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Mutations of the tricarboxylic acid cycle (TCA cycle) enzyme fumarate hydratase (FH) 25 

cause Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)1. FH-deficient 26 

renal cancers are highly aggressive and metastasise even when small, leading to an 27 

abysmal clinical outcome2. Fumarate, a small molecule metabolite that accumulates in 28 

FH-deficient cells, plays a key role in cell transformation, making it a bona fide 29 

oncometabolite3. Fumarate was shown to inhibit α-ketoglutarate (aKG)-dependent 30 

dioxygenases involved in DNA and histone demethylation4,5. However, the link between 31 

fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show 32 

that loss of FH and the subsequent accumulation of fumarate elicits an epithelial-to-33 

mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, 34 

invasion, and metastasis6. We demonstrate that fumarate inhibits Tet-mediated 35 

demethylation of a regulatory region of the antimetastatic miRNA cluster6 miR-36 

200ba429, leading to the expression of EMT-related transcription factors and enhanced 37 

migratory properties. These epigenetic and phenotypic changes are recapitulated by the 38 

incubation of FH-proficient cells with cell-permeable fumarate. Loss of FH is associated 39 

with suppression of miR-200 and EMT signature in renal cancer patients, and is 40 

associated with poor clinical outcome. These results imply that loss of FH and fumarate 41 

accumulation contribute to the aggressive features of FH-deficient tumours.  42 

To identify oncogenic features associated with FH loss we performed unbiased proteomics 43 

analyses of mouse (Fh1-/-) and human (UOK262) FH-deficient cells7 (Extended Data Fig. 1). 44 

We found that vimentin, a known EMT marker, is the most overexpressed protein in these 45 

cells, compared to FH-proficient counterparts (Fig. 1a). Gene expression profiling (Fig. 1b) 46 

followed by Gene Set Enrichment Analysis (GSEA)8 confirmed an enrichment of EMT-47 

related genes in FH-deficient cells (Extended Data Fig. 2 and Extended Data Fig. 3a, 48 

respectively). The reintroduction of full-length Fh1 (pFh1) in Fh1-/- cells (Extended Data Fig. 49 
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1a-e) was sufficient to rescue the EMT signature (Extended Data Fig. 2a and Extended Data 50 

Fig. 2c), to abolish vimentin expression (Fig. 1c-e), and to restore expression of E-Cadherin 51 

(Fig. 1c-d), a key epithelial marker. Fh1-/-+pFh1 cells acquired an epithelial morphology 52 

(Extended Data Fig. 1e) and their motility was reduced compared to that of Fh1-deficient 53 

cells (Fig. 1f-g). UOK262 cells exhibited a strong Vimentin expression (Extended Data Fig. 54 

3b-d), and increased migration (Extended data Fig. 3e) compared to UOK262pFH. However, 55 

localisation of E-Cadherin at the plasma membrane was not observed in UOK262pFH 56 

(Extended Data Fig. 3d).  57 

EMT is orchestrated by several transcription factors, including Twist, Snai1, Snai2, 58 

and Zeb1/2 (ref 9). Twist, which is activated by the Hypoxia-Inducible Factor HIF1 (ref 10), a 59 

key player in FH-deficient tumours11
,
 was elevated in Fh1-deficient cells (Fig. 1h). The 60 

silencing of HIF1β, the constitutively expressed subunit of HIFs required for their 61 

transcriptional activity12, failed to reduce the expression of EMT markers (Extended Data 62 

Fig. 4a-b), suggesting that EMT in Fh1-deficient cells is likely HIF-independent. Snai2, Zeb1 63 

and Zeb2 were also induced in Fh1-deficient cells, and their expression was reverted by Fh1 64 

re-expression in these cells (Fig. 1h-i). Zeb2 expression was also decreased upon FH 65 

restoration in UOK262 cells (Extended Data Fig. 3f). Snai2 and Zeb1/2 are suppressed by 66 

antimetastatic miRNAs miR-200ba429 and the miR-200c141 (ref 6). miRNA profiling 67 

revealed that miR-200 family members were among the most down-regulated miRNAs in 68 

Fh1-deficient cells (Fig. 2a). Suppression of MIR-200 was also observed in UOK262 cells 69 

compared to the non-transformed counterpart HK2 and partially restored by FH re-expression 70 

(Extended Data Fig. 3g-h). qPCR confirmed the miRNA profiling results and showed that the 71 

reconstitution of Fh1 in Fh1-deficient cells restored the expression levels of miR-200a and 72 

miR-200b and, in part, that of miR-200c and miR-141 (Fig. 2b). We hypothesised that the 73 

partial restoration of miR-200c141 could be ascribed to the residual fumarate in Fh1-/-+pFh1 74 
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cells (Extended Data Fig. 1c and Extended Data Fig. 5b), which could also explain the partial 75 

recovery of the EMT gene signature (Extended Data Fig. 2a-c). Blunting fumarate levels by 76 

re-expressing high levels of Fh1 in Fh1-/- cells rescued their phenotype (Extended Data Fig. 77 

5b-g) and led to a full reactivation of the entire miR-200 family (Extended Data Fig. 5h), 78 

indicating that members of this family have a different susceptibility to fumarate. The 79 

incomplete rescue of fumarate levels in UOK262pFH (ref 7) could also explain the partial 80 

restoration of MIRNAs and some EMT markers in these cells.  81 

Since miR-200ba429 expression was fully restored in Fh1-/-+pFh1 and its expression 82 

was sufficient to suppress vimentin and rescue E-cadherin expression in Fh1-deficient cells 83 

(Fig. 2c), we investigated the role of this miRNA cluster in Fh1-dependent EMT. Repression 84 

of miR-200 is associated with its epigenetic silencing via CpG island hypermethylation13, 85 

which can also be caused by downregulation of Tets14,15. We hypothesised that fumarate 86 

could cause suppression of miR-200ba429 by inhibiting their Tets-mediated demethylation. 87 

The combined silencing of Tet2 and Tet3, the most abundant Tets isoform in Fh1fl/fl cells 88 

(Extended Data Fig. 6a), but not the inhibition of aKG-dependent histone demethylases with 89 

GSK-J4 (ref 16), decreased miRNAs and E-Cadherin expression (Extended Data Fig. 6b-e), 90 

highlighting the role of Tets in regulating EMT, in line with previous findings14,15. Genome 91 

Browser17 view of an ENCODE dataset generated in mouse kidney cells revealed a conserved 92 

CpG island at the 5’ end of miR-200ba429, CpG43, that is enriched in binding sites for Tets 93 

and for lysine-methylated histone H3 (Extended Data Fig. 7a). Chromatin 94 

immunoprecipitation (ChIP) experiments showed that a region adjacent to CpG43 is enriched 95 

for the repressive marks H3K9me2 and H3K27me3 and depleted of the permissive marks 96 

H3K4me3 and H3K27Ac in Fh1-deficient cells (Extended Data Fig. 7b) in the absence of 97 

changes in H3K4 and H3K27 methylation among the four cell lines (Extended data Fig. 7c). 98 

Chromosome Conformation Capture (3C) analysis18 identified a physical association between 99 
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this regulatory region and the transcription starting site of miR-200ba429, which sits in the 100 

intronic region of the gene Ttl10 (Extended Data Fig. 7d). This region was hypermethylated 101 

in Fh1-deficient cells and the re-expression of Fh1 restored its methylation levels (Fig. 2d and 102 

Extended Data Fig. 7e). Binding of Tets to the CpG43 was comparable among the cell line 103 

tested (Extended Data Fig. 7f), suggesting that the changes in methylation of this region are, 104 

at least in part, caused by inhibition of Tets enzymatic activity rather than by their differential 105 

binding to chromatin. Consistently, 5-hydroxymethylcytosine (5hmc), the product of 106 

oxidation of 5-methylcytosine by Tets15, was significantly decreased in Fh1-deficient cells 107 

(Extended Data Fig. 7g).  108 

Incubating cells with dimethyl aKG (DM-aKG), a cell-permeable derivative of aKG, 109 

known to reactivate aKG-dependent dioxygenases19, restored the expression miR-200a in 110 

Fh1-deficient cells (Extended Data Fig. 6f). Conversely, treating Fh1fl/fl and human FH-111 

proficient epithelial kidney cells HK2 with monomethyl fumarate (MMF), a cell permeable 112 

derivative of fumarate triggered profound phenotypical (Extended Data Fig. 8a) and 113 

(epi)genetic (Fig. 3a-g) changes that resembled those of FH-deficient cells. However, we 114 

could not observe induction of Snai2 that we observed in Fh1-/- cells (Fig. 1h) and changes in 115 

Vimentin in HK2 cells, which is expressed in these cells22, despite their epithelial origin. 116 

MMF did not cause mitochondrial dysfunction but lead to a typical fumarate-dependent 117 

metabolic signature, characterised in both cell types by accumulation of fumarate and 118 

fumarate-derived succinic-GSH (succGSH) and succinic-cysteine (2SC) that we and others 119 

recently described20,21 (Extended Data Fig. 8b-c and SI Table 3). To rule out the possibility 120 

that by-products of fumarate accumulation, rather than fumarate itself, elicit EMT we 121 

analysed the effects of accumulation of succinate, another metabolite that can inhibit Tets3-5, 122 

but cannot promote succination. Since we could not increase succinate levels with the cell 123 

permeable dimethyl succinate (Extended Data Fig. 9a) we used succinate dehydrogenase b 124 
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(Sdhb)-deficient cell lines23, which accumulate succinate but not fumarate by-products, 125 

including succGSH (Extended Data Fig. 9b-c). These cells exhibited striking mesenchymal 126 

features (Extended Data Fig. 9d-e), and epigenetic suppression of the miR-200ba429 family 127 

(Extended Data Fig. 9f-g), in line with the hypermethylation phenotype and EMT signature 128 

recently observed in SDH-deficient cells24.  129 

We next investigated the link between FH loss, fumarate accumulation and EMT in 130 

renal cancer samples. Vimentin was highly expressed and E-Cadherin was decreased in a 131 

previously published dataset25 of HLRCC tumour samples, when compared to normal tissue 132 

(Extended Data Fig. 10a). Two HLRCC tumours that we profiled (Fig. 4a), exhibited 133 

decreased 5hmC levels (Fig. 4b) despite comparable TETs levels (Extended Data Fig. 10b), 134 

MIR-200 suppression (Fig. 4c), a marked Vimentin staining and loss of E-Cadherin 135 

(Extended Data Fig 10b), compared to matched normal tissue. We also took advantage of 136 

data from a collection of papillary renal-cell carcinoma (KIRP), a tumour type associated 137 

with loss of FH26. These tumours exhibited a partial EMT signature (Extended Data Fig. 10c) 138 

and downregulation of MIR-200 (Extended Data Fig. 10d). FH levels were positively 139 

correlated with patients’ survival (Extended Data Fig. 10e) in line with the poor prognosis 140 

associated with EMT6. The five FH-mutant tumours in this cohort exhibited overexpression 141 

of Vimentin and suppression of E-Cadherin (Extended Data Fig. 10f), hypermethylation and 142 

suppression of MIR-200A and MIR-200B (Fig. 4d-e) in the absence of TETs mutations 143 

(Extended Data Fig. 10g). These tumours were associated with the worst prognosis among 144 

papillary cancers (Extended Data Fig. 10h). FH mRNA was also significantly decreased in a 145 

panel of clear cell renal carcinoma (KIRC)27 (Extended Data Fig. 10i) and its levels 146 

negatively correlated with Vimentin (Pearson correlation coefficient of -0.5, p-value < 1e-5; 147 

Fig. 4f) and positively with E-Cadherin (Pearson correlation coefficient of 0.22, p-value < 148 
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1e-5; Fig. 4g), and were positively correlated with patients’ survival (Extended Data Fig. 149 

10k), confirming the role of FH in tumour malignancy and patient outcome.  150 

Our results report a novel link between the loss of FH and epigenetic suppression of 151 

miR-200 mediated by fumarate (see Extended Data Fig. 1f for a schematic). Although other 152 

mechanisms could contribute to fumarate-driven EMT, our findings offer an explanation for 153 

the suppression of MIR-200 in papillary and clear-cell renal carcinoma and the expression of 154 

EMT-related transcription factors, including ZEB2, in KIRC28. Our data imply that 155 

dysregulation of FH activity and fumarate accumulation have roles in EMT induction and 156 

may feature in other tumour types where FH loss has been reported, including 157 

neuroblastoma29, colorectal and lung cancer30.  158 
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Figure Legends 288 

Figure 1. FH-deficient cells display mesenchymal features. a, b, Volcano plots of 289 

proteomics (a) and RNA-seq (b) experiments. FDR = false discovery rate. c, d, mRNA 290 

expression measured by qPCR (c) and protein levels measured by western blot (d) of EMT 291 

markers. e, Immunofluorescence staining for vimentin and E-cadherin. Scale Bar = 25 µm. f, 292 

Cells migration assay. Data indicate cell index at 17 hours. Results were obtained from 4 293 

(Fh1 -/-+pFh1) or 3 replicate wells and presented as mean ± S.D. p-value was calculated 294 

using One way-ANOVA. g, Average speed of cells. p-value was calculated using Mann-295 

Whitney test. Results were obtained from 3 independent cultures. h, mRNA expression of 296 

EMT-related transcription factors measured by qPCR. i, Western blot analysis of Zeb1. 297 

Calnexin was used as loading control. All qPCR results were obtained from 3 independent 298 

cultures and presented as RQ with max values, normalised for β-actin. p-values was 299 

calculated using unpaired t-test. *P ≤0.05, **P ≤0.01, ***P ≤0.001, ****P≤0.0001. For 300 

western blot source data, see Supplementary Figure 1. For Raw data see SI Table 2. 301 

Figure 2. Loss of Fh1 triggers epigenetic suppression of miR-200. a, Volcano plot of 302 

miRNA profiling. b, miRNAs expression measured by qPCR. Date were normalised to 303 

Snord95. c, miRNAs and EMT markers expression in Fh1-/- cells expressing miR-200ba429. 304 

http://www.nature.com/reprints
mailto:cf366@mrc-cu.cam.ac.uk
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress
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β-actin and Snord95 were used as endogenous control for mRNA and miRNA, respectively. 305 

NTC= non-targeting control. d, Methylation-specific PCR of CpG43. U = un-methylated; M 306 

= methylated CpG island. The miR-200ba429 cluster (blue) and CpG43 (green) are 307 

represented in the schematic. qPCR results were obtained from at least 3 independent cultures 308 

and presented as RQ with max values. p-values was calculated using unpaired t-test. *P 309 

≤0.05, **P ≤0.01, ***P ≤0.001, ****P≤0.0001. For gel source data, see Supplementary 310 

Figure 1. For Raw data see SI Table 2. 311 

Figure 3. Fumarate triggers EMT in FH-proficient cells. miRNA methylation (a) and 312 

expression (b, e); EMT transcription factors (c, f) and EMT markers (d, g) levels from MMF-313 

treated cells. Results were obtained from 3 independent cultures. qPCRs are presented as RQ 314 

with max values, normalised for Snord95 (mouse) or SNORD95 (human) for miRNAs, and 315 

for β-actin for mRNA. p-values were calculated using unpaired t-test. *P ≤0.05, **P ≤0.01, 316 

***P ≤0.001, ****P≤0.0001. For gel source data, see Supplementary Figure 1. For Raw data 317 

see SI Table 2. 318 

Figure 4. Loss of FH correlates with EMT signature in renal cancers. a-c, Metabolomic 319 

analysis (a), 5hmc levels in DNA (b), and MIRNAs expression (c) in tumour samples from 320 

two HLRCC patients. Results were obtained from 4 technical replicates per sample. qPCRs 321 

are presented as RQ with max values, normalised for RNU6B and SNORD61. d, e, 322 

Expression levels (d), and promoter methylation (e) of the indicated MIRNAs in KIRP 323 

patients f, g, Vimentin (f) and E-Cadherin (g) expression in clear cell renal cell carcinoma 324 

(KIRC) patients. For Raw data see SI Table 2. 325 
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METHODS 326 

No statistical methods were used to predetermine sample size.  327 

Cell culture 328 

Fh1-proficient (Fh1fl/fl), and the two Fh1-deficient clones (Fh1-/-CL1, and Fh1-/-CL19 ) cells were 329 

obtained as previously described7. Fh1-/-+pFh1 were single clones generated from Fh1-/-CL19 330 

after stable expression of a plasmid carrying mouse wild-type Fh1 gene (Origene, 331 

MC200586). Mouse cells were cultured using DMEM (Gibco-41966-029) supplemented with 332 

10% heat inactivated serum (Gibco-10270-106) and 50 µg x mL-1 uridine. Genotyping of 333 

cells was assessed as previously described7. Human FH-deficient (UOK262) and FH-restored 334 

(UOK262pFH) were obtained as previously described7 and cultured in DMEM (Gibco-335 

41966-029) supplemented with 10% serum heat inactivated (Gibco-10270-106). HK2 cells 336 

were a gift from the laboratory of E.R.M. These cells were authenticated by Short Tandem 337 

Repeat and cultured in DMEM (Gibco-41966-029) supplemented with heat inactivated 10% 338 

serum. All cell lines have been tested for mycoplasma contamination using MycoProbe® 339 

Mycoplasma Detection Kit (R&D Systems CUL001B), and were confirmed mycoplasma-340 

free. 341 

Generation of Fh1-/-+pFh1-GFP cells 342 

Fh1-GFP vector was generated by amplifying wild-type Fh1 sequence using cDNA 343 

generated from Fh1fl/fl cells by PCR. Restriction overhangs (KpnI, EcoRI) were included in 344 

the primer sequence allowing for restriction enzyme cloning of Fh1 into the backbone vector 345 

pEF1α-V5/His (Life Technology). We then used a two-step PCR “restriction-free” method to 346 

swap the V5-His sequence within pEF1α with the AcGFP sequence to yield a fusion protein, 347 

Fh1-GFP. 1x105 Fh1-/- CL1 cells were plated onto 6-well plate and the day after transfected 348 

with Fh1-GFP vector using Lipofectamine 2000 following manufacturer’s instructions. After 349 

2 weeks, cells were sorted for GFP expression and the medium-expressing population was 350 
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maintained in culture and amplified. pEF1α-GFP empty vector was used as control. Primers 351 

for cloning are listed in SI Table 1. 352 

Short hairpin RNA (shRNA) interference experiments 353 

Lentiviral particles for shRNA delivery was obtained as previously described7 from the 354 

filtered growth media of 2x106 HEK293T transfected with 3 µg psPAX, 1 µg pVSVG and 4 355 

µg of the plasmid of interest using Lipofectamine 2000/3000 (Life Technology). 1x105 cells 356 

of the indicated genotype were then plated onto 6-well plates and infected with the viral 357 

supernatant in the presence of 4 µg x mL-1 polybrene. After two days, the medium was 358 

replaced with selection medium containing 1 µg x mL-1 puromycin. pGIPZ vectors for 359 

shRNA against mouse HIF1β (RMM4532-EG11863), Tet2 (RMM4532-EG214133), and 360 

Tet3 (RMM4532-EG194388) were purchased from GE Healthcare UK. pLenti 4.1 Ex for 361 

expression of microRNAs was purchased from Addgene (Plasmid #35533 and #35534). 362 

pLenti 4.1 Ex scrambled vector was generated cloning a scrambled DNA sequence taken 363 

from a commercially available vector (pCAG-RFP-miR-Scrint Addgene no. 198252) into the 364 

empty backbone.  365 

RNA extraction and real time PCR 366 

Cells were plated the day before the experiments onto 6-well plates (3x105) or 12-well plates 367 

(1x105). Total RNA was isolated using RNeasy Kit (Qiagen). miRCURY™ RNA Isolation 368 

Kit (Exiqon, Denmark) was used for microRNAs extraction. RNA isolation was carried 369 

following manufacturer’s protocols. RNA was quantified using the fluorimeter Qubit 2.0 370 

(Life Technologies) following manufacturer’s instructions or Nanodrop (Thermo). Reverse 371 

transcription of RNA was performed using Quantitect-Reverse transcription kit (Qiagen) or 372 

miScript PCR kit (Qiagen) using 300-500 ng of total RNA. Real time qPCR was performed 373 

using Quantitect Syber Green master mix (Qiagen) or Taqman universal mix (Life 374 

Technology) on a Step One Plus real-time PCR system (Life Technology). Experiments were 375 
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analysed using the software Expression Suite (Life Technology) and StepOne software 2.3 376 

and Relative quantification (RQ) with max and min values (RQ max and RQ min) were 377 

calculated using S.D. algorithm. Statistical analysis was performed using Expression Suite 378 

software on at least three independent cultures. Housekeeping genes used for internal 379 

normalisation are β-Actin for mRNA and Snord95 Snord61 and RNU6B, for miRNAs. The 380 

primers were designed using ProbeFinder- Roche or purchased by Qiagen and are listed in SI 381 

Table 1. 382 

miRNA methylation analyses  383 

5x105 cells were plated onto 6-cm dishes. Their genomic DNA was extracted using DNeasy 384 

kit (Qiagen), and purified using DNA Cleaning and Concentrator kit (Zymo Research) 385 

following manufacturer’s instructions. 20 ng/well of genomic DNA, quantified using Qubit, 386 

were digested using OneStep qMethyl kit (Zymo Research) following manufacturer’s 387 

protocol. Primers used are listed in the SI Table 1. 388 

For methyl specific PCR (MSP) assay 500 ng of purified DNA were bisulphate converted 389 

using the EZ-DNA Methylation-direct kit (Zymo Research) following manufacturer’s 390 

datasheet. 50 ng of bisulphate-converted DNA, quantified using Nanodrop 391 

spectrofluorimeter, were used for PCR reaction with AmpliTaq Gold (Life Technology) 392 

following manufacturer’s protocol. The number of amplification cycles used was thirty. 393 

Methylation specific primers were designed using MethPrimer31 394 

(http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) and are listed in the SI Table 1.  395 

Migration assay  396 

Migration experiments were performed using xCELLigence instrument (ACEA Biosciences). 397 

In brief, 5x104 cells were plated onto CIM plates in medium supplemented with 1% FBS. 398 

Complete medium with 20% FBS was used as chemo attractant. Migration was registered in 399 

http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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real time for at least 24 hours and cell index was calculated using the appropriate function of 400 

the xCELLigence software. 401 

Motility assay 402 

5x104 mouse cells of the indicated genotype were plated the day before the experiment onto 403 

6-cm dishes. The day after, medium was replaced with fresh medium containing Hoechst 404 

(Sigma-Aldrich) and cells were incubated for 15 minutes at 37°C with 5% CO2 before 405 

starting recording. Images were collected every minute for 3 hours using a Zeiss Axiovert 406 

200M microscope with a 10x objective. Analysis of cells movement was performed using cell 407 

tracker (www.celltracker.website) implemented in MATLAB (MATLAB R2013b, The 408 

MathWorks Inc., 2013) as previously described32. Three replicates were analysed for each 409 

cell type. All tracks were examined and those belonging to non-isolated cells deleted. 410 

Average speed for each cell was calculated as the sum length of the cell’s trajectory divided 411 

by the total time over which the trajectory was measured. Since the data were not normally 412 

distributed (Shapiro-Wilk test), a Mann-Whitney test was used to compare the average speeds 413 

of the cells. 414 

Oxygen consumption rate and Extracellular acidification rate measurements  415 

Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) were 416 

measured using the real time flux analyser XF-24e (Seahorse Bioscience) as previously 417 

described7. In brief, 4x104 cells were left untreated and then treated with 1 µM Oligomycin, 2 418 

µM Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), Rotenone and Antimycin 419 

A (both 1 µM) (all purchased from Sigma-Aldrich). At the end of the run cells were lysed 420 

using RIPA buffer (25 mM Tris/HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium 421 

deoxycholate, 0.1% SDS). Protein content for each well was measured using BCA kit 422 

http://www.celltracker.website/
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(Pierce) following manufacturer’s instruction. OCR and ECAR are normalised to total protein 423 

content were indicated.  424 

Immunofluorescence experiments 425 

5x104 cells were plated onto chamber slides (Lab Tech), cultured in standard condition 426 

overnight and then fixed using 100% methanol for 2 minutes at –20°C. After two washes in 427 

PBS, cells were permeabilised and incubated with blocking solution (BSA 2%, 0.1% Triton 428 

X-100, 0.1% Tween 20 in PBS) for 30 minutes at room temperature. Cells were then 429 

incubated with the primary antibody (overnight at 4°C). For 5hmc staining, cells were grown 430 

on coverslips onto a 12-well plate. Cells were then fixed with 4% PFA in PBS for 15 minutes 431 

at room temperature, washed three times in PBS and then incubated for 15 minutes with 0.4% 432 

Triton X-100 in PBS. After three washes in PBS, cells were denaturated using a solution of 2 433 

M HCl for 15 minutes at room temperature and neutralised using 100 mM Tris pH.8, for 5 434 

minutes. After three washes in PBS, cells were incubated with blocking solution (5% FBS, 435 

0.1% Triton X-100, 0.1% Tween 20 in PBS) for 1 hour and then primary antibody was added 436 

at 4°C overnight. After three washes in PBS, cells were incubated with secondary antibody 437 

during 2 hours at room temperature and then slides or coverslips were mounted (Vectashield 438 

with DAPI) and images taken using Leica confocal microscope TCS SP5 using 20X or 40X 439 

objectives. Laser intensity, magnification, and microscope settings per each channel were 440 

maintained equal throughout the different experimental conditions. Antibodies used are listed 441 

in SI Table 1. 442 

Protein lysates and Western Blot 443 

Cell lysates were prepared in RIPA buffer. Protein content was measured using BCA kit 444 

(Pierce) following manufacturer’s instructions. 50-100 µg of proteins were heated at 70°C for 445 

10 minutes in presence of Bolt Loading Buffer 1x supplemented with 4% β-mercaptoethanol 446 

(Sigma). Samples were then loaded onto Bolt Gel 4-12% Bis-Tris (Life Technology) and run 447 
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using MOPS 1x or MES 1x buffer at 165 V constant for 40 minutes. Dry transfer of the gels 448 

was carried using IBLOT2 system (Life Technology). Membranes were then incubated in 449 

blocking buffer (5% BSA or 5% milk in TBS 1x + 0.01 % Tween 20) for one hour at room 450 

temperature. Primary antibodies in blocking buffer were incubated overnight at 4°C. 451 

Secondary antibodies (conjugated with 680 or 800 nm fluorophores from Li-Cor) were 452 

diluted 1:2000 in blocking buffer and incubated for one hour at room temperature. Images 453 

were acquired using Odyssey software (Li-Cor). Primary antibodies are listed in SI Table 1. 454 

Chronic treatment of mouse and human cells 455 

Fh1fl/fl cells were cultured either with 200 µM monomethyl-fumarate (MMF, Sigma-Aldrich) 456 

for 2 weeks and then with 400 µM MMF for the following 6 weeks, or with 4 mM 457 

monomethyl-succinate (MMS, Sigma-Aldrich) for 8 weeks. HK2 cells were cultured with 458 

MMF 400 µM for 8 weeks. Fh1-/- cells were treated with the indicated doses of dimethyl 459 

aKG (DM-aKG, Sigma-Aldrich). Fh1 fl/fl cells were treated with histone demethylase 460 

inhibitor GSKJ4 (Tocris) 1 µM for 8 weeks. MMF, MMS and GSKJ4 were added twice a 461 

week after passaging the cells. 462 

Chromatin immunoprecipitation (ChIP)-real time PCR (ChIP-PCR) 463 

ChIP was performed as previously described33. Enrichment was determined by Real-time 464 

PCR and ChIP signal was normalised to input, IgG only ChIP and negative control (genomic 465 

region devoid of histone markers). For Tets ChIP-PCR, the signal was normalised over input 466 

and IgG ChIP, as Tet-specific genomic negative controls are not as readily identifiable. 467 

Antibodies and primers for ChIP-PCR are indicated in SI Table 1. 468 

Chromatin Conformation Capture assay (3C) 469 

3C assay coupled with quantitative PCR (qPCR) was performed as previously described18. In 470 

brief, 107 cells were crosslinked with 1% formaldehyde for 10 minutes at room temperature 471 



Page 18 of 29 

and were quenched with glycine. Cells were then lysed by dounce homogenization in ice-cold 472 

lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% Igepal CA-630, all from Sigma) 473 

supplemented with protease inhibitor (Roche). Cells were then washed in 1.2x NEB buffer 2 474 

(New England Biolabs). Non-crosslinked proteins were removed with SDS (Sigma- Aldrich) 475 

and were then quenched with Triton X-100. Chromatin was digested overnight with EcoR I 476 

restriction enzyme (New England Biolabs). Afterwards EcoR I was inactivated by heating at 477 

65˚C for 20 minutes. In-nuclear DNA ligation was performed at 16˚C for 4 hours in the 478 

mixture containing 1x T4 DNA ligase buffer (New England Biolabs), 10 mg/ml BSA (New 479 

England Biolabs), and 1U/μL T4 DNA ligase (Invitrogen). Ligation mixture was then 480 

incubated with Proteinase K (Roche) at 65˚C overnight to reverse the crosslinking and was 481 

incubated with RNase A (Roche) at 37˚C for 1 hour. DNA was purified with Phenol (pH 8.0, 482 

Sigma) once and then with Phenol:Chloroform:Isoamyl Alcohol (25:24:1, pH 8.0, Sigma), 483 

followed by ethanol precipitation by adding 2.5 volume of ice-cold 100% ethanol and 1/10 484 

volume of 3 M sodium acetate (pH 5.2, Lonza). DNA pellet was washed with 70% ethanol 485 

twice and was eventually dissolved in 100 μL distilled water. The concentration of 3C DNA 486 

was determined by Qubit dsDNA HS assays (Invitrogen). 100 ng DNA was taken to run 487 

qPCR in duplicate wells for each 3C sample, using Taqman Universal PCR Master Mix 488 

(Applied Biosystems) and specific Taqman primers and probes on ABI 7900 (Applied 489 

Biosystems) following manufacturer’s instruction. Data were analysed as recommended18 and 490 

were normalized to the internal loading control of Gapdh locus. Calculation of primers 491 

location was based on the transcription start site (TSS) of Ttll10 transcript 492 

(ENSMUST00000097731). Oligo sequences are listed in the SI Table 1.  493 

Metabolomic analyses 494 

3x105 cells were plated onto a 6-well plate and cultured in standard conditions for 24 hours. 495 

Medium was replenished with fresh one and, after 24 hours, intracellular metabolites were 496 
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extracted as previously described20. LCMS analysis was performed on a QExactive Orbitrap 497 

mass spectrometer coupled to Dionex UltiMate 3000 Rapid Separation LC system (Thermo). 498 

The liquid chromatography system was fitted with either a SeQuant Zic-HILIC column 499 

(column A, 150 mm × 4.6 mm, internal diameter 3.5 µm), or a SeQuant Zic-pHilic (column 500 

B, 150 mm × 2.1 mm, internal diameter 3.5 µm) with guard columns (20 mm × 2.1 mm, 501 

internal diameter 3.5 µm) both from Merck (Darmstadt, Germany). With column A, the 502 

mobile phase was composed by 0.1% aqueous formic acid (solvent A) and 0.1% formic acid 503 

in acetonitrile (solvent B). The flow rate was set at 300 μL x min-1 and the gradient was as 504 

follows: 0-5 min 80 % B, 5-15 min 15 min 30% B, 15-20 min 10 % B, 20-21 min 80% B, 505 

hold at 80% B for 9 minutes. For column B, the mobile phase was composed of 20 mM 506 

ammonium carbonate and 0.1% ammonium hydroxide in water (solvent C), and acetonitrile 507 

(solvent D). The flow rate was set at 180 µL x min-1 with the following gradient: 0 min 70% 508 

D, 1 min 70% D, 16 min 38% D, 16.5 min 70% D, hold at 70% D for 8.5 minutes. The mass 509 

spectrometer was operated in full MS and polarity switching mode. Samples were 510 

randomised, in order to avoid machine drift, and were blinded to the operator. The acquired 511 

spectra were analysed using XCalibur Qual Browser and XCalibur Quan Browser softwares 512 

(Thermo Scientific) by referencing to an internal library of compounds. Calibration curves 513 

were generated using synthetic standards of the indicated metabolites. 514 

Proteomics analysis  515 

Proteomics experiments were performed using mass spectrometry as reported before34,35. In 516 

brief, cells were lysed in urea lysis buffer (8 M urea, 10 mM Na3VO4, 100 mM β-Glycerol 517 

phosphate and 25 mM Na2H2P2O7 and supplemented with phosphatases inhibitors-Sigma) 518 

and proteins reduced and alkylated by sequential addition of 1 mM DTT and 5 mM 519 

iodoacetamide. Immobilised trypsin was then added to digest proteins into peptides. After 520 

overnight incubation with trypsin, peptides were desalted by solid phase extraction (SPE) 521 
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using OASIS HLB columns (Waters) in a vacuum manifold following manufacturer’s 522 

guidelines with the exception that the elution buffer contained 1 M glycolic acid.  523 

Dried peptide extracts were dissolved in 0.1% TFA and analysed by nanoflow LCMS/MS in 524 

an LTQ-orbitrap as described before34,35. Gradient elution was from 2% to 35% buffer B in 525 

90 minutes with buffer A being used to balance the mobile phase (buffer A was 0.1% formic 526 

acid in water and B was 0.1% formic acid in acetonitrile). MS/MS was acquired in multistage 527 

acquisition mode. MS raw files were converted into Mascot Generic Format using Mascot 528 

Distiller (version 1.2) and searched against the SwissProt database (version 2013.03) 529 

restricted to human entries using the Mascot search engine (version 2.38). Allowed mass 530 

windows were 10 ppm and 600 mmu for parent and fragment mass to charge values, 531 

respectively. Variable modifications included in searches were oxidation of methionine, pyro-532 

glu (N-term) and phosphorylation of serine, threonine and tyrosine. Results were filtered to 533 

include those with a potential for false discovery rate less than 1% by comparing with 534 

searches against decoy databases. Quantification was performed by obtaining peak areas of 535 

extracted ion chromatographs (XICs) for the first three isotopes of each peptide ion using 536 

Pescal 36,37. To account for potential shifts in retention times, these were re-calculated for 537 

each peptide in each LCMS/MS run individually using linear regression based on common 538 

ions across runs (a script written in python 2.7 was used for this retention time alignment 539 

step). Mass and retention time windows of XICs were 7 ppm and 1.5 minutes, respectively.  540 

Toray miRNA array 541 

Initial sample quality control was performed using a Bioanalyzer 2200 system in conjunction 542 

with the Total RNA Nano chip (Agilent, Cheadle UK). 250 ng total RNA were labelled using 543 

the miRCURY LNA microRNA Hy5 Power labelling kit (Exiqon, Vedbæk Denmark) 544 

according to the Toray array protocol. Samples were hybridized to the Human/Mouse/Rat 545 
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miRNA 4-plex miRBase v17 array (Toray, London UK) and subsequently scanned using the 546 

3D-Gene Scanner 3000 (Toray) according the manufacturer’s instructions. Data was 547 

normalized according to instructions provided by Toray. Briefly, presence or absence of 548 

signals was determined using a cut off defined as the mean of the middle 90% of the blank 549 

control intensities (background average intensity) + 2σ. Positive control signals were 550 

removed and the background average intensity subtracted from the signal intensities to give 551 

the background subtracted signal intensities (y). Normalised signal intensities (NSI) were 552 

then calculated as follows: NSI = 25𝑦/(𝑦). Raw data are presented in SI Table 4. 553 

Mass spectrometry-based analysis of methylated DNA of HLRCC tumours 554 

DNA from healthy and tumour tissue was extracted using DNeasyKit (Qiagen) following 555 

manufacturer’s instructions. 0.5-1 µg of DNA resuspended in 25 µL of water was first 556 

denatured at 100°C for 30 seconds, cooled on ice, and then added of 2 µL of 20 mM ZnSO4. 557 

DNA was digested at 50°C for 16 hours using 1 µL Nuclease P1 (200 units x mL-1, Sigma 558 

Aldrich) and dephosphorylated at 65°C for 2 hours by adding 1 µL of Bacterial alkaline 559 

phosphatase BAP (150 U x µL-1, Life Technology). pH was then adjusted using 30 µL of 0.5 560 

M Tris-HCl pH 7.9 for one hour at 37°C.  561 

Analysis of global levels of C, 5hmC and 5mC was performed on a QExactive Orbitrap mass 562 

spectrometer coupled to a Dionex UltiMate 3000 Rapid Separation LC fitted with an Acquity 563 

UHPLC HSS T3 column (100 x 2.1 mm, 1.8 µm particle size). The mobile phase consisted of 564 

0.1% aqueous formic acid (solvent A) and 0.1% formic acid in acetonitrile (solvent B) at a 565 

flow rate of 300 µl x min-1. Calibration curves were generated using synthetic standards for 566 

2’-deoxycytidine, 5-methyl- and 5-hydroxymethyl-2’-deoxycytidine (Berry&Associates). 567 

The mass spectrometer was set in a positive ion mode and operated in parallel reaction 568 

monitoring. Ions of masses 228.10, 242.11, and 258.11 were fragmented and full scans were 569 
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acquired for the base fragments 112.0505, 126.0661, and 146.0611 ± 5ppm (corresponding to 570 

C, 5mC and 5hmC, respectively). The extracted ion chromatogram (EIC) of the 571 

corresponding base-fragment was extracted using the XCalibur Qual Browser and XCalibur 572 

Quan Browser software (Thermo Scientific), and used for quantification. Quantification was 573 

performed by comparison with the standard curve obtained from the pure nucleoside 574 

standards running with the same batch of samples. The level of 5hmC present in the sample 575 

was expressed as a percentage of total cytosine content. 576 

Immunohistochemistry on HLRCC tumours 577 

Specimens were formalin fixed and embedded in paraffin wax; 3-μm serial sections mounted 578 

on Snowcoat X-tra slides (Surgipath, Richmond, IL) were dewaxed in xylene and rehydrated 579 

using graded ethanol washes. For antigen retrieval, sections were immersed in preheated 580 

DAKO target retrieval solution (DAKO) and treated for 90 seconds in a pressure cooker. 581 

Sections analysed contained both tumour and adjacent normal renal parenchyma acting as an 582 

internal control; in addition, substitution of the primary antibody with antibody diluent was 583 

used as a negative control. Antigen/antibody complexes were detected using the Envision 584 

system (DAKO) according to the manufacturer's instructions. Sections were counterstained 585 

with hematoxylin for 30 seconds, dehydrated in graded ethanol washes, and mounted in DPX 586 

(Lamb, London, United Kingdom). Antibodies used were: E-cadherin (HECD1, CRUK) and 587 

vimentin (clone V9, Dako). TET1 (SAB 2501479) and TET2 (HPA 019032) antibodies were 588 

purchased by Sigma Aldrich. 589 

miRNA expression on HLRCC tumours 590 

Total RNA was extracted from tumour and healthy tissue using miRCURY kit (Exiqon, 591 

Denmark) following manufacture’s protocols. RNA reverse-transcription and real-time qPCR 592 
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were obtained as described above. Data are normalised to healthy tissue using both 593 

SNORD61 and RNU6B as endogenous controls. 594 

Clinical details of HLRCC patients 595 

The patients consented to use of tissues for study approved by the National Research Ethics 596 

Committee London (REF number 2002/6486 and 03/018). FH mutations in HLRCC Patient 597 

A is c.1300T>C, and in Patient B is c.1189G>A  598 

Bioinformatics and statistical analyses 599 

Volcano plots were generated using the log10 fold-change on the x-axis and the -log10 of the 600 

multi hypothesis corrected p-value (false-discovery rate) on the y-axis generated by Limma38 601 

differential analysis. The Epithelial–Mesenchymal Transition gene signature was extracted 602 

from Taube and colleagues39. Signature enrichment was performed with the commonly used 603 

Gene-Set Enrichment Analysis (GSEA)8 test. Signature significance was calculated by 604 

randomizing the genes signatures 10000 times. 605 

The TCGA RNA-seq and miRNA-seq data-sets for clear cell (KIRC) and papillary (KIRP) 606 

renal carcinoma were downloaded from the Broad Firehose webpage 607 

(http://gdac.broadinstitute.org/). Differential analysis was performed with R package 608 

Limma38 using voom40 to transform the RNA-seq counts. Cancer patients were ranked 609 

according to FH expression and survival analysis was performed by comparing the overall 610 

survival time of upper vs. lower quartile of the FH-ranked list of patients. Kaplan Meier 611 

curves were built using in-house R scripts and significance was calculated using the R 612 

package Survival by applying a χ2 test. Hive plots were generated using the R package 613 

“HiveR”.  614 

http://gdac.broadinstitute.org/
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Graphpad Prism 6 was used to generate graphs and perform statistical analysis (one-way 615 

ANOVA test with Tukey’s post hoc test for multiple comparisons was used unless otherwise 616 

indicated). ChIP statistical analysis was generated using Excel (Microsoft). Except for 617 

metabolomic experiments, no randomization or blinding was performed. No statistical 618 

method or power analysis was used to predetermine sample size.  619 

Code availability 620 

The R and Python scripts for the analyses above can be found at 621 

http://www.ebi.ac.uk/~emanuel/Sciacovelli_et_al/.  622 
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Extended Data Figure Legends 650 

Extended Data Figure 1. Characterisation of Fh1-deficient and Fh1-rescued cells. a, 651 

PCR to assess Fh1 recombination. The putative genotypes are indicated on the right and are 652 

http://www.ebi.ac.uk/~emanuel/Sciacovelli_et_al/
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based on the expected size of the genomic PCR amplification products as from Frezza et al7. 653 

Fh1fl/fl = 470 bp and Fh1-/-= 380 bp. b, Fh1 protein levels measured by western blot of cells 654 

of the indicated genotype. Calnexin was used as loading control for western blot. c, 655 

Intracellular fumarate levels measured by LCMS and normalised to total ion count. Results 656 

were obtained from 4 independent cultures and are indicated as average ± S.D.. p-values were 657 

calculated from one-way ANOVA. d, Oxygen Consumption rate (OCR) and Extracellular 658 

Acidification rate (ECAR) assessed using the Seahorse Extracellular Flux Analyser. Results 659 

were obtained from 5 replicate wells and are presented as average ± S.D.. e, Bright field 660 

images of cells of the indicated phenotype. Bar = 400 µm. Western blot and gel sources are 661 

presented in Supplementary Figure 1. Raw data are presented in SI Table 2. *P ≤0.05, **P 662 

≤0.01, ***P ≤0.001, ****P≤0.0001. f, Schematic representation of the proposed link 663 

between loss of FH, fumarate accumulation, and epigenetic suppression of the antimetastatic 664 

cluster of miRNA miR-200. Upon accumulation of fumarate as a result of FH inactivation, 665 

the TET-mediated demethylation of the miR-200ba429 cluster is inhibited, leading to their 666 

epigenetic suppression. As a consequence, Zeb1/2 are de-repressed, eliciting a signalling 667 

cascade that leads to EMT. 668 

Extended Data Figure 2. EMT signature in Fh1-/- cells. a, Volcano plot of RNA-seq 669 

analysis. Gene expression was normalised to Fh1fl/fl or Fh1-/-+pFh1 cells as indicated. b, c, 670 

Gene set enrichment analysis (b) and EMT enrichment score (c) of the indicated cell lines.  671 

Extended Data Figure 3. EMT signature in UOK262 cells. a, Gene set enrichment analysis 672 

and EMT enrichment score of the indicated cell lines. Gene expression was normalised to 673 

UOK262pFH. b, c, mRNA expression measured by qPCR (b) and protein levels measured by 674 

western blot (c) of the indicated EMT markers. d, Immunofluorescence staining for Vimentin 675 

and E-Cadherin. DAPI was used as marker for cell nuclei. Scale Bar = 25 µm. e, Cell 676 
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migration rate. Results were obtained from 14 replicate wells and presented as mean ± S.D.. 677 

f, mRNA expression of EMT-related transcription factors ZEB1 and ZEB2 from RNA-seq 678 

data as in Fig. 1a. g, Expression levels of the indicated miRNAs measured by qPCR. h, 679 

Volcano plot of miRNA profiling. All qPCR experiments were obtained from 3 independent 680 

experiments and presented as RQ with max values, normalised to β-actin or 681 

RNU6B/SNORD61 as endogenous control for mRNA and miRNA analyses, respectively. *P 682 

≤0.05, **P ≤0.01, ***P ≤0.001, ****P≤0.0001. Western blot sources are presented in 683 

Supplementary Figure 1. Raw data are presented in SI Table 2. 684 

Extended Data Figure 4. EMT features in Fh1-deficient cells are independent from HIF. 685 

mRNA levels of EMT genes (a) and HIF target genes (b) in Fh1-/- cells infected with shRNA 686 

against HIF1β measured by qPCR. Results were obtained from 3 independent cultures and 687 

presented as RQ with max values using β-actin as endogenous control. NTC = non-targeting 688 

control. p-values from unpaired t-test are indicated in the graph. LdhA = lactate 689 

dehydrogenase A; Pdk1 = pyruvate dehydrogenase kinase 1; Glut 1 = glucose transporter 1. 690 

*P ≤0.05, **P ≤0.01, ***P ≤0.001, ****P≤0.0001. Raw data are presented in SI Table 2. 691 

Extended Data Figure 5. EMT signature in Fh1-reconstituted cells. a, Fh1 protein levels 692 

measured by western blot. Calnexin was used as loading control. b, Intracellular fumarate 693 

levels the measured by LCMS. Data are presented as average ± S.D.. c, Representative bright 694 

field images of cells of the indicated genotype. Scale Bar = 400 µm. d, e, mRNA expression 695 

measured by qPCR (d) and protein levels measured by western blot (e) of the indicated EMT 696 

markers. f, Average speed of cells calculated after tracking cells for 3 hours as in Fig. 1g. 697 

Results were generated from 3 independent cultures. g, mRNA expression of EMT-related 698 

transcription factors. β-actin was used as endogenous control. EV = empty vector. h, 699 

Expression levels of the indicated miRNAs measured by qPCR and normalised to Snord95 700 
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and Snord61 as endogenous control. All qPCR results were obtained from 3 independent 701 

cultures and presented as RQ with max values. *P ≤0.05, **P ≤0.01, ***P ≤0.001, 702 

****P≤0.0001. Western blot sources are presented in Supplementary Figure 1. Raw data are 703 

presented in SI Table 2. 704 

Extended Data Fig. 6. Role of Tets and Histone Demethylases in EMT induction. a, 705 

Expression levels of Tet1-3 in Fh1 fl/fl from RNA-seq data. b, d, Expression levels of Tet2/3 706 

(b), miRNA200 (c), and E-cadherin (d) in Fh1 fl/fl cells upon combined silencing of Tet2 and 707 

Tet3. The results are presented as RQ with max values obtained from technical replicates. β-708 

actin and Snord61 were used as endogenous control for mRNA and miRNA, respectively. e, 709 

Expression levels of the indicated miRNAs upon inhibition of histone demethylases by GSK 710 

J4. Snord61 and Snord95 were used as endogenous controls. f, Expression of the indicated 711 

miRNAs in Fh1-/- cells incubated for 24 hours with 5 mM DM-aKG measured by qPCR. 712 

Results were obtained from 4 (vehicle) or 5 (Fh1-/-CL19) and 3 (Fh1-/-CL1) (DM-aKG) 713 

independent cultures and presented as RQ with max values, normalised to Snord95 as 714 

endogenous control. *P ≤0.05, **P ≤0.01, ***P ≤0.001, ****P≤0.0001. 715 

Extended Data Fig. 7. Characterisation of the regulatory CpG island CpG43. a, Snapshot 716 

of Genome Browser view of genomic DNA around the miR200ba429 cluster taken from 717 

NCBI37/mm9. Tet2 ChIP was obtained from GSE41720, sample GSM1023124. Shaded 718 

rectangles indicate miR-200ba429 and CpG43. b, ChIP-PCR of the indicated histone marks 719 

in a region adjacent CpG43. Data were obtained from 3 independent cultures and are 720 

presented as average ± S.D.. p-values from unpaired t-tests are indicated in the graph. c, 721 

Expression levels of H3 histone marks in cells of the indicated genotypes measured by 722 

western blot. H3 used as loading control. d, 3C data of the genomic region adjacent to CpG43 723 

analysed in Fh1fl/fl cells. The position of CpG30 and CpG43, and of the predicted restriction 724 
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sites are indicated in the graph. Results were generated from 2 independent cultures. e, DNA 725 

methylation of the CpG43 assessed by qPCR using OneStep qMethyl kit. Data were obtained 726 

from 3 independent experiments and normalised to methylation levels of the region in Fh1fl/fl. 727 

Data are presented as average ± S.E.M.. f, ChIP-PCR of Tets binding to CpG43. Data were 728 

obtained from three replicates and are presented as average ± S.D.. g, 5hmc nuclear staining 729 

assessed by immunofluorescence using 5hmc antibody. Nuclear staining was quantified using 730 

Image J and an average of 120 cells was used per genotype. p-values from One-way ANOVA 731 

test. Representative images of 5hmc staining are shown. DAPI is used to indicate the nuclei. 732 

Bar = 20 μm. *P ≤0.05, **P ≤0.01, ***P ≤0.001, ****P≤0.0001. Western blot sources are 733 

presented in Supplementary Figure 1. Raw data are presented in SI Table 2. 734 

Extended Data Fig. 8. Monomethyl Fumarate (MMF) triggers EMT in FH-proficient 735 

cells. a, Bright field images of cells treated for 6 weeks with MMF. Arrows indicate the 736 

typical protrusion of cells of mesenchymal phenotype. Bar = 400 µm. b, Oxygen 737 

consumption rate of the indicated cell lines treated chronically with MMF (as in Fig. 3). See 738 

Methods for drugs concentrations. OCR was normalised to total protein content. Results were 739 

obtained from 6 (for mouse cells) or 8 (for human cells) wells ± SD.. c, Hive plot of 740 

metabolomics data of mouse and human cells treated with MMF (as in Fig. 3). All identified 741 

metabolites are included on the y-axis and grouped into human (pink) and mouse (green) 742 

cells. Metabolites accumulated (right x-axis) or depleted (left x-axis) in MMF-treated cells 743 

versus control are indicated by a connecting arc and their fold-change is colour-coded. 744 

Metabolites accumulated commonly across the two cell lines are highlighted with a solid line. 745 

2SC: 2-succinic-cysteine, succGSH: succinic-GSH. Raw data are presented in SI Table 2. 746 

Raw metabolomic data are presented in SI Table 3. 747 
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Extended Data Fig. 9. Succinate triggers EMT in Sdhb-deficient cells. a, Intracellular 748 

succinate levels after incubation with 4 mM MMS measured by LCMS. Data are presented as 749 

average ±S.D.. b, c, Intracellular succinate (b) and succGSH (c) levels in Sdhb-deficient cells 750 

measured by LMCS. Data are presented as average ±S.D.. d, Bright field images of cells of 751 

the indicated genotype. Bar = 400 µm. e, Gene set enrichment analysis and EMT enrichment 752 

score from expression analysis of the indicated cell lines. f, g, miRNA expression levels 753 

normalised to Snord61 and Snord95 as endogenous control (f) and CpG43 methylation (g). 754 

Experiments were performed as in Fig. 2b and 2d, respectively. *P ≤0.05, **P ≤0.01, ***P 755 

≤0.001, ****P≤0.0001. Gel sources are presented in Supplementary Figure 1. Raw data are 756 

presented in SI Table 2. 757 

Extended Data Fig. 10. Expression of FH and EMT markers in kidney cancer. a, 758 

Expression levels of Vimentin and E-Cadherin in HLRCC patients obtained from Ooi et al25. 759 

b, Immunohistochemistry staining of Vimentin and E-Cadherin (left), and TET1 and TET2 760 

(right) in HLRCC patients obtained as in Fig. 4a. Bar = 100 µm. The insert in the left panel 761 

indicate a 3X digital magnification, Bar = 50 µm. c, Gene set enrichment analysis and EMT 762 

enrichment score from RNA-seq data of papillary renal cell carcinoma (KIRP) obtained by 763 

Linehan et al26. d, Volcano plot of MIRNA expression in KIRP. e, Kaplan-Meier curve of 764 

KIRP patients separated according to FH expression. f, Vimentin and E-Cadherin expression 765 

in FH-mutant KIRP compared to normal renal tissue. g, Frequency of mutations in FH and 766 

TET1, TET2 and TET3 in KIRP analysed using NCBO BioPortal. Only cancers with 767 

mutations in the indicated genes are shown. h, Kaplan-Meier curve of FH-wild type and FH-768 

mutant KIRP. i, Expression levels of FH, Vimentin, and E-Cadherin in clear cell renal cell 769 

carcinoma (KIRC) obtained from TCGA dataset27. j, Volcano plot of miRNA expression in 770 

KIRC. j, Kaplan-Meier curve of KIRC patients separated according to FH expression. 771 
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