-Qaoud, K. M., Fleischer, B. & Hoerauf, A. The Xid defect imparts
susceptibility to experimental murine filariosis--association with a lack of
antibody and IL-10 production by B cells in response to phosphorylcholine. Int.
Immunol. 10, 17–25 (1998).

23. Martin, C. et al. B-cell deficiency suppresses vaccine-induced protection against
murine filariasis but does not increase the recovery rate for primary infection.
Infect. Immun. 69, 7067–7073 (2001).

24. Rajan, B., Ramalingam, T. & Rajan, T. V. Critical role for IgM in host
protection in experimental filarial infection. J. Immunol. 175, 1827–1833
(2005).

25. Babayan, S. et al. Resistance and susceptibility to filarial infection with
Litomosoides sigmodontis are associated with early differences in parasite
development and in localized immune reactions. Infect. Immun. 71, 6820–6829
(2003).

26. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment
from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288
(2011).

27. Pichery, M. et al. Endogenous IL-33 is highly expressed in mouse epithelial
barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ
analysis using a novel Il-33-LacZ gene trap reporter strain. J. Immunol. 188,
3488–3495 (2012).

28. Hardman, C. S., Panova, V. & McKenzie, A. N. IL-33 citrine reporter mice
reveal the temporal and spatial expression of IL-33 during allergic lung
inflammation. Eur. J. Immunol. 43, 488–498 (2012).

29. Bartemes, K. R. et al. IL-33-responsive lineage- CD25þ CD44(hi) lymphoid
cells mediate innate type 2 immunity and allergic inflammation in the lungs.
J. Immunol. 188, 1503–1513 (2012).

30. Kouzaki, H., Iijima, K., Kobayashi, T., O’Grady, S. M. & Kita, H. The
danger signal, extracellular ATP, is a sensor for an airborne allergen and
triggers IL-33 release and innate Th2-type responses. J. Immunol. 186,
4375–4387 (2011).

31. McSorley, H. J., Blair, N. F., Smith, K. A., McKenzie, A. N. & Maizels, R. M.
Blockade of IL-33 release and suppression of type 2 innate lymphoid cell
responses by helminth secreted products in airway allergy. Mucosal Immunol.
7, 1068–1078 (2014).

32. Baumgarth, N. Innate-like B cells and their rules of engagement. Adv. Exp. Med.
Biol. 785, 57–66 (2013).

33. Yoshida, T. et al. Defective B-1 cell development and impaired immunity
against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity
4, 483–494 (1996).

34. Kopf, M. et al. IL-5-deficient mice have a developmental defect in CD5þ B-1
cells and lack eosinophilia but have normal antibody and cytotoxic T cell
responses. Immunity 4, 15–24 (1996).

35. Carter, T. et al. Mannose-binding lectin A-deficient mice have abrogated
antigen-specific IgM responses and increased susceptibility to a nematode
infection. J. Immunol. 178, 5116–5123 (2007).

36. Gray, C. A. & Lawrence, R. A. A role for antibody and Fc receptor in the
clearance of Brugia malayi microfilariae. Eur. J. Immunol. 32, 1114–1120
(2002).

37. Mishra, R. et al. Bancroftian filariasis: circulating B-1 cells decreased in
microfilaria carriers and correlate with immunoglobulin M levels. Parasite
Immunol. 36, 207–217 (2014).

38. Le Goff, L., Lamb, T. J., Graham, A. L., Harcus, Y. & Allen, J. E. IL-4 is required
to prevent filarial nematode development in resistant but not susceptible strains
of mice. Int. J. Parasitol. 32, 1277–1284 (2002).

39. Specht, S., Volkmann, L., Wynn, T. & Hoerauf, A. Interleukin-10 (IL-10)
counterregulates IL-4-dependent effector mechanisms in Murine Filariasis.
Infect. Immun. 72, 6287–6293 (2004).

40. Hasan, M., Polic, B., Bralic, M., Jonjic, S. & Rajewsky, K. Incomplete block
of B cell development and immunoglobulin production in mice carrying the
muMT mutation on the BALB/c background. Eur. J. Immunol. 32, 3463–3471
(2002).

41. Bonne-Annee, S. et al. Human and mouse macrophages collaborate with
neutrophils to kill larval Strongyloides stercoralis. Infect. Immun. 81,
3346–3355 (2013).

42. Martin, C. et al. IL-5 is essential for vaccine-induced protection and for
resolution of primary infection in murine filariasis. Med. Microbiol. Immunol.
189, 67–74 (2000).

43. Martin, C., Le Goff, L., Ungeheuer, M. N., Vuong, P. N. & Bain, O. Drastic
reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice.
Infect. Immun. 68, 3651–3656 (2000).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12651 ARTICLE

NATURE COMMUNICATIONS | 7:12651 | DOI: 10.1038/ncomms12651 | www.nature.com/naturecommunications 13

http://www.nature.com/naturecommunications


44. Saeftel, M., Arndt, M., Specht, S., Volkmann, L. & Hoerauf, A. Synergism of
gamma interferon and interleukin-5 in the control of murine filariasis. Infect.
Immun. 71, 6978–6985 (2003).

45. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune
regulation in the gut: T cell-dependent and T cell-independent IgA synthesis.
Annu. Rev. Immunol. 28, 243–273 (2010).

46. Suzuki, K., Maruya, M., Kawamoto, S. & Fagarasan, S. Roles of B-1 and
B-2 cells in innate and acquired IgA-mediated immunity. Immunol. Rev. 237,
180–190 (2010).

47. Weber, G. F. et al. Pleural innate response activator B cells protect
against pneumonia via a GM-CSF-IgM axis. J. Exp. Med. 211, 1243–1256
(2014).

48. Baumgarth, N. How specific is too specific? B-cell responses to viral infections
reveal the importance of breadth over depth. Immunol. Rev. 255, 82–94.

49. Choi, Y. S. & Baumgarth, N. Dual role for B-1a cells in immunity to influenza
virus infection. J. Exp. Med. 205, 3053–3064 (2008).

50. Rapaka, R. R. et al. Conserved natural IgM antibodies mediate innate and
adaptive immunity against the opportunistic fungus Pneumocystis murina.
J. Exp. Med. 207, 2907–2919 (2010).

51. Townsend, M. J., Fallon, P. G., Matthews, D. J., Jolin, H. E. & McKenzie, A. N.
T1/ST2-deficient mice demonstrate the importance of T1/ST2 in
developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076
(2000).

52. Yu, C. et al. Targeted deletion of a high-affinity GATA-binding site in the
GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo.
J. Exp. Med. 195, 1387–1395 (2002).

Acknowledgements
We would like to thank E. Mohr, J. Caamano and members of the IIIR for their advice on
the work, A. Fulton for maintaining the parasite life cycle, M. Waterfall for flow
cytometry assistance, A. McKenzie and C. Lloyd for kind provision of mouse lines and
the University of Edinburgh animal house staff and veterinarians for their husbandry.

This work was supported by MRC UK grants to J.E.A. (MR/K01207X/1) and C.B.
(MR/M011542/1).

Author contributions
L.H.J.J. and C.B. designed the study, performed experiments, analysed data and wrote the
manuscript. S.D. and M.S.M. performed experiments and analysed data, S.M.C.
performed experiments, H.M. and R.M.M. provided biological resources and expert
advice, J.E.A. oversaw the research and helped write the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Jackson-Jones, L.H. et al. Fat-associated lymphoid clusters
control local IgM secretion during pleural infection and lung inflammation.
Nat. Commun. 7:12651 doi: 10.1038/ncomms12651 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12651

14 NATURE COMMUNICATIONS | 7:12651 | DOI: 10.1038/ncomms12651 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	FALC B cells respond to parasite infection and secrete IgM

	Figure™1FALC B cells secrete parasite-specific IgM locally upon infection.(a,b) Peritoneal lavage (p Lav), pleural lavage (pl Lav) and serum of naive and day 11 Ls-infected C57BLsol6 mice were assessed for the presence of Ls antigen specific (a) and total
	FALC B2 cells differentiate into plasma cells in infected mice
	Parasite-specific IgM within pleural FALCs is dependent upon IL-33R

	Figure™2FALC B2 cells differentiate into plasma cells in parasite infected mice.(a,b) Representative immunofluorescence staining of mediastinal FALCs of naive and day 11 Ls-infected C57BLsol6 mice showing Ki67 (red), B220 (blue) and IgM (green in a) or CD
	IL-33 is produced by FALC stromal cells

	Figure™3Parasite-specific IgM produced in FALCs is dependent upon IL-33R.(a) Representative immunofluorescence staining of mediastinal FALCs from naive and day 11 Ls-infected BALBsolc and Il1rl1-sol- mice showing IgM (Green) Ki67 (Red) and B220 (blue). Sc
	Figure™4IL-33 is produced by FALC stromal cells.(a) Pieces of lung, mediastinum, omentum or gonadal adipose tissue (GAT) were cultured for 1thinsph at 37thinspdegC and spontaneous release of IL-33 in the supernatant was measured by ELISA. Data are represe
	IL-33 controls pleural IgM secretion upon airway inflammation
	FALC B cells require IL-5 for activation
	FALC ILC2s increase during pleural inflammation

	Figure™5FALC activation during acute airway inflammation is IL-33 dependent.(a) ELISA of IL-33 in the pleural lavage (pl Lav) of naive and Alt-treated C57BLsol6 mice. Data are combined from two independent experiments, symbols represent individual mice, n
	Figure™6FALC B1-cell activation requires IL-5 but does not require eosinophils.(a) Schematic of the i.pl. transfer experiment of CTV-labelled Il1rl1-sol- and CFSE-labelled BALBsolc control PLEC into BALBsolc recipient mice before Alt treatment. (b) Flow c
	Discussion
	Figure™7FALC ILC2s increase following induction of pleural inflammation.(a-c) Flow-cytometric analysis of intracellular IL-5 in naive and day 11 Ls-infected C57BLsol6 mice. Histogram analysis showing overlays of intracellular staining for IL-5 in naive mi
	Methods
	Animals and inflammation models
	Cell isolation and culture
	Flow cytometry
	Intra-pleural injections
	Antibody and cytokine ELISAs

	Figure™8Graphical summary of data presented.FALCs of the pleural cavity provide an IL-33 rich environment for rapid IgM producing B1-cell activation in response to lung inflammation or pleural infection. T=Thymus, H=Heart, L=Lung
	Table 1 
	Whole-mount immunofluorescence staining and confocal images
	Statistical analysis
	Data availability

	EhrensteinM. R.NotleyC. A.The importance of natural IgM: scavenger, protector and regulatorNat. Rev. Immunol.107787862010ChoiY. S.DieterJ. A.RothaeuslerK.LuoZ.BaumgarthN.B-1 cells in the bone marrow are a significant source of natural IgMEur. J. Immunol.4
	We would like to thank E. Mohr, J. Caamano and members of the IIIR for their advice &!QJ;on the work, A. Fulton for maintaining the parasite life cycle, M. Waterfall for flow cytometry assistance, A. McKenzie and C. Lloyd for kind provision of mouse lines
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




