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Background: Idiopathic pulmonary fibrosis (IPF) is progressive
and rapidly fatal. Improved understanding of pathogenesis is
required to prosper novel therapeutics. Epigenetic changes
contribute to IPF; therefore, microRNAs may reveal novel
pathogenic pathways.

Objectives: We sought to determine the regulatory role of
microRNA (miR)-155 in the profibrotic function of murine
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lung macrophages and fibroblasts, IPF lung fibroblasts, and
its contribution to experimental pulmonary fibrosis.
Methods: Bleomycin-induced lung fibrosis in wild-type and
miR-155""" mice was analyzed by histology, collagen, and
profibrotic gene expression. Mechanisms were identified by in
silico and molecular approaches and validated in mouse lung
fibroblasts and macrophages, and in IPF lung fibroblasts, using
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loss-and-gain of function assays, and in vivo using specific
inhibitors.

Results: miR-155"'" mice developed exacerbated lung
fibrosis, increased collagen deposition, collagen 1 and 3
mRNA expression, TGF-3 production, and activation of
alternatively activated macrophages, contributed by
deregulation of the miR-155 target gene the liver X
receptor (LXR)x in lung fibroblasts and macrophages.
Inhibition of LXR« in experimental lung fibrosis and in
IPF lung fibroblasts reduced the exacerbated fibrotic
response. Similarly, enforced expression of miR-155 reduced
the profibrotic phenotype of IPF and miR-155"'~
fibroblasts.

Conclusions: We describe herein a molecular pathway
comprising miR-155 and its epigenetic LXR« target that when
deregulated enables pathogenic pulmonary fibrosis.
Manipulation of the miR-155/LXR pathway may have
therapeutic potential for IPF. (J Allergy Clin Immunol
2017;139:1946-56.)

Key words: MicroRNA-155, lung fibrosis, liver X receptor, fibro-
blasts, alternatively activated macrophages

Idiopathic pulmonary fibrosis (IPF) affects more than 5 million
people worldwide and its incidence is increasing.' Histology of
IPF includes interstitial fibroblastic foci and deposition of
collagen-rich extracellular matrix,” and pirfenidone-targeting tis-
sue remodeling has improved therapeutic options.” However,
mechanisms controlling IPF progression remain poorly under-
stood. IPF is associated with age, male sex, and cigarette smok-
ing,* suggesting an epigenetic contribution to pathogenesis.

MicroRNAs (miRs) are 22-nucleotide noncoding RNAs that
regulate gene expression.’ Single miRs bind 6 to 8 nucleotide
complementary sequences, mainly in the 3-prime untranslated re-
gion (3'UTR) of target mRNAs, causing degradation or transla-
tion inhibition® and can finetune diverse mRNA often within
the same biological pathway.” Identifying disease-specific miRs
can reveal novel target mRNA/pathways and provide insight
into pathogenesis and identify therapeutic targets.

MicroRNA-155 (miR-155) is required for normal immune
function™’; its overexpression is associated with inflammation,
autoimmunity,x‘m and cancer,'' whereas miR-155—deficient
mice develop age-related airway fibrosis.'” miR-155 may there-
fore act as a homeostatic rheostat contributing to the onset and
duration of inflammation and remodeling. Our hypothesis was
that miR-155 attenuates pathways that induce lung remodeling.
We revealed exacerbated experimental fibrosis in miR-155""~
mice upon lung injury. A novel miR-155-regulated pathway iden-
tified in this context was the liver X receptor alpha (LXR)a, which
is an oxysterol-activated transcription factor (NR1H3)."

METHODS

Bleomycin-induced lung fibrosis was induced in miR-155"'" and control
mice as described.'*'> Mouse lung fibroblasts and macrophages were derived
from wild-type (WT) and miR-155""" mice by lung digestion followed by
fluorescence-activated cell sorting. Primary lung fibroblasts from patients
with IPF (n = 7) and normal controls (n = 8) were obtained and cultured as
described.'® Experimental interventions included transfecting cells with
miR-155 mimic or LXRa siRNA, or incubating with LXR agonist/antagonist
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Abbreviations used
Arg2: Arginase 2
Col: Collagen
IPF: Idiopathic pulmonary fibrosis
LXRa: Liver X receptor alpha
miR-155: MicroRNA-155
3'UTR: 3-Prime untranslated region
22(S)HC: 22(S)-hydroxycholesterol
WT: Wild-type

or various alarmins. Comprehensive details are provided in this article’s
Methods section in the Online Repository at www.jacionline.org.

RESULTS
Experimental pulmonary fibrosis is exacerbated by
miR-155 deficiency

To evaluate miR-155 epigenetic control of lung fibrosis, we
used the murine model of bleomycin-induced inflammation and
pulmonary fibrosis.'” Bleomycin or control PBS was given to
miR-155 gene-deleted (miR-1557/ ) mice and WT controls.
Bleomycin-induced weight loss (Fig 1, A), lung collagen deposi-
tion (Fig 1, B), and biomarkers of inflammation (see Table E1 in
this article’s Online Repository at www.jacionline.org) were
exacerbated in miR-155"'" mice compared with WT mice on
day 18. This was accompanied by increased lung tissue expres-
sion of mRNA for collagen (Col)la (mainly Collal isoform)
and Col3al (Fig 1, C; see Fig El in this article’s Online Reposi-
tory at www.jacionline.org), TGF- (Tgf-8) expression, and lung
collagen protein (Table E1). The increased bronchoalveolar
lavage cell counts in bleomycin-treated miR-155"'" mice
(Table E1) were predominantly macrophages with the repair-
associated, alternatively activated (M2) phenotype (Fig 1, D)
confirmed by increased arginase 2 (Arg2), chitinase, and IL-13 re-
ceptor a2 expression, whereas the expression of the classically
activated macrophage (M1) phenotype marker, inducible nitric
oxide synthase (Nos2), remained unchanged. Together, these
data demonstrate that miR-155 deficiency exacerbated the pulmo-
nary fibrotic response to bleomycin.

We next investigated the kinetics of lung tissue miR-155
expression in WT mice given bleomycin (Fig 1, E). Expression of
miR-155 in mice given PBS remained constant, whereas in
response to bleomycin, miR-155 expression decreased at day 1,
increased at day 7, and normalized by day 18. To investigate
the factors that might regulate these changes, we established
that bleomycin incubated in vitro with WT murine primary lung
fibroblasts was sufficient to dose dependently downregulate the
expression of precursor miR-155 at 8 hours (Fig 1, F) and mature
miR-155 at 24 hours (see Fig E2, A, in this article’s Online
Repository at www.jacionline.org). To mimic the effect of
exposure to cytokines generated in the damaged lung,'’'®
miR-155 expression was measured in WT murine primary lung
fibroblasts incubated with exogenous alarmins 1L-33,"7 1L-25,"
IL-1o,'® or High mobility group box 1 (HMGB-1)*’ released in
response to injury. There was no change in response to IL-33,
IL-25, or HMGB-1 (Fig E2, B), but IL-1a increased miR-155
expression (Fig E2, C). Thus, the dynamic expression of
miR-155 in vivo may reflect a homeostatic role in inflammation
and repair in response to tissue injury.
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FIG 1. Deficiency of miR-155 exacerbates experimental model of pulmonary fibrosis. A, Bleomycin (1 dose
intranasal) exacerbated a decrease in body weight. B, Lung collagen deposition (turquoise staining) in miR-
155"~ mice (n = 8). C, miR-155"'" bleo mice show an increase in lung Col7a7 and Col3a7 mRNA. D, M2
macrophage polarization. E, miR-155 is dynamically regulated by bleomycin in WT mice. F, Precursor
(pre-)miR-155 is decreased in lung fibroblasts of WT mice (pooled n = 5) cultured with bleomycin. bleo,
Bleomycin. Data shown as mean = SEM or median and interquartile range. *P < .05.

Prediction analysis identified LXRa as an miR-155
target in the lung

Identifying mRNA targets under the epigenetic control of miR-
155 was our strategy to identify cryptic pathways involved in lung
fibrosis. We performed in silico analysis of predicted and vali-
dated conserved mouse and human miR-155 targets (TargetScan

and miRTarBase) along with targets expressed in lungs or
described in respiratory or fibrotic diseases (Ingenuity Pathway
Analysis database). This integrated approach identified target
mRNAs (Table E2), including hypoxia and TGF-B pathways,”!
among which we validated increased expression of Hifla, TgfB3r2,
and Smadl mRNA in lung tissue of miR-155""" mice given
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bleomycin (see Fig E3 in this article’s Online Repository at www.
jacionline.org). In addition to these recognized profibrotic path-
ways, we identified LXRa, which has not hitherto been described
in lung fibrosis. LXRa has a conserved 3'UTR seed-region
sequence (GCAUUAA) complementary to miR-155; therefore,
we highlighted this as a potential novel pathway to pathogenic
fibrosis and this provides the basis of our study.

Endogenous miR-155 targets human LXR«

We recently demonstrated using a reporter assay that synthetic
miR-155 could bind mouse Lxra mRNA.”” To confirm that
endogenous miR-155 targets human LXRa mRNA, we used an
MS2-TRAP RNA affinity purification assay.”’ Expression con-
structs encoding luciferase genes tagged with the MS2-binding
domain motif with either intact LXRa, or LXRa mutated in the
3'UTR microRNA recognition element as a negative control,
were transfected into HEK293 cells together with the MS2GFP-
expressing plasmid. The empty vector and a construct containing
a tandem of 9 miR-155 binding sites (ie, an miR-155 “sponge”)
were used as negative and positive controls, respectively. MS2-
binding domain—containing transcripts were isolated from trans-
fected cells by immunoprecipitation of green fluorescent protein
and the enrichment of miR-155 in precipitates was measured by
quantitative PCR (Fig 2, A). Transcripts containing WT LXRa
3'UTRs showed significant enrichment in miR-155 compared
with the mutated sequence, which showed miR-155 levels similar
to the empty vector control; thus, endogenous miR-155 could
bind to human LXRa mRNA. To confirm and extend this observa-
tion, we reintroduced miR-155 into miR-155""" murine lung
fibroblasts by transfection with a synthetic miR-155 mimic. After
24-hour culture, cytosolic LXRa protein concentrations (Fig 2, B)
were reduced 60% by miR-155. Together, these findings support a
functional interaction between miR-155 and LXRa mRNA.

LXRa expression and activity are increased in miR-
155~/ mice with lung fibrosis

Compared with WT mice given PBS, the expression of Lxra
mRNA in lung tissue of WT mice given bleomycin was upregu-
lated on day 1 and had normalized by day 7 (Fig 2, C). This in-
crease was confirmed at the protein level in lung fibroblasts of
WT mice given bleomycin, peaking at days 2 and 3 and normal-
izing to control PBS levels at day 7 (Fig 2, D-F; see Fig E4 in this
article’s Online Repository at www.jacionline.org). This in vivo
expression pattern of Lxra was reciprocal to that of miR-155
(Fig 1, E) in WT mice. Consistent with the homeostatic molecular
interaction between miR-155 and Lxra mRNA, miR-155"""
mice given bleomycin maintained higher levels of lung Lxra
expression compared with WT mice (Fig 2, G). This increased
expression was associated with an increase in Lxra activity as
measured by the expression of its specific functional reporter
Abcal in lung tissue mRNA (Fig 2, H). Together, these data
demonstrate that the lack of epigenetic homeostatic regulation
in miR-155"/" mice was associated with a sustained increase in
Lxra expression and activity in response to bleomycin.

Serum concentrations of LXR oxysterol ligands are
unchanged in experimental fibrosis

Oxidized derivatives of cholesterol, oxysterols, for example,
24(S) hydroxycholesterol and 27-hydroxycholesterol, are natural
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ligands that stimulate the expression and activation of LXRa.”*
We showed previously that miR-155"'" mice have higher serum
cholesterol concentrations while on a high fat dietzz; therefore, to
test whether different oxysterol concentrations in miR-155"""
mice treated with bleomycin were responsible for the Lxra activa-
tion and exacerbated lung fibrosis, we profiled serum oxysterols
using mass spectrometry (Table E3). We found no differences be-
tween any of the known LXRa ligands,”>® suggesting that the
increased activation of the Lxrer pathway in miR-155"'" mice
was due to normal activation of more available LXRa.

miR-155""" lung fibroblasts and macrophages have
an LXR-dependent profibrotic phenotype

We next investigated the role of LXR pathway activation in
primary lung fibroblasts and alveolar macrophages. Compared
with WT cells, miR-155""" fibroblasts and macrophages had
greater and constitutive expression of the LXRa reporter gene,
Abcal (Fig 2, I), suggesting that the LXRa pathway itself was
constitutively activated. In miR-155""~ macrophages, this was
associated with an increased profibrotic (M2) phenotype charac-
terized by increased expression of Arg2, a key enzyme controlling
the bioavailability of hydroxyproline for collagen synthesis*’
(Fig 2, J). We demonstrated that this increased Arg2 expression
in miR-155""" macrophages was restored to normal by Lxra-
siRNA (Fig 2, K; see Fig E5, A, in this article’s Online Repository
at www.jacionline.org) and by LXR antagonist 22(S)-hydroxy-
cholesterol (22(S)HC)?® (Fig 2, L). To extend this to human cells,
we investigated the regulatory interrelationship between LXR«
and miR-155 in the expression of ARG2 in human macrophages.
Healthy human monocyte—derived macrophages were transfected
with control siRNA or LXRa siRNA, each with miR-155 inhibitor
or control inhibitor (Fig E5, C). To induce LXR« and ARG2
expression, the cells were cultured with LXR agonist GW3965
or control dimethyl sulfoxide. The LXR agonist—induced increase
in ARG?2 expression was further increased by inhibition of miR-
155, and this increase was restored to normal by LXR«-specific
siRNA (see Fig E6 in this article’s Online Repository at www.
jacionline.org). Together, these data suggest that LXRa-depen-
dent regulation of ARG2 was governed by miR-155 in human
and mouse macrophages.

We next explored whether miR-155 influenced the profibrotic
function of fibroblasts in an LXRa-dependent manner. In vitro
proliferation, migration, and collagen production were compared
in primary lines derived from mouse lung tissue. miR-155""" fi-
broblasts displayed greater proliferation to serum supplementa-
tion than did WT fibroblasts (Fig 3, A), which was restored to
the normal proliferation observed in WT cells by the LXR
antagonist 22(S)HC in a dose-dependent manner (Fig 3, B).
miR-155"'" fibroblasts also displayed increased migration
compared with WT fibroblasts into the scratch space of an
in vitro wound-healing assay, which was normalized by 22(S)
HC (Fig 3, C and D). The increased fibroblast infiltration was
not due to proliferation because the culture medium was supple-
mented with 0.3% FCS, a concentration that did not support fibro-
blast proliferation (Fig 3, A). miR-155""" fibroblasts produced
approximately 40-fold increased concentration of soluble
collagen in culture than did WT fibroblasts in response to 3%
FSC (Fig 3, E), which was normalized in a dose-dependent
manner by 22(S)HC to concentrations produced by WT fibro-
blasts (Fig 3, F).
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FIG 2. LXRa is regulated by miR-155. A, miR-155 binds to human LXRa. HEK293 were transfected with either
empty vector (pmiRGLO-MS2BD) or miR-155 sponge (pmiRGLO-MS2BD-miR155Sp) or 3'UTR-LXRa (pmiR-
GLO-MS2BD-LXRa WT), or MS2 mutated in MRE 3’UTR-LXRa (pmiRGLO-MS2BD-Lxra-MT), and miR-155
captured in the immunoprecipitate quantified by quantitative PCR. Data presented as mean + SEM of 2
technical replicates; representative of 3 experiments. B, miR-155"'" fibroblasts show downregulation of
LXRa protein after transfection with miR-155 mimic. C, Time course of Lxra mRNA expression in lungs of
WT mice after bleomycin (n = 4-7 per group). D, Lung fibroblast gating strategy. Representative histograms
(E) and quantitative evaluation (F) of an increase in LXRa expression in lung fibroblasts during fibrosis.
Expression of Lxra (G) and Abca? (H) in lungs of WT and miR-155"'" mice on day 18. I, Constitutive
expression of Abca7in lung fibroblasts (n = 4) and in alveolar macrophages (n = 4). Constitutive expression
of Arg2 in alveolar macrophages (n = 5) (J) and after transfection with Lxra siRNA (K) or treatment with
22(S)HC (30 wM) (L). Data presented as mean = SEM or median and interquartile range. bleo, Bleomycin;
MRE, microRNA recognition element; DMSO, dimethyl sulfoxide; MS2BD, MS2-binding domain. *P < .05.
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TGF-B is the principal cytokine driving collagen gene
expression, and oxysterol agonists of LXR can induce TGF-3
production.””*" Therefore, to investigate the role of miR-155 in
LXRa-dependent collagen production, we quantified TGF-$ in
WT and miR-155"'" fibroblast supernatants cultured for
48 hours in 3% FCS, with/without 22(S)HC. miR-155""" fibro-
blasts produced higher concentrations of TGF-$ than did WT
fibroblasts and this increase was inhibited either by LXR antag-
onism (Fig 3, G) or by restoring miR-155 by transfection (Fig 3,
H; see Fig E5, B). To investigate whether arginase was involved
in this process, we measured the expression of Arg2 in fibro-
blasts that were transfected with Lxrae siRNA or control siRNA
(Fig E5, B). miR-155"'" fibroblasts had higher expression
levels of Arg2 than did WT fibroblasts (Fig 3, I), and specific
inhibition of Lxra by siRNA restored Arg2 expression in
miR-155""" fibroblasts to the normal levels of WT fibroblasts.
These observations indicate that excessive production of soluble
collagen by miR-155 ~/~ fibroblasts may be due to an

LXR-dependent increase in TGF- and increased arginase-
driven production of hydroxyproline.

The exacerbated bleomycin-induced lung fibrosis in
miR-155"'" mice is LXR-dependent

To test the involvement of LXR in experimental lung fibrosis,
miR-155""" and WT mice were given bleomycin or control PBS,
and treated with the LXR antagonist 22(S)HC or control cyclo-
dextrin excipient. The subsequent loss of body weights for
miR-155""" and WT mice is shown on different panels for clarity
in Fig 4, A. The exacerbated bleomycin-induced weight loss in
miR-155"'" mice was mitigated by treatment with 22(S)HC to
the weight loss seen in WT mice given bleomycin, as was the
exacerbated lung tissue collagen deposition (Fig 4, B), and the in-
flammatory bronchoalveolar lavage cytology (see Fig E7 in this
article’s Online Repository at www.jacionline.org). The miR-
155~/ —associated increased lung tissue Collal, Col3al, and
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FIG 4. Inhibition of LXR ameliorates lung fibrosis in miR-155"'" mice. From 2 days before the administra-
tion of bleomycin (n = 10), mice were treated with daily injections of 22(S)HC. Weight loss (A) and collagen
deposition (B) (turquoise) in miR-155""" mice was mitigated by 22(S)HC. The expression of Col1a1, Col3al,
and Arg2 in lung tissues (C) and Arg2 (D) in BAL cells in miR-155"'" mice was reduced by 22(S)HC. Data
presented as mean = SEM or median (interquartile range). BAL, Bronchoalveolar lavage. *P < .05.

Arg2, and the bronchoalveolar lavage cell Arg2 mRNA expres-
sion were also attenuated by 22(S)HC (Fig 4, C and D). 22(S)
HC had no significant effect on weight loss in bleomycin-
treated WT mice (Fig 4, B). These data demonstrate that the
exacerbated inflammatory and fibrotic response to bleomycin in
miR-155""" mice is at least partly dependent on LXRa and
tractable in vivo by LXR antagonism.

The exacerbated profibrotic behavior of IPF
fibroblasts is normalized by neutralization of the
LXR pathway

To investigate the contribution of LXR pathway activation to
the exacerbated lung tissue-remodeling characteristic of IPF, we
obtained primary lung fibroblast lines from patients with IPF and

control subjects (details in Tables E4 and ES5). The constitutive
cytosolic LXRa protein concentration was greater in IPF than
in normal lung fibroblasts (Fig 5, A). IPF lung fibroblasts showed
increased collagen synthesis in vitro compared with control lung
fibroblasts, which could be either reduced in a dose-dependent
manner by LXR antagonist (Fig 5, B) or further increased by
the LXR agonist GW3965 (Fig 5, C). The contribution of LXR
activation to the excess collagen production by IPF fibroblasts
was further confirmed by transfecting IPF lung fibroblasts with
LXRa siRNA (Fig ES, D), which attenuated the collagen produc-
tion (Fig 5, D).

Control normal and IPF fibroblasts produced TGF-f3 in culture
supernatants; however, only IPF fibroblasts increased TGF-f3
production in response to 1% FCS supplementation and this
increased production was inhibited by LXR antagonist (Fig 5, E).
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FIG 5. The profibrotic phenotype of IPF fibroblasts can be normalized by neutralization of LXR. Synchro-
nized normal (n = 4) and IPF (n = 6) primary lung fibroblasts were cultured with 1% FCS (%S). A, IPF fibro-
blasts contained higher concentrations of LXRa protein. B, Collagen production by IPF fibroblasts was (Fig
5, B) reduced by 22(S)HC or potentiated by GW3965 (C). D, LXRa siRNA reduced collagen production by IPF
fibroblasts. E, 22(S)HC inhibited TGF-B production. F, GW3965 potentiated serum-induced ARG2 expression
by IPF fibroblasts. G, Lxra siRNA reduced ARG2 expression by IPF fibroblasts. Data are presented as

mean * SEM of 4 biological replicates. *P < .05.

Normal and IPF fibroblasts constitutively expressed similar levels
of ARG2 mRNA; however, only IPF fibroblasts showed higher
expression of ARG2 after stimulation with LXR agonist
GW3965 (Fig 5, F) and this increased ARG2 expression was
attenuated by transfection with LXRa siRNA (Fig 5, G). These
data indicate that TGF-3 and ARG?2 are regulated in an LXRa-
dependent manner in IPF fibroblasts. In addition, compared
with control lung fibroblasts, IPF lung fibroblasts showed greater
in vitro proliferation in response to 1% FCS supplementation,
which was reduced by LXR antagonist (see Fig E8, A, in this ar-
ticle’s Online Repository at www.jacionline.org). IPF lung fibro-
blasts had increased migratory capacity into the scratch space of
an in vitro wound-healing assay, compared with normal lung fi-
broblasts, and this increased migration was reduced to levels of
normal fibroblasts by LXR antagonism (Fig E8, B and C).
Thus, activation of the LXR pathway may drive the excessive pro-
fibrotic phenotypic characteristics of IPF fibroblasts.

LXRa is deregulated from miR-155 in IPF lung
fibroblasts

To test whether the LXRa-dependent collagen production by
IPF fibroblasts was regulated by miR-155, control and IPF
fibroblasts were transfected with miR-155 and stimulated by
synthetic LXR agonist GW3965 in vitro. The increased collagen
production by IPF fibroblasts was decreased (see Fig E9, A, in this
article’s Online Repository at www.jacionline.org), suggesting
that collagen synthesis, as the prime exemplar of the LXRa-
dependent profibrotic function of IPF fibroblasts, can be regulated
by miR-155.

Because constitutively increased LXRa expression (Fig 5, A)
and activity contributed to IPF fibroblast phenotype, we investi-
gated whether this was caused by altered serum concentrations
of LXRa oxysterol ligands in patients with IPF or by altered
miR-155 expression. Comparing serum oxysterol concentrations
in IPF and control subjects showed no differences in any of the
LXRa ligands tested (Table E6). The constitutive miR-155
expression in IPF fibroblasts was similar to that of control lung fi-
broblasts (Fig E9, B); therefore, we investigated whether the
increased LXRo expression and activation in IPF fibroblasts
was due to a deregulated interaction between miR-155 and
LXRa. Because the consequence of LXRa deregulation resulting
in exacerbated lung fibrosis became apparent in miR-155""
mice only when stressed with bleomycin, we compared the dy-
namic interaction between miR-155 and LXRa in control and
IPF fibroblasts cultured under the hypoxic stress (1% O,) that
mimics the lung environment in IPF.”' Compared with normoxia,
miR-155 expression was increased by hypoxia in both healthy and
IPF fibroblasts (Fig E9, C); however, LXRa and ABCAI expres-
sion was increased by hypoxia only in IPF fibroblasts (Fig E9,
D), suggesting selective deregulation of LXRa function. To
explore the dynamics of the interaction between miR-155 and
LXRa, we correlated the ratio of their relative expressions in
normal and IPF lung fibroblasts. The relative expression levels
of LXRa and miR-155 in normal and IPF lung fibroblasts cultured
under normoxic conditions showed no significant correlation
(Spearman p and 95% CI): normal fibroblasts r = 0.263
(—0.310 to 0.69) and IPF fibroblasts r = 0.439 (—0.072 to
0.767). However, under hypoxic conditions, there was a negative
correlation in normal fibroblasts r = —0.655 (—0.868 to —0.236)
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that was not apparent in IPF fibroblasts r = —0.152 (—0.602 to
0.375) (Fig E9, E). This suggested that there was tight posttran-
scriptional control of LXRa expression by homeostatic miR-
155 in response to a stressor such as hypoxia in normal fibroblasts
that was lost in IPF fibroblasts, potentially contributing to the de-
regulated LXRa activity.

The mechanism of this deregulation may be due to increased
competitive miR-155 binding by other mRNA targets that contain
multiple miR-155 seed-region binding sites.’ To test this hypoth-
esis, we evaluated the expression of a validated miR-155 target
ZNF652" that contains 7 miR-155 binding sites (HumanTargetS-
can v7.0) in normal and IPF fibroblasts cultured in normoxia and
hypoxia. ZNF652 was upregulated by hypoxia in IPF but not in
normal lung fibroblasts (Fig E9, F) and in contrast to LXR«, the
expression of ZNF652 correlated negatively with miR-155
expression (Fig E9, G), suggesting that under hypoxic stress,
miR-155 may be preferentially bound by the increased ZNF652
leading to derepression of LXRa in IPF fibroblasts.

DISCUSSION

Characteristic IPF fibrosis is refractory to anti-inflammatory
therapy4 and antifibrotic drugs underline the primacy of aberrant
wound healing to pathogenesis.” We provide new understanding
of this process. Mouse models and IPF lung fibroblasts had consti-
tutively increased LXR« transcription when deregulated from ho-
meostatic miR-155, associated with LXR-dependent excessive
fibrotic phenotype mediated by increased TGF-f3, arginase, and
collagen production that could be mitigated by LXR antagonist
(Fig 6).

Expression of miR-155 is rapidly and transiently reduced in
WT mice after bleomycin, associated with transient reciprocally
increased Lxra expression and protein, and the remodeling is self-
limiting."> In contrast, miR-155""" mice have constitutively
increased Lxra and an exacerbated lung fibrosis, and this differ-
ence may provide novel insight into mechanisms of relentless
lung remodeling. IPF lung fibroblasts also have constitutively

more LXRa protein (and upregulated LXRa and ABCAI: IPF
data repositories GSE2052™" and GEOD-24206"), and greater
LXR-dependent profibrotic activation that was normalized by
miR-155 overexpression, LXRa gene silencing, or metabolic
antagonism of LXRa activity using 22(S)HC.

LXR may exert profibrotic effects by inducing Arg2 and Tgf3
expression. The Arg2 promoter contains an LXR response
element and is activated by LXR agonism in macrophages,””
and we extend this finding to mouse and human fibroblasts.
Arg2 is the mitochondrial form involved in hydroxyproline pro-
duction and is essential for collagen biosynthesis. Upregulated
Arg2 in miR-155""" macrophages and fibroblasts is normalized
by inhibition of Lxra by siRNA, or its activity by metabolic antag-
onism. LXR may also exert profibrotic effects by similarly regu-
lating TGF-f3 expression, and the excessively high concentrations
of TGF-3 produced in vitro by miR-155"'" and IPF fibroblasts
were normalized by LXR antagonism.

Our profibrotic LXR function in lung conflicts with the
antifibrotic function of T0901317-LXR activation in skin during
experimental systemic sclerosis model.*® This can be reconciled;
synthetic ligand T0901317 locks LXR into the conformation that
recruits coactivators, whereas natural oxysterol ligands and
GW3965 induce the flexible conformation that binds coactivators
and corepressors,”’ and there are tissue-specific epigenetic
changes in chromatin that determine LXR-driven gene expres-
sion.” Furthermore, the multiple-dose bleomycin-induced skin
fibrosis is driven by IL-6 from inflammatory macrophages in-
hibited by LXR activation,36 whereas, in contrast, our single-
bolus bleomycin-induced lung fibrosis is associated with repair
M2 macrophage activation (Fig 1, D'7), which is enhanced by
LXR activation.”? Alveolar macrophages are uniquely enriched
in genes of lipid metabolism that are cross-regulated by LXR,
supporting their role in lung homeostasis.*’

The cryptic involvement of LXRa in fibrosis became apparent
when deregulated in miR-155""" mice plus the stressor of bleo-
mycin. The mechanism of LXRa deregulation in IPF fibroblasts
may be due to ineffective regulation by miR-155, which becomes
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apparent under hypoxic stress equivalent to the IPF lung environ-
ment.”’ IPF and control lung fibroblasts had similar miR-155
expression when cultured under normal oxygen tensions. Under
hypoxic conditions, the expression levels of miR-155 correlated
negatively with LXRa in control lung fibroblasts, implying tight
epigenetic control, whereas there was no equivalent engagement
between miR-155 and LXR« in IPF fibroblasts, thus enabling
continued LXRa autoactivation®' and profibrotic behavior. This
deregulation might be mediated by several mechanisms,”®
including competition for available miR-155 by other targets
with the AGCAUUAA seed-region’ as validated in cancer cells.*”
One strong miR-155 candidate target mRNA is ZNF652, which
has 7 seed-region binding sites. ZNF652 is induced by hypoxia
in IPF but not normal fibroblasts. We identified that in contrast
to LXRe«, its increased expression negatively correlated with
miR-155 in IPF fibroblasts, suggesting that ZNF652 mRNA
competitively bound miR-155 leading to derepression of LXRa.

Expression of miR-155 has been identified as increased”” or
reduced,** and serum miR-155 levels were normal®’ in IPF.
This may reflect the dynamism of miR-155 expression in experi-
mental IPF. In lung tissue, it is transiently downregulated by bleo-
mycin (Fig 1, F) and TGF-B,*® and induced by inflammatory
mediators, for example, IL-1a (Fig E2, C) or hypoxia,47 as a
counterbalance mechanism regulating homeostatic lung tissue
repair.

Fibrosis of the lung is a common comorbidity of systemic
sclerosis. The pathogenesis and clinical features of the autoim-
mune and inflammation-driven lung pathology of systemic
sclerosis differs from IPF*® and 2 recent studies describe a path-
ogenic role for miR-155 in the experimental skin and lung fibrosis
associated with systemic sclerosis.*””° This reflects the dual role
of miR-155 driving chronic inflammation—associated pathologies
and resolving fibrosis that we found aberrant in IPF.

Key messages

e Deficiency of miR-155 exacerbates bleomycin-induced
experimental pulmonary fibrosis.

In the absence of miR-155 epigenetic control, LXRa ac-
tivity is deregulated in mouse primary lung fibroblasts
facilitating increased collagen and TGF-3 production,
and in macrophages enhancing alternative activation,
each inhibited by LXR antagonism, LXRa« gene silencing,

or exogenous miR-155 mimic.

The exacerbated bleomycin-induced pulmonary fibrosis
in miR-155"'" mice was mitigated in vivo by LXR
antagonism.

Primary IPF lung fibroblasts had constitutively raised
LXRa, deregulated from miR-155, and their profibrotic
phenotype was inhibited by LXR antagonism, LXRa
gene silencing, or exogenous miR-155 mimic.
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