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SPHERICAL FUNCTORS ON THE KUMMER SURFACE

ANDREAS KRUG AND CIARAN MEACHAN

Abstract. We find two natural spherical functors associated to the Kummer

surface and analyse how their induced twists fit with Bridgeland’s conjecture on

the derived autoequivalence group of a complex algebraic K3 surface.

1. Introduction

Let D(X) be the bounded derived category of coherent sheaves on a smooth

complex projective variety X and Aut(D(X)) denote the set of isomorphism classes

of exact C-linear autoequivalences of D(X). Then we always have a subgroup

Autst(D(X)) ⊂ Aut(D(X)) of standard autoequivalences which is generated by push

forwards along automorphisms, twists by line bundles and shifts. The complement of

this subgroup, if non-empty, is usually very interesting and mysterious; its elements

will be called non-standard autoequivalences.

The most successful way to construct non-standard autoequivalences was discov-

ered in the groundbreaking work of Seidel and Thomas [ST01] on spherical objects.

This was extended by Huybrechts and Thomas [HT06] to a notion of P-objects and

further still, to a theory of spherical and P-functors; see [Rou06, Ann08, Add11].

The first example of a series of P-functors was constructed by Addington in

[Add11, Theorem 2] for the Hilbert scheme X [n] of n points on a K3 surface X.

In particular, he showed that the natural functor F : D(X) → D(X [n]) induced by

the universal ideal sheaf on X ×X [n] is a Pn−1-functor in the sense of [Add11, §3]

and thus gives rise to a non-standard autoequivalence of D(X [n]) for each n ≥ 2.

Notice that when n = 1, this F is Mukai’s reflection functor [Muk87, p.362] which

coincides (up to a shift) with the spherical twist around the structure sheaf OX .

Inspired by this example, the second author [Mea12, Theorem 4.1] provided the

analogous result for the generalised Kummer variety Kn ⊂ A[n+1] associated to an

abelian surface A. More precisely, he proved that the natural Fourier-Mukai functor

FK : D(A) → D(Kn) induced by the universal ideal sheaf on A × Kn is again a

Pn−1-functor yielding a new non-standard autoequivalence of D(Kn) for each n ≥ 2.
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This short note completes this theorem to the case n = 1 where the generalised

Kummer variety is the classical Kummer surface. The motivation to understand this

particular case comes from Bridgeland’s conjecture [Bri08, Conjecture 1.2] on the

derived autoequivalence group of a complex algebraic K3 surface; roughly speaking,

it says that Aut(D(X)) should be generated by standard autoequivalences and twists

around spherical objects.

Summary of main results. Every abelian surface A has a natural K3 surface

associated to it; namely the Kummer surface K := K1. It can either be defined as

the blow up of the quotient A/ι along the sixteen ordinary double points, where ι

denotes the involution a 7→ −a, or equivalently as the fibre of the Albanese map

m : A[2] → A over zero. That is, we can identify K with the subvariety of the

Hilbert scheme A[2] consisting of those points representing length 2 subschemes of

A whose weighted support sums to zero. In other words, there is a universal family

Z ⊂ A×K giving rise to the commutative diagram

Z
q

!!
❉❉

❉❉
❉❉

❉❉
p

}}④④
④④
④④
④④

A

π
  
❇❇

❇❇
❇❇

❇❇
K

µ
}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

A/ι

Recall that a Fourier-Mukai functor F : D(Y ) → D(X) with left adjoint L and

right adjoint R is said to be spherical if the cotwist CF := cone(id
η
−→ RF ) is an au-

toequivalence of D(Y ) and we have a functorial isomorphism R ≃ CL. In particular,

if F is spherical then the twist TF := cone(FR
ǫ
−→ id) is an autoequivalence of D(X).

A spherical object E ∈ D(X) corresponds to the case F := ( )⊗E : D(pt) → D(X).

In this article, we focus on the exact triangle F → F ′ → F ′′ of Fourier-Mukai

functors ΦE : D(A) → D(K) induced by the structure sequence of Z:

F := ΦIZ F ′ := ΦOA×K
= H∗( )⊗OK F ′′ := ΦOZ

= q∗p
∗.

Our main result is the following

Theorem (2.1 and 2.4). Both F and F ′′ are spherical functors with cotwists CF ≃

CF ′′ ≃ ι∗.

In light of [Bri08, Conjecture 1.2], this immediately raises the question whether

the twists TF , TF ′′ ∈ Aut(D(K)) associated to these functors F,F ′′ can be decom-

posed into twists TE around spherical objects E ∈ D(K). We answer this question

with the following
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Theorem (2.1 and 2.4). The induced twists TF , TF ′′ ∈ Aut(D(K)) decompose in

the following way:

TF ′′ ≃
∏

i

T−1
OEi

(−1) ◦MOK(E/2)[1] ≃
∏

i

TOEi
◦MOK(−E/2)[1]

and

F [1] ≃ TOK
◦ F ′′ =⇒ TF ≃ TOK

◦ TF ′′ ◦ T−1
OK

where E =
⋃

iEi for the exceptional curves Ei of the Hilbert-Chow morphism µ and

MOK(E/2) := ( )⊗OK(E/2).

It is easy to see that the squares T 2
F , T

2
F ′′ of our twists act trivially on the coho-

mology of K (see [Add11, §1.4]). In fact, Corollary 2.5 shows that T 2
F ≃ T 2

F ′′ ≃ [2].

In this paper, we will give a different proof of Theorem 2.4 to that which could

have been obtained from adapting the arguments in [Mea12]. The advantage of our

approach is that it immediately provides us with the decompositions of TF and TF ′′

as stated above.

Acknowledgements: We thank Nick Addington and Will Donovan for helpful

discussions as well as the Hausdorff Research Institute for Mathematics (HIM) for

their excellent hospitality whilst this work was carried out. C.M. is very grateful to

Arend Bayer for his consistent help and support.

2. Natural Functors on the Kummer Surface

Another way of describing K is by first blowing-up the fixed points Ã → A. Since

the fixed points are ι-invariant, the involution ι lifts to an involution ι̃ of Ã.

Ã
q

!!
❈❈

❈❈
❈❈

❈❈
p

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

A

π
  
❇❇

❇❇
❇❇

❇❇
K

µ
}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

A/ι

The quotient Ã → K is a double cover ramified over sixteen exceptional curves

Ei. Moreover, the canonical bundle formula for the blow-up yields ωÃ ≃ O(
∑

Ẽi)

where the Ẽi are the exceptional divisors in Ã. Their images Ei in K satisfy

q∗O(Ei) ≃ O(2Ẽi) and q∗OÃ ≃ OK ⊕ O(−1
2

∑
Ei). See [Huy14, Chapter 1.1] for

more details. We set E :=
⋃

i Ei and Ẽ :=
⋃

i Ẽi from now on.
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Proposition 2.1. F ′′ : D(A) → D(K) is a spherical functor with cotwist CF ′′ ≃ ι∗

and twist

TF ′′ ≃
∏

i

T−1
OEi

(−1)
◦MOK(E/2)[1].

Proof. Pushforward along the double cover q∗ : D(Ã) → D(K) is a spherical functor

with cotwist Cq∗ ≃ MOÃ(Ẽ) ◦ ι̃∗ ≃ SÃ ◦ ι̃∗[−2] and twist Tq∗ ≃ MOK(E/2)[1]; see

[Add11, §1.2, Examples 5 & 6].

By [Orl92, Theorem 4.3], we have a semi-orthogonal decomposition

D(Ã) ≃ 〈OẼ1
(−1), . . . ,OẼ16

(−1), p∗D(A)〉

We set A := 〈OẼ1
(−1), . . . ,OẼ16

(−1)〉 and B := p∗D(A) so that D(Ã) ≃ 〈A,B〉.

Since D(Ã) ≃ 〈SÃB,A〉 by [BK89] and Cq∗B ≃ SÃB, we have D(Ã) ≃ 〈Cq∗B,A〉.

Thus, by [HLS13, Theorem 4.13], the restrictions q∗|A : D(A[2]) → D(K) (to the

set A[2] ⊂ A of 2-torsion points) and q∗|B ≃ q∗p
∗ =: F ′′ : D(A) → D(K) are

spherical functors with Tq∗ ≃ Tq∗|A ◦ Tq∗|B . Since q∗OẼi
(−1) ≃ OEi(−1), we see

that Tq∗|A ≃
∏

i TOEi
(−1) and hence

TF ′′ ≃ T−1
q∗|A

◦ Tq∗ ≃
∏

i

T−1
OEi

(−1) ◦MOK(E/2)[1].

Notice that the cotwist of F ′′ ≃ q∗|B is given by SA ◦ ι∗[−2] ≃ ι∗. �

Remark 2.2. We can use equation (1) below to rewrite this decomposition as

TF ′′ ≃
∏

i

TOEi
◦MOK(−E/2)[1].

Lemma 2.3. We have the following isomorphism of functors

F [1] ≃ TOK
◦ F ′′.

Proof. Consider the following exact triangles of functors

Hom∗(OK , F ′′)⊗OK → F ′′ → TOK
◦ F ′′ and F ′ → F ′′ → F [1].

Then it is sufficient to show that Hom∗(OK , F ′′) ⊗OK ≃ F ′ ≃ H∗(A, )⊗OK . In

other words, it is enough to show that H∗(K,F ′′( )) ≃ H∗(A, ) but this follows

from the fact that p is a blowup. Indeed, we have

H∗(K,F ′′( )) ≃ H∗(K, q∗p
∗( )) ≃ H∗(Ã, p∗( )) ≃ H∗(A, p∗p

∗( )) ≃ H∗(A, ). �

Corollary 2.4. F : D(A) → D(K) is a spherical functor with cotwist CF ≃ ι∗ and

twist

TF ≃ TOK
◦ TF ′′ ◦ T−1

OK
.
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Proof. Recall that if F : D(Z) → D(Y ) is a spherical functor and Φ : D(Y )
∼
−→ D(X)

is an equivalence of categories then Φ◦F : D(Z) → D(X) is also a spherical functor

with the same cotwist and TΦ◦F ≃ Φ ◦ TF ◦Φ−1. In particular, we see immediately

from Lemma 2.3 that F is a spherical functor with cotwist CF ≃ ι∗ and twist

TF ≃ TF [1] ≃ TOK
◦ TF ′′ ◦ T−1

OK
. �

Corollary 2.5. The squares of the spherical twists are given by

T 2
F ≃ T 2

F ′′ ≃ [2].

In particular, T 2
F , T

2
F ′′ act trivially on cohomology.

Proof. Let j : E → K denote the inclusion of the exceptional divisor. Since E is

smooth, we can apply [Add11, §1.2, Example 5] to see that j∗ : D(E) → D(K) is

spherical with cotwist Cj∗ ≃ MOE(E)[−1] ≃ SE[−2] and twist Tj∗ ≃ MOK(E).

Set A1 := 〈OE1(−1), . . . ,OE16(−1)〉 and A2 := A1 ⊗ OE(1) to be subcategories

of D(E). Then, by [Orl92, Theorem 2.6], we have a semi-orthogonal decomposition

D(E) ≃ 〈A1,A2〉

Thus, using Kuznetsov’s trick [AA13, Theorem 11] (which is a special case of

[HLS13, Theorem 4.13]), we see that the restriction jℓ := j∗|Aℓ
: D(A[2]) → D(K)

is spherical for each ℓ = 1, 2 and the twists satisfy Tj1 ◦ Tj2 ≃ Tj∗ . That is

∏

i

TOEi
(−1) ◦

∏

i

TOEi
≃ MOK(E). (1)

Furthermore, we have j1 ≃ MOK(E/2) ◦ j2 since OEi(E/2) ≃ OEi(−1) and so

Tj1 ≃ TMOK (E/2)◦j2 ≃ MOK(E/2) ◦ Tj2 ◦MOK(−E/2)

which, after taking inverses, equates to

∏

i

T−1
OEi

(−1) ◦MOK(E/2) ≃ MOK(E/2) ◦
∏

i

T−1
OEi

. (2)

This expression allows us to reduce the formula for T 2
F ′′ in the following way:

T 2
F ′′ ≃

∏

i

T−1
OEi

(−1) ◦MOK(E/2) ◦
∏

i

T−1
OEi

(−1) ◦MOK(E/2)[2]

≃ MOK(E/2) ◦
∏

i

T−1
OEi

◦
∏

i

T−1
OEi

(−1) ◦MOK(E/2)[2]

≃ MOK(E/2) ◦MOK(−E) ◦MOK(E/2)[2]

≃ [2]

where the second and third lines follow from equations (2) and (1) respectively.

The fact that T 2
F ≃ [2] now follows immediately from Corollary 2.4. �
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Corollary 2.6. imF and imF ′′ are spanning classes for D(K).

Proof. For any spherical functor F : D(Y ) → D(X), we have a natural spanning

class for D(X) given by imF ∪ (imF )⊥ ≃ imF ∪kerR; see [Add11, §1.4]. However,

in our case we have kerR = 0. Indeed, let E ∈ kerR. Then the defining triangle for

the twist FR(E) → E → TF (E) shows that TF (E) ≃ E . But by Corollary 2.5, we

have E ≃ T 2
F (E) ≃ E [2] which implies E ≃ 0; a similar argument works for F ′′. �

Remark 2.7. This should be contrasted to the object case where every spherical

object E is expected to have a non-empty perpendicular E⊥; [Plo05, Question 1.25].

Lemma 2.8. The functors F,F ′′ : D(A) → D(K) are actually split spherical. That

is, the natural triangles associated to the units η, η′′ of adjunction are split. In

particular, this implies that F and F ′′ are faithful.

Proof. We prove the statement only for F since F ′′ is identical. In order to show

that the triangle idA
η
−→ RF → ι∗ is split, it suffices to show that Ext1(idA, ι

∗) = 0.

But on the level of kernels, this is just

Ext1A×A(∆∗OA,OΓι) ≃ Ext1A(OA,∆
!OΓι) by adjunction

≃ Ext1A(OA,∆
∗OΓι [−2])

≃ H−1(A,OA[2]) = 0. �

Proposition 2.9. The induced map on cohomology FH : H∗(A,Q) → H∗(K,Q) is

injective on Heven(A,Q), zero on Hodd(A,Q) and the twist TF acts on H∗(K,Q) by

reflection in (imFH)⊥ with respect to the Mukai pairing.

Proof. The first statement follows from the fact that RHFH ≃ idH∗(A,Q)+ι∗H and

ι∗H acts by the identity on Heven(A,Q) and by −1 on Hodd(A,Q). Next, the defining

triangle for the twist gives TH
F ≃ idH∗(K,Q)−FHRH from which it follows immedi-

ately that everything in kerRH ≃ (imFH)⊥ is fixed by TH
F . Finally, to see that TH

F

acts on imFH as −1 we observe that TF ◦ F ≃ F ◦ CF [1] ≃ F ◦ ι∗[1] ≃ F [1] and so

the claim follows. �

Remark 2.10. Notice that this is very different to the object case where the twist

acts on cohomology by reflection in a hyperplane; see [Huy06, Corollary 8.13] for

more details. It follows from Proposition 2.9 that our twist is acting on cohomology

by reflection in a subspace of codimension 8 = dimHeven(A,Q).
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