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DISCOUNTED STOCHASTIC GAMES WITH NO STATIONARY NASH

EQUILIBRIUM: TWO EXAMPLES

Yehuda Levy∗

We present two examples of discounted stochastic games, each with a con-

tinuum of states, finitely many players and actions, that possess no stationary

equilibria. The first example has deterministic transitions - an assumption un-

dertaken in most of the early applications of dynamics games in economics - and

perfect information, and does not possess even stationary approximate equilibria

or Markovian equilibria. The second example satisfies, in addition to stronger reg-

ularity assumptions, that all transitions are absolutely continuous with respect

to a fixed measure - an assumption that has been widely used in more recent

economic applications. This assumption has been undertaken in several positive

results on the existence of stationary equilibria in special cases, and in particular

guarantees the existence of stationary approximate equilibria.

Keywords: Stochastic Game, Discounting, Stationary Equilibrium.

1. INTRODUCTION

The question of the existence of stationary equilibria in discounted stochas-

tic games with uncountable state spaces has received much attention. The

purpose of this paper is to show that such games need not possess equilibria

in stationary strategies, neither in the framework of deterministic transitions

- used in many of the early applications of dynamics games in economics -

nor in the more restricted - but much studied in recent years - setting of
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absolutely continuous continuous transitions, even when the action sets are

finite (and state-invariant), and the player set is finite.

The increasing usefulness of stochastic games in modeling economic situa-

tions, combined with the simplicity and universality of stationary strategies,

has made equilibrium existence and characterization results a very active

area of research. However, it had been unknown whether the general models

of such games did indeed possess stationary equilibria, which were known

to exist in the case of discrete state spaces.

Stochastic games were introduced by Shapley (1953). In a stochastic

game, players play in discrete stages, with stochastic transitions between

states chosen using distributions determined by the state and action. In the

β-discounted game, each player receives the β-discounted sum of the stream

of his stage-by-stage payoffs. A particular class of strategies, the stationary

strategies, in which a player makes his decision based only on the current

state, has been particularly studied in games with discounted payoffs.

There are two main reasons for this focus. First of all, stationary strate-

gies are the natural class of strategies for the discounted payoff evaluation,

as sub-games that are defined by different histories but begin at the same

state are strategically equivalent: players will have the same preferences

over plays in one sub-game as in the other. The view that strategies should

only depend on payoff-relevant data in the discounted game is highlighted

in [27], where it motivates the development of the concept of Markov Per-

fect Equilibria. In [18] this view is called the subgame-consistency principle,

which is described succinctly in [19] as “the behaviour principle according

to which a player’s behaviour in strategically equivalent subgames should be

the same, regardless of the different paths by which these subgames might

be reached.” The other main reason for focusing on the class of stationary

strategies is because of their simplicity and easy implementation; to quote

[15],“An equilibrium which does not display minimal regularity through
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time - maybe stationarity - is unlikely to generate the coordination between

agents that it assumes.”

Results for existence of equilibrium in stationary strategies have appeared

in increasing generality: [41] for zero-sum games with finite state spaces;

[26] for zero-sum games with general state spaces; [13, 45, 38, 42] for non-

zero-sum game with finite state space; [35] for non-zero-sum games with

countable state space. [43] presented an argument for the non-zero-sum

game with general state space, but the proof is flawed.1 (It is also worth

noting that existence of equilibria in general (i.e., behavioral) strategies was

established2 in [28].) A survey of these and other results can be found in

[11].

Early economic applications of stochastic games (e.g., [22, 29, 39, 6, 37])

used models with deterministic transitions, with transitions representing

changes in accumulated resource, wealth, consumer percentages, etc. How-

ever, as existence results for stationary equilibria in general classes proved to

be elusive, it became common to assume additional continuity conditions on

the transitions; in particular, many works have undertaken the assumption

which we term the absolute continuity condition, henceforth ACC, which

stipulates that all transition measures are absolutely continuous w.r.t. some

fixed measure on the state space. This and similar assumptions have been

also proven to be natural in some economic settings, e.g., [2, 9, 32, 33] and in

particular [10], where this assumption is justified by the presence of ‘noise’

in the transitions.3 (A survey of applications of stochastic games in eco-

nomics can be found in [3].) This assumption adds to the structure of the

1This was pointed out in [12].
2An alternative proof, under the absolute continuity discussed below, was given in

[40]; see also [25].
3In [10], the state space has a specific structure: a product structure. The state is

chosen then by a compound process of choosing the first coordinate and then, conditional

on that choice, the second coordinate via a distribution which is absolutely continuous.
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game, and allows for the use of tools that cannot be applied in the general

setup. Indeed, under ACC, it has been shown:

(I) There exists stationary ε-equilibria, [31].

(II) There exists stationary extensive-form correlated equilibria, [34]. (Sim-

ilar results were provided in [9] and [17].)

The purpose of this paper is to present two examples which give neg-

ative answers to the question of existence of stationary equilibria in the

deterministic model and in the ACC model, respectively.

The first example is of a discounted stochastic games with uncount-

able state space and deterministic transitions and that does not possess

ε-equilibria in stationary strategies. In addition, it satisfies other proper-

ties that contrast with other results in the literature. Specifically, for each

discount factor β > 0, we construct a game with the following properties:

(1) For ε > 0 small enough, stationary ε-equilibria do not exist.

(2) Stationary extensive-form correlated equilibria do not exist.

(3) The game has finite action spaces, perfect information,4 and determin-

istic transitions.

(4) For ε > 0 small enough, if payoffs, transitions,5 and discount factor are

perturbed less than ε the resulting game still does not possess station-

ary ε-equilibria. (A formal statement of this robustness appears at the

beginning of Section 3.)

(5) The game does not possess sub-game perfect Markovian equilibria.6

(6) For any ε > 0, there is a perturbation of our example of less than ε

which does not possess Markovian equilibria.7

4In each state, there is only one player whose action has an affect on the transitions

or the stage payoffs.
5In the total variation norm.
6Markovian strategies are those which allow players to condition their choice of mixed

action both on the current state and the number of stages played so far; see Section 3.6.
7Markovian equilibria which are not sub-game perfect do exist in the unperturbed
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(7) The state space is compact, the payoff function is continuous, and the

transitions are weakly continuous.

We remark that property (2) follows immediately from properties (1) and

(3), while property (4) follows from property (1); see Section 3.5. We further

note that the properties (I) and (II), listed above to hold in the ACC model,

contrast with properties (1) and (2) of our first example, and therefore show

that the study of the general model of stochastic games (and, in particular,

of deterministic games) is very different than that of the ACC model.

Hence, we are prompted to give a second example, which does satisfy the

ACC assumption. This example has the following stronger properties:

(1) Stationary equilibrium does not exist for any discount factor. (This

contrasts the first example, in which the construction depends on the

discount factor.)

(2) The state space is compact, payoffs are continuous, and transitions are

norm-continuous.

The construction of this example, however, is somewhat more delicate. It

relies on certain anomalies in the manifold of Nash equilibria for normal-

form games. In particular, we take advantage of the existence of a two-

person game whose set of equilibrium is homeomorphic to a circle (thus

connected but not simply connected) and each equilibrium of it is stable in

the appropriate sense; see, [21, pp. 1034].

We note that since the action spaces are finite in both examples, the tran-

sitions are trivially norm-continuous (also termed strongly continuous) in

the actions. This contrasts an example given in [17] of a two-stage extensive-

form game without an equilibrium. As [10] mentions, in representing this

example as a stochastic game, one has to allow for transitions that are not

strongly continuous on the infinite action spaces. Therefore, the example

from [17] does not fit into the models that are usually studied in works

version of the example.
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establishing equilibrium existence results.

Finally, we remark that our second example, which satisfies ACC, is eas-

ily seen not to be robust to perturbations, and can be shown to possess

Markovian equilibria. It is not known if these are implications of the ACC

condition8 or if counter-examples satisfying ACC but which either do not

possess Markovian equilibria or are robust to perturbations can be found.

In Section 2 we present the formal stochastic game model. The examples

are presented in Sections 3 and 4, with some technical proofs in the latter

section left for the appendix. Sections 3 and 4 both begin with layouts of

their contents.

2. STOCHASTIC GAME MODEL

The components of a discounted stochastic game with a continuum of

states and finitely9 many actions are the following:

• A standard Borel10 space Ω of states.

• A finite set P of players.

• A finite set of actions Ip for each p ∈ P. Denote I =
∏

p∈P I
p

• A discount factor β ∈ (0, 1).

• A bounded payoff function r : Ω×I → RP, which is Borel-measurable.

• A transition function q : Ω× I → ∆(Ω), which is Borel-measurable.11

The game is played in discrete time. If z ∈ Ω is a state at some stage

of the game and the players select an action profile a ∈ I, then q(z, a) is

the conditional (given the past) probability distribution of the next state of

8Under ACC, incorrect proofs of the existence of subgame perfect Markovian equilibria

have appeared in [8] and [1].
9This is a particular case of the general model, which allows for compact actions spaces

that are state-dependent; see, e.g., [28].
10That is, a space that is homeomorphic to a Borel subset of a complete, metrizable

space.
11Where ∆(Ω), the space of regular Borel probability measures on Ω, possesses the

Borel structure induced from the topology of narrow convergence.
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the game. A stationary strategy for Player p is a behavioral strategy that

depends only on the current state; equivalently, it is a Borel-measurable12

mapping that associates with each state z ∈ Ω a probability distribution on

the set Ip.

For any profile of behavioral strategies σ = (σp)p∈P of the players and

every initial state z1 = z ∈ Ω, a probability measure P σ
z and a stochastic

process (zn, an)n∈N are defined on H∞ := (Ω×I)N in a canonical way, where

the random variables zn, an describe the state and the action profile chosen

by the players, respectively, in the n-th stage of the game (see, e.g., [7]).

The expected payoff vector under σ, in the game starting from state z, is:

(2.1) γσ(z) = Eσ
z

( ∞∑
n=1

βn−1r(zn, an)
)
.

Let Σp denote the set of behavioral strategies for Player p ∈ P, and Σ =∏
p∈P Σp. A profile σ ∈ Σ will be called a Nash equilibrium if

(2.2) γpσ(z) ≥ γp(τ,σ−p)(z), ∀p ∈ P,∀z ∈ Ω,∀τ ∈ Σp

and it will be called an ε-Nash equilibrium if

(2.3) γpσ(z) ≥ γp(τ,σ−p)(z)− ε, ∀p ∈ P, ∀z ∈ Ω,∀τ ∈ Σp

Denote, for every stationary σ ∈ Σ, every z ∈ Ω, and every a ∈
∏

p∈P ∆(IP ),

(2.4) Xσ(z, a) := r(z, a) + β

∫
Ω

γσ(t)dq(z, a)(t)

By way of iterations, one can show that for stationary σ ∈ Σ,

(2.5) γσ(z) = Xσ(z, σ(z)).

12The measurability is required so that the payoffs in the game be well-defined. In

certain classes of games, e.g., those with purely atomic transitions, this assumption can

be relaxed, at a cost of the constructibility of the strategies. For more on this matter,

see the discussion in [23].
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For stationary σ ∈ Σ , it is easily shown that (2.2) implies13 that

Xp
σ(z, σ(z)) ≥ Xp

σ(z, (b, σ−p(z))), ∀p ∈ P, ∀z ∈ Ω, b ∈ Ip(2.6)

i.e., that for all z, σ(z) is an equilibrium in the game with payoff Xσ(z, ·),
and that (2.3) implies14 that

Xp
σ(z, σ(z)) ≥ Xp

σ(z, (b, σ−p(z)))− ε, ∀p ∈ P, ∀z ∈ Ω,∀b ∈ Ip(2.7)

i.e., that for all z, σ(z) is an ε-Nash equilibrium in the game Xσ(z, ·).

Definition 2.0.1 A stochastic game is said to satisfy the Absolute Conti-

nuity Condition (ACC) if there is ν ∈ ∆(Ω) such that for all z ∈ Ω, a ∈ I,

q(z, a) is absolutely continuous w.r.t. ν.

Remark 2.0.2 One might think to relax the definition of Nash equilibrium

in stationary strategies in games satisfying ACC by requiring that (2.2) only

hold for ν-a.e. z ∈ Ω. However, [36] shows that existence of this weaker

equilibrium concept would imply existence of the stronger concept, via a

simple modification of the “a.e.-equilibrium” on a ν-null set.

We also mention two standard notations we will use; others will be intro-

duced as needed:

• For a bounded real-valued function f , ||f ||∞ = sup |f |, where the

supremum is taken over the entire domain of f .

• If p is a mixed action over an action space A and a ∈ A, then p[a]

denotes the probability that p chooses a.

13In fact, they are equivalent; both directions follow from standard dynamic program-

ming results.
14In the converse, (2.7) implies that σ is an ε

1−β -equilibrium.
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3. EXAMPLE I (DETERMINISTIC MODEL)

In this section, we construct, for any given β ∈ (0, 1), a stochastic game

(Ω,P, (Ip), β, r, q), with deterministic transitions and perfect information,

that does not possess a stationary (measurable15) equilibrium. In fact, we

will deduce a stronger result for this game: There exists ε > 0 such that if

r′ : Ω× I → RP and q′ : Ω× I → ∆(Ω) satisfy the measurability conditions

given in the model of Section 2, and also satisfies |β′ − β| < ε and16

||r′(z, a)− r(z, a)||∞ < ε, ||q′(z, a)− q(z, a)|| < ε, ∀z ∈ Ω, ∀a ∈ I

then the game (Ω,P, (Ip), β′, r′, q′) does not possess a stationary ε-equilibrium.

Henceforth, let β ∈ (0, 1) be a fixed discount factor, let Y = {−1, 1}ω,

where ω = {0, 1, 2, . . .}, let T denote the left-shift operator on Y defined by

(Tx)n = xn+1, and let µ denote the Lebesgue measure on Y .

Section 3.1 begins with an informal description of the construction. Sec-

tion 3.2 constructs the example, and Section 3.3 presents some properties

of any approximate equilibria in it. Section 3.4 proves that no (measurable)

stationary equilibria exist in the unperturbed game, and Section 3.5 deals

with the perturbed games. Section 3.6 recalls the definition and properties

of Markovian strategies, and Section 3.7 shows how the arguments of Sec-

tions 3.3 and 3.4 can be modified to show that equilibria need not exist in

Markovian strategies. An elaboration of Section 3.7, as well as a discussion

on existence (and elimination) of non-measurable equilibria, can be found

in [23].

15The state space will be a finite product of Cantor sets (plus an isolated point), and

the measurability we refer to is with respect to the Lebesgue σ-algebra. Hence, although

we defined strategies to be Borel-measurable, we show an even stronger nonexistence

result.
16The latter distance is the total variation norm.
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3.1. An Informal Description of the Construction

We begin this description by allowing a countable set of players - one

player in each generation n ∈ ω. The state space will be ω × Y , along

with a “quitting state” 0; all payoffs are zero after the first transition to

the quitting state. The transition from a state (n, y) will either be to state

(n + 1, T (y)) or to 0. In a state (n, ∗), only Player n’s action has an effect

on either payoffs or transitions; we can think of him as the only “active”

player. Player n receives payoffs both when he is active, in state (n, y), and

in the following state, (n+ 1, T (y)) (if the game has not quit).17

Each player can play either L or R. The component of the state that

affects the structure of the payoff and transition in state (n, y) is the 0-th bit

of y, denoted κ(y). The key is that we define the payoff and transitions such

that if Player n+ 1 would play one particular action with high probability

in state (n + 1, T (y)), then Player n in state (n, y) will want to match

Player n + 1’s expected action if κ(y) = 1, and will want to mismatch it

if κ(y) = −1. Furthermore, we design the game such that regardless of the

mixed action Player n+ 1’s plans to play in state (n+ 1, T (y)), at least one

of the agents that represent Player n in the two possible states preceding

(n+ 1, T (y)) will not be indifferent between his own actions.

The modification to finitely many players is done simply: we just have the

generations repeat themselves periodically, with some period M ; the state

space becomes ({0, . . . ,M−1}×Y )∪{0}, with the generation-counter being

cyclic. If M is chosen large enough - it will depend on the discount factor

- each player will make a decision based only on the payoffs of the current

17This is reminiscent of models of overlapping generation games: each player can be

imagined as being alive for two generations. In the first generation, he is “young” and

takes an action, and receives some resulting payoff. In the second generation, he is “old”;

he does not take an action but he does receive a payoff as a result of the “young” player’s

action.
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stage and next stage when he is called to play; the payoffs from his next

“reincarnation”, M stages later, will be negligible and will not affect his

decision.

3.2. Construction

Fix δ < 1
40

, ε < δ
20

, and M ∈ N, M > 1, such that
∑∞

j=M βj−1 < δ. If p

is a mixed action over an action space A and a ∈ A, then p[a] denotes the

probability that p chooses a ∈ A.

We will construct the game (Ω,P, (Ip), β, r, q). Denote Z = ωM×Y , where

ωM = {0, . . . ,M − 1}. The state space will be Ω = Z ∪ {0}, where 0 is an

absorbing18 state with payoff 0 for all players.

The set of players in the game will be P = ωM . Each player’s action set is

I = {L,R}. For n ∈ ωM , let n± = (n±1)mod M ∈ ωM , and define S : Z → Z

by S(n, y) = (n+, T (y)). Also for z = (n, y) ∈ Z, we denote:

(3.1) κ(z) = y0, n(z) = n, n±(z) = n±

where y0 is the 0-th bit of y. The game is a game of perfect information:

that is, for each19 z ∈ Z, there is only one player, n(z), whose action has

any effect on payoffs or transitions. Fix a state z ∈ Z:

• Only n(z) and n−(z) receive non-zero payoffs in state z. That is, if

p /∈ {n(z), n−(z)}, then rp(z, ·) ≡ 0.

• The payoff to players n(z), n−(z), and the next state z′, are all deter-

mined only by the action of Player n(z) and are given by the following

rules:

18A state z ∈ Ω is called an absorbing state of q(z | z, a) = 1 for all action profiles a.
19In 0, no player’s action has an effect.
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If κ(z) = 1: If κ(z) = −1:

an(z) = L R

rn(z)(z, a) = 0 0.3

rn
−(z)(z, a) = 1

β
0

z′ = S(z) 0

an(z) = L R

rn(z)(z, a) = 0.7 0

rn
−(z)(z, a) = 1

β
0

z′ = 0 S(z)

3.3. Observations and Characterization of Equilibria

Fix a stationary ε-equilibrium profile σ of this game. Recall the notation

γσ and Xσ from Section 2. For p ∈ P and z ∈ Z ⊆ Ω, σp(z) will denote

the probability distribution on {L,R} induced by Player p’s mixed action

in state z. Recall the definition of n(z) from (3.1), and denote further that:

(3.2) `(z) = σn(z)(z)[L]

We will study the relationship between `(S(z)) and `(z). Recall that in

the game that starts at state z, the player that is active in state z, n(z),

receives a zero payoff in stages t = 2, . . . ,M . Therefore,

γn(z)
σ (S(z)) = Eσ

S(z)

( ∞∑
t=1

βt−1rn(z)(zt, at)
)

= Eσ
S(z)

(
rn(z)(S(z), a1)

)
+ Eσ

S(z)

( ∞∑
t=M

βt−1rn(z)(zt, at)
)
.

Therefore, if

Kσ(z, ·) := rn(z)(z, ·) + βq(S(z)|z, ·)rn(z)(S(z), σ(S(z)))

the inequality β
∑∞

t=M βt−1‖r‖∞ =
∑∞

t=M βt−1 < δ implies that

(3.3) ||Xn(z)
σ (z, ·)−Kσ(z, ·)||∞ < δ

Notation 3.3.1 Let 〈αL;αR〉, for αL, αR ∈ R, denote the single-player

decision that gives payoff αL (resp. αR) if the player plays L (resp. R).
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(3.3) shows that the decision 〈Xn(z)
σ (z, L), X

n(z)
σ (z, R)〉 is δ-close to the

decision 〈Kσ(z, L), Kσ(z,R)〉. Furthermore, we have

(3.4) 〈Kσ(z, L), Kσ(z, R)〉 =

 〈`(S(z)); 3
10
〉 if κ(z) = 1

〈 7
10

; `(S(z))〉 if κ(z) = −1

Lemma 3.3.2 Let z ∈ Z. If κ(z) = 1,

(3.5) `(S(z)) <
1

5
=⇒ `(z) < δ, and `(S(z)) >

2

5
=⇒ `(z) > 1− δ

and if κ(z) = −1,

(3.6) `(S(z)) <
3

5
=⇒ `(z) > 1− δ, and `(S(z)) >

4

5
=⇒ `(z) < δ

Proof: (3.3) and (3.4) show that

(3.7) ||〈Xn(z)
σ (z, L);Xn(z)

σ (z, R)〉 − 〈`(S(z));
3

10
〉||∞ < δ, if κ(z) = 1

(3.8) ||〈Xn(z)
σ (z, L);Xn(z)

σ (z, R)〉 − 〈 7

10
; `(S(z))〉||∞ < δ, if κ(z) = −1

We carry out the proof of the Lemma for the case κ(z) = 1; the other case

follows similarly. If `(S(z)) < 1
5
, then

Xn(z)
σ (z, L) ≤ `(S(z)) + δ < 0.2 + δ and 0.3− δ ≤ Xn(z)

σ (z,R),

implying that Xn(z)
σ (z,R)−Xn(z)

σ (z, L) ≥ 1

10
− 2δ ≥ 1

20

The criteria (2.7) implies that playing L with probability `(z) is an ε-best-

reply in 〈Xn(z)
σ (z, L);X

n(z)
σ (z,R)〉, and hence `(z) < 20ε ≤ δ. On the other

hand, if `(S(z)) > 2
5
,

Xn(z)
σ (z, L) ≥ `(S(z)) > 0.4− δ and 0.3 + δ ≥ Xn(z)

σ (z,R),

implying that Xn(z)
σ (z, L)−Xn(z)

σ (z,R) ≥ 1

10
− 2δ ≥ 1

20

and we similarly derive that in this case, `(z) > 1− 20ε ≥ 1− δ. Q.E.D.
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Definition 3.3.3 A state z ∈ Z will be called L-quasi-pure (resp. R-quasi-

pure) if `(z) > 1− δ (resp. `(z) < δ). If z is either L- or R-quasi-pure, we

may simply refer to z as being quasi-pure.

Lemmas 3.3.4 and 3.3.5 contain the properties of σ that we will need.

Lemma 3.3.4 If S(z) is quasi-pure in σ, then so is z. If the former is

a-quasi-pure (a ∈ {L,R}), then the latter is as well if and only if κ(z) = 1.

Proof: The lemma follows by repeated use of Lemma 3.3.2 (we shorten

’quasi-pure’ to ’q.p.’ here):

• If S(z) is L-q.p. and κ(z) = 1, then `(S(z)) < δ < 1
5
, so `(z) < δ.

• If S(z) is L-q.p. and κ(z) = −1, then `(S(z)) < δ < 3
5
, so `(z) > 1−δ.

• If S(z) is R-q.p. and κ(z) = 1, then `(S(z)) > 1−δ > 2
5
, so `(z) > 1−δ.

• If S(z) is R-q.p. and κ(z) = −1, then `(S(z)) > 1−δ > 4
5
, so `(z) < δ.

Q.E.D.

Lemma 3.3.5 For any z ∈ Z, at least one of the two states in S−1(z) is

quasi-pure. (Note that this is so even if z is not quasi-pure.)

Proof: We must have at least one of the following two inequalities:

`(S(z)) >
2

5
, `(S(z)) <

3

5

Suppose that the left inequality holds. Lemma 3.3.2 then shows that if

z′ ∈ S−1(z) with κ(z′) = 1, then `(z′) > 1− δ and hence z′ is L-quasi-pure.

In the case of the right inequality, we deduce similarly that if z′′ ∈ S−1(z)

with κ(z′′) = −1, then z′′ is also L-quasi-pure.

Q.E.D.

Remark 3.3.6 It’s easy to describe a (pure) equilibrium in behavioral

strategies: The player who begins the game plays, say, L. Thereafter, as
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long as the quitting state 0 is not reached, each player will match (resp.

mismatch) the action of the player before him if preceding state z satisfies

κ(z) = 1 (resp. κ(z) = −1). Indeed, [28] guarantees the existence of equi-

libria in behavioral strategies. In fact, the proof there in fact shows that

in perfect information games, pure behavioral equilibria exist; this had also

been demonstrated earlier in [16].

3.4. Nonexistence of Stationary Equilibria: The Unperturbed Game

Recall that µ is the Lebesgue-measure on Y , and let λ be the uniform

measure on ωM ; let ν = λ×µ. Assume that σ is a stationary ε-equilibrium,

as in Section 3.3, measurable w.r.t. ν. We shall use Lemmas 3.3.4 and 3.3.5

to show that σ cannot be a (ν-measurable20) equilibrium. Assume, to the

contrary, that it is.

Lemma 3.4.1 Let Ξ = {z ∈ Z | z is not quasi-pure}. Then ν(Ξ) = 0.

Proof: By assumption, Ξ is ν-measurable. Lemma 3.3.4 implies that

(3.9) S(Ξ) ⊆ Ξ

Let ι : Z → Z be the involution defined such that ι(n, y) is obtained from

(n, y) by changing only the 0-th bit of y. Lemma 3.3.5 then implies that

(3.10) Ξ ∩ ι(Ξ) = ∅

Furthermore, for any B ⊆ Z,

(3.11) S−1(S(B)) = B ∪ ι(B)

20Where ν is also a measure on Ω via inclusion.
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S and ι are both ν-preserving.21 Also observe that S(Ξ) is ν-measurable.22

Hence (3.9), (3.10), and (3.11) imply that

2ν(Ξ) = ν(Ξ) + ν(ι(Ξ)) = ν(S−1(S(Ξ))) = ν(S(Ξ)) ≤ ν(Ξ)

Hence, ν(Ξ) = 0. Q.E.D.

Define the map g : Z → {−1, 1} by g(z) = 1 if and only if z is L-quasi-

pure. Denote for all y, y′ ∈ Y , D(y, y′) = {j ∈ ω | yj 6= y′j}, and if D(y, y′)

is finite, N(y, y′) = #D(y, y′), M(y, y′) = maxD(y, y′).

Lemma 3.4.2 For each n ∈ ωM , µ-almost every y ∈ Y , we have

(3.12) g(n, y) = (−1)N(y,y′)g(n, y′), ∀y′ ∈ Y s.t. N(y, y′) <∞

Proof: By Lemma 3.3.4 and Lemma 3.4.1, we see that for almost every

z = (n, y) ∈ Z, g(z) = y0 · g(S(z)), and hence for all k and a.e. z,

g(z) = y0 · · · · · yk−1 · g(Sk(z))

If N(y, y′) < ∞, z = (n, y), z′ = (n, y′), then SM(y,y′)(z) = SM(y,y′)(z′) and

(−1)N(y,y′) =
∏

j≤M(y,y′)
yj
y′j

; hence the result follows. Q.E.D.

Proposition 3.4.3 There does not exist a µ-measurable function f : Y →
{−1, 1}, such that for a.e. y ∈ Y ,

(3.13) f(y) = (−1)N(y,y′)f(y′), ∀y′ ∈ Y s.t. N(y, y′) <∞
21Recall that a mapping ψ on a measure space (Ω, λ) is measure-preserving if

λ(ψ−1(A)) = λ(A) for all λ-measurable A ⊆ Ω. ι is clearly ν-preserving, and the map

n→ n+ in ωM is clearly λ-preserving; that shifts are Lebesgue-measure preserving, and

that the product of measure-preserving systems are also measure-preserving, are standard

results in ergodic theory.
22This is easy to establish in the case that Ξ ⊆ {1} × Y or Ξ ⊆ {−1} × Y , and the

general case follows.
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Proposition 3.4.3 contradicts 3.4.2, and therefore completes our proof

that there are no stationary equilibria. Before the proof, we recall several

notions: Let Sω denote the set of permutations π on ω such that ∃N ∈
ω,∀n > N, π(n) = n. Sω acts on Y by (π(y))n = yπ−1(n). A transposition

(on ω) is an element π of Sω for which there are i, j ∈ ω with π(i) = j and

π(j) = i, and π(k) = k for all k 6= i, j. It is well known that every element

of Sω is a composition of finitely many transpositions. We also denote by

χj : Y → Y the involution which changes only the j-th bit of the sequence.

Proof: Suppose that we did have such an f . Denote

L = {y ∈ Y | f(y) = 1}

Note that µ(L) = 1
2
: first, note that f(y) = −f(χ0(y)) for µ-a.e. y. Hence,

for a.e. y, exactly one of the following options holds: y ∈ L or χ0(y) ∈ L

(equivalently, y ∈ χ0(L)). Hence µ(χ0(L) ∩ L) = 0, µ(χ0(L) ∪ L) = 1.

On the other hand, let π ∈ Sω and y ∈ Y for which (3.13) holds. We

contend that y ∈ L if and only if π(y) ∈ L; it’s enough to check this in the

case that π is a transposition. We have either π(y) = y or π(y) = χi ◦χj(y),

so N(π(y), y) ∈ {0, 2}. Therefore, µ(π(L)∆L) = 0 for all π ∈ Sω, where

∆ denotes the symmetric difference of sets. By the Hewitt-Savage zero-one

law, µ(L) = 0 or µ(L) = 1, a contradiction.

Q.E.D.

3.5. Nonexistence of Stationary Equilibria: The Perturbed Games

The following lemma can be established along standard lines:

Proposition 3.5.1 Let Γ = (Ω,P, (Ip), β, r, q) be a stochastic game and

ε > 0. Then there is η > 0 such that if Γ′ = (Ω,P, (Ip), β′, r′, q′) is another

game with the same state / player / action spaces, such that |β′ − β| < η,

||r′(z, a)− r(z, a)||∞ < η, ||q′(z, a)− q(z, a)|| < η, ∀z ∈ Ω, ∀a ∈ I
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then for any behavioral strategy profile σ, letting γσ(z), γ′σ(z) denote the

expected payoffs in Γ,Γ′ starting with state z, we have ||γσ − γ′σ||∞ < ε.

It therefore follows that stationary ε-equilibria in Γ′ are stationary 3ε-

equilibria in Γ, a contradiction if 3ε is small enough.

3.6. Markovian Strategies: The Concept and Dynamic Programming

A Markovian strategy is a behavioral strategy in which a player’s action

can depend on the current stage of the game23 and the current state. A

Markovian strategy σp for a player p ∈ P is given by a sequence, σp =

(σp1, σ
p
2, . . .), where for each m ∈ N, σpm is a measurable map Ω → ∆(Ip).

We will show that our example does not possess subgame perfect Marko-

vian equilibria.24 Afterwards, we will show that there are arbitrarily small

perturbations of our example that do not possess Markovian equilibria.25

We adopt the various notations of Section 2. Furthermore, if σ = (σ1, σ2, . . .)

is a Markovian strategy profile, let σ∗m be the Markovian strategy profile

(σm+1, σm+2, . . .), and we generalize the notation of Section 2 by defining

for each state z ∈ Ω, and for a mixed action profile a ∈
∏

p∈P ∆(IP ),

Xp
σ∗m(z, a) := r(z, a) + β

∫
Ω

γσ∗m(t)dq(z, a)(t)

Proposition 3.6.1 A Markovian strategy profile σ is a subgame perfect

equilibrium iff for every state z ∈ Ω, every m ∈ N, and every z ∈ Ω,

Xp
σ∗m(z, σm(z)) ≥ Xp

σ∗m(z, (b, (σm)−p(z))), ∀p ∈ P,∀b ∈ Ip(3.14)

23That is, how much time has elapsed since play began.
24A similar argument can show that our example does not posses a Markovian subgame

perfect ε-equilibrium - i.e., a Markovian strategy profile which induces an ε-equilibrium

in any subgame - but we will settle for simplicity.
25The nonperturbed example possesses Markovian equilibria: for all p ∈ P, let σp1(z) =

R for κ(z) = 1 and σp1(z) = L for κ(z) = −1, let σp2(z) = R for all z, and let σpk(z) be

arbitrary for k ≥ 3.
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3.7. Nonexistence of Markovian Equilibrium in Example I

Fix some β. We will show that the game Γ = (Ω,P, {L,R}P, β, r, q) de-

fined in Section 3.2 does not have a subgame perfect Markovian equilibria.

At the end of this section we remark how to find pertubations of Γ which do

not possess Markovian equilibria. Assume, by way of contradiction, a fixed

measurable subgame perfect Markovian equilibrium profile σ.

Definition 3.7.1 For each m ∈ N, denote `m(z) = σ
n(z)
m (z)[L]. A state

z ∈ Z will be called (L,m)-pure (resp. (R,m)-pure) if `m(z) = 1 (resp.

`m(z) = 0). If z is either (L,m)- or (R,m)-pure, we may simply refer to z

as being m-pure.

The following lemma parallels Lemmas 3.3.4 and 3.3.5, and can be de-

duced along similar lines:

Lemma 3.7.2 If S(z) is m + 1-pure, then z is m-pure. If the former is

(a,m + 1)-pure (a ∈ {L,R}), then the latter is (a,m)-pure if and only if

κ(z) = 1. Furthermore, for any z ∈ Z, m ∈ N, at least one of the two states

in S−1(z) is m-pure.

Lemma 3.7.3 For each m ∈ N, let Ξm denote the set of states which are

not m-pure. Then ν(Ξm) = 0 for all m ∈ N.

Proof: As in the proof of Lemma 3.4.1, we show that, 2ν(Ξm) = ν(S(Ξm)) ≤
ν(Ξm+1). Inductively, we see that 2k · ν(Ξm) ≤ ν(Ξm+k), and in particular

2k · ν(Ξm) ≤ 1, for all k,m ∈ N. Hence ν(Ξm) = 0. Q.E.D.

Now, define the map g : Z → {−1, 1} by g(z) = 1 if and only if z is

(L, 1)-pure. Lemma 3.4.2 holds for g defined in this manner; by Theorem

3.4.3, such g cannot be measurable, which completes our contradiction.
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Now, let Γ′ = (Ω,P, {L,R}P, β, r, q′) be defined from Γ by

q′(z, a) = (1− ε) · q(z, a) + ε · δS(z),

where ε > 0 and δc denotes the Dirac measure at c. Its easy to see that every

Markovian equilibrium in Γ′ is subgame-perfect, and arguments similar to

the ones above show that if ε is small enough then Γ′ does not have a

subgame-perfect equilibrium.

4. EXAMPLE II (WITH ACC)

In this section, we construct a stochastic game (Ω,P, (Ip), r, q) which does

not possess a stationary equilibrium for any discount factor β ∈ (0, 1). The

game has a compact state space, a continuous payoff function, and norm-

continuous transitions.

Section 4.1 gives the idea of our construction. Section 4.2 introduces

some notation. The construction itself of the fundamental normal-form game

takes place in Sections 4.3 and 4.4, modulo a technical claim which is proved

in the Appendix. In Section 4.5, the example of a stochastic game without

a stationary equilibrium is presented. Section 4.6 discusses what minimal

anomalies of the structure of Nash equilibria we take advantage of in our

construction. (We remark that Section 4.5 can be read after having only

read the description and the properties of the normal-form game provided

in Section 4.4; it does not depend directly on Section 4.3.)

4.1. The Idea of The Construction

The game we will construct will have state space [0, 1], where 1 is an

absorbing state with payoff 0. The payoffs decrease linearly as one moves

towards 1, and the transitions from state t are of two types (or some mixture

thereof): uniformly in [t, 1), or quitting to 1. As such, the game progresses

towards the right.
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The transitions will be controlled by a particular pair of players whom

we denote C,D. These players have no influence over their stage payoff,

and each of them influences whether the game is to “continue,” i.e., if the

transition should be uniform in [t, 1), or is to “quit,” i.e., go all the way

to the absorbing state. Clearly, then, in state t < 1, each of these players

chooses which way he wishes to influence depending on whether his future

average expected payoff in the states to his right is positive or negative.

We seek to build a group of players around C,D with which to implement

a mechanism with two main properties in each state t < 1. The first property

is that the action that each of the players C,D plays in response to a

future expected positive (resp. negative) payoff in [t, 1) induces the other

players, in any stationary equilibrium, to award that player a negative (resp.

positive) stage payoff. From this mechanism (and the particular structure

of the game) it will follow that, in any stationary equilibrium, each of the

players C,D must always receive a payoff of 0. However, this contradicts

the other main property of the mechanism: the stage payoff to at least one

of the players C,D must be non-zero in any stage of play of any stationary

equilibrium.

To achieve a mechanism with both these properties, we take advantage of

an example presented in [21] in relation to stability properties of equilibria,

in which the set of equilibria is homeomorphic to a circle and all equilib-

ria satisfy an appropriate stability property. A particular pair of players,

denoted A,B, will face a game very close26 to the normal-form game in

this example, with small perturbations induced by the actions of the pair

C,D (and the resulting best-replies of a team of ‘auxiliary’ players). As a

result, in stationary equilibrium, the action pair played by A,B at any stage

will always be near the aforementioned circle of equilibria, but changes in

C,D’s action profile (as a function of expected future payoffs) will cause

26Close in the space of games, treated as a Euclidean space.
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A,B’s action pair to move to a different part of the circle, hence inducing

both properties of the mechanism that we require.

4.2. Additional Notations and Conventions

• Distances in any Euclidean spaces (including spaces of games and

spaces of mixed action profiles) are always w.r.t. to the || · ||∞ norm.

• If g is some payoff vector to some set of players P, and T ⊆ P, then

gT denotes the restriction of the vector to the players in T .

• If a is an action profile of the players in P, and T ⊆ P, then aT (resp.

a−T ) denotes the vector of strategies of players in T (resp. P\T ).

• If Λ is a normal form game on some set of players P, and α is a strategy

profile of those players, then Λ(α) denotes the resulting payoff vector.

If T ⊆ P, then ΛT (α) (resp. Λ−T (α)) denotes the payoff to the players

in T (resp. in P\T ).

• For such Λ, α, and T ⊆ P, ΛT (·, α−T ) denotes the expected normal-

form game facing the players in T when the other players are restricted

to playing α−T .

• For a normal-form game Λ, NE(Λ) is the set of Nash equilibria of Λ.

• We let S denote the boundary of the square,

(4.1) S = {(p, q) | −1 ≤ p, q ≤ 1, (|p| = 1) ∨ (|q| = 1)}.

We denote the four closed edges of S by SN, SE, SS, SW for the north,

east, south, and west edges, respectively. Note that SN = −SS, SE =

−SW.

• When referring to the set {1,−1}, for p ∈ [0, 1], (p, 1− p) denotes the

probability distribution choosing 1 with probability p, and choosing

−1 with probability 1− p.
• Given a set E and a point x in an Euclidean space,

||x− E||∞ := inf
y∈E
||x− y||∞
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4.3. Construction from Kohlberg and Mertens’ Game

In this section, we construct for each ε > 0 a continuous function Γε

from the square S to the collection of 3× 3 bimatrix games, i.e., to R2×I×J ,

where I = J = {L,M,R}, which will satisfy certain key properties that we

discuss below. The motivation for this construction is the following game

(we denote the players A,B), presented by Kohlberg and Mertens (1986),

whose set of equilibria is homeomorphic to a circle.27

(4.2)

The Game G0 Equilibria of G0

A\B L M R

L 1, 1 0,−1 −1, 1

M −1, 0 0, 0 −1, 0

R 1,−1 0,−1 −2,−2

(L,L) (L,R)

(M,M) (M,R)

(R,L) (R,M)

Table 4.2.a Figure 4.2.b

Let E1, . . . , E6 denote the 6 pure equilibria, beginning with (L,L) and

proceeding clockwise, and let Ai denote the closed arc from Ei to Ei+1,mod 6

in the space of mixed strategy profiles. The equilibria of G0 are precisely

the strategies lying on these arcs, i.e., NE(G0) = ∪6
j=1Aj. For a two-player

game G, the game G′, defined by G′i(a, b) = G3−i(b, a), is the game where

the players and action profiles are switched.

Fix ε > 0; we begin by defining mappings G1, . . . , G6, GZ : [0, 1] →
R2×I×J , and from these we will define Γε. By construction, for j = 1, . . . , 6

and any t ∈ [0, 1], any equilibrium of Gj(t) lies along the closed arc Aj. (GZ ,

however, has an ‘irregularity’.)

27And is hyperstable in the sense defined there.
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•

G1(t) :=

A\B L M R

L 1 + ε, 1 + (1− t)ε ε,−1 −1 + ε, 1 + t · ε

M −1, (1− t)ε 0, 0 −1, t · ε

R 1,−1 0,−1 −2,−2

All equilibria in G1(t) lie on the arc A1.

•

G2(t) :=

A\B L M R

L 1 + (1− t)ε, 1 (1− t)ε,−1 −1 + (1− t)ε, 1 + ε

M −1, 0 t · ε, 0 −1 + t · ε, ε

R 1− t · ε, 0 −t · ε,−1 −2,−2

All equilibria of G2(t) lie along A2.

•

G3(t) :=

A\B L M R

L 1, 1− 2t · ε −t · ε,−1 −1, 1− 2(t− 1
2
)ε

M −1,−t · ε ε, t · ε −1 + ε,−2(t− 1
2
)ε

R 1− ε,−1 −ε,−1 + t · ε −2,−2

All equilibria of G3(t) lie along A3.

•

GZ(t) =

A\B L M R

L 1− 2tε, 1− 2(1− t)ε −ε,−1 −1, 1− ε

M −1,−ε ε, ε −1 + ε,−ε

R 1− ε,−1 −ε,−1 + ε −2,−2

For t < 1
2

or t > 1
2
, the unique equilibrium of GZ(t) is (M,M). More-
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over,

GZ(
1

2
) =

A\B L M R

L 1− ε, 1− ε −ε,−1 −1, 1− ε

M −1,−ε ε, ε −1 + ε,−ε

R 1− ε,−1 −ε,−1 + ε −2,−2

which has pure equilibria (L,L) and (M,M), and the mixed equilib-

rium,

(4.3) (x∗, y∗) =
(
(

2ε

2 + ε
,
2− ε
2 + ε

, 0), (
2ε

2 + ε
,
2− ε
2 + ε

, 0)
)

which satisfies

(4.4) ||(x∗, y∗)− (M,M)||∞ =
2ε

2 + ε
< ε

• Since G3(1) = G′Z(1), we retrace our steps in the transposed games;

we get

G4(t) := G′3(1− t)

G5(t) := G′2(1− t)

G6(t) := G′1(1− t)

In each of these cases, all equilibria of Gj lie along Aj.

We then define

(4.5) Γε(p, q) =



G4(1
2
(1 + p)) if q = 1

G5(1
2
(1− q)) if p = 1

G6(1
2
(1− p)) if q = −1

G1(2(q + 1)) if p = −1, q ≤ −1
2

G2(2(q + 1
2
)) if p = −1,−1

2
≤ q ≤ 0

G3(2q) if p = −1, 0 ≤ q ≤ 1
2

GZ(2(q − 1
2
)) if p = −1, 1

2
≤ q ≤ 1
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Clearly, Γε is well-defined and continuous; one just verifiesG1(1) = G2(0), . . .,

etc. To better understand Γε, denote Hj = Gj(0) for j = 1, . . . , 6, Z. Then

the map Γε is the piecewise linear map given by the following diagram:

(4.6)

(p, q) ∈ S Γε(p, q) ∈ R2×|I|×|J |

(−1, 1)
SN // (1, 1)

SE

��
(−1,−1)

SW

OO

(1,−1)
SSoo

H4
G4 // H5

G5

��

HZ

GZ

OO

H3

G3

OO

H2

G2

OO

H1

G1

OO

H6G6

oo

Figure 4.6.a Figure 4.6.b

Proposition 4.3.1 For each ε > 0, we have:

(i) Γε is piecewise linear.28

(ii) Γε is 4ε-Lipshitz (w.r.t. the ||·||∞ norm and where the distance between

points on S is given by shortest arc-length).

(iii) Γε satisfies ||Γε(x)−G0||∞ ≤ 2ε for all x ∈ S.

(iv) For any edge E of S, and for any equilibrium (x, y) of any game in

Γε(E) = {Γε(x) | x ∈ E}, it holds that

(4.7) ||Ex⊗y[ϑ]− (−E)||∞ < 2|I| · |J | · ε = 18ε

28In the sense that each edge of the square is viewed as an interval.
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where ϑ is defined by

(4.8) ϑ :=

A\B L M R

L 1, 1 0, 0 1,−1

M 0, 0 1,−1 1,−1

R −1, 1 −1,−1 0, 0

ϑ can be understood graphically:

(4.9)

Action Profile of A,B Corresponding ϑ Payoff

(R,L) Arc 6 // (L,L)

Arc 1
��

(L,R)

Arc 2
��

(M,R)

Arc 3
��

(R,M)

Arc 5

OO

(M,M)
Arc 4
oo

(−1, 1) Arc 6 // (1, 1)

Arc 1

��
(−1,−1)

Arc 5

OO

(1,−1)
Arc 4
oo

UU

Figure 4.9.a Figure 4.9.b

In addition, inequality (4.7) can be stated informally: For any equilibria

of a game assigned to a point on E via Γε, the expected payoff under ϑ is

not too far from the set of payoffs in equilibria on the edge opposite to E.

Proof: (Proof of Proposition 4.3.1) Property (i) is clear. (ii) follows (4.5),

since each of the maps G1, . . . , G6, GZ is 2ε-Lipshitz. (iii) holds since ||G−
G0||∞ ≤ 2ε whenever G ∈ Γε(S) = {Gj(t) | j = 1, . . . , 6, Z, t ∈ [0, 1]}.
(iv), as well, needs to be checked in each of the 7 segments of S used in

(4.5). Take, for example, E = SN; fix (p, q) ∈ SN. We have q = 1 and

hence Γε(p, q) is of the form G4(t) for some t ∈ [0, 1]. Any equilibrium

profile (x, y) for A,B in G4(t) lies on the arc A4, and hence Ex⊗y(ϑ) is

a convex combination of (1,−1) and (−1,−1), i.e., is of the form (s,−1),
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−1 ≤ s ≤ 1, and hence lies on SS. The other cases follow similarly, except

for the arc p = −1, 1
2
≤ q ≤ 1; here, one must use (4.4) together with the

fact that for any two strategy pairs x, y and x′, y′ for players A,B, we have

∣∣Ex⊗y[ϑ]− Ex′⊗y′ [ϑ]
∣∣ ≤ |I| · |J | · ||x⊗ y − x′ ⊗ y′||∞ · (maxϑ−minϑ)

= 18||x⊗ y − x′ ⊗ y′||∞(4.10)

Q.E.D.

Remark 4.3.2 For later purposes, we remark that the upper-semicontinuity

of the Nash equilibrium correspondence implies that for each ε > 0 there

exists η = η(ε) such that if ||H − G0||∞ < η, then NE(H) is contained in

the ε-neighborhood of NE(G0).

4.4. The Normal-Form Game

In the appendix, we prove the following proposition, relying on a con-

struction given in [24]:

Proposition 4.4.1 Let I, J be finite sets,29 and let Q : S → R2×I×J be

a continuous and piecewise linear30 map to bimatrix games on these action

sets. Then for some integer M , there exist 4 normal-form games on the set

of players A,B, θ1, . . . , θM , denoted Kk for k ∈ {1,−1}2, such that:

1. A,B have action spaces I, J respectively; each θj has an action space

{L,R}. The players {θ1, . . . , θM} will be called auxiliary players.

2. The payoffs of θ1, . . . , θM are not affected by the actions of A,B in

any of the games; let KkΘ denote the well-defined restriction of Kk to

the Players θ1, . . . , θM .

29The proposition also extends, with almost no change in the proof, to the case that

Q is a map to games with any finite set of players.
30I.e., piecewise linear on each edge of S.

ectaart.cls ver. 2006/04/11 file: stochastic_game_no_eq.tex date: March 27, 2013



29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

3. For (p, q) ∈ [−1, 1]2, let K(p, q) (resp. KΘ(p, q)) denote the convex com-

bination of the {Kk}k (resp. {KkΘ}k), with weights given by (1+p
2
, 1−p

2
)⊗

(1+q
2
, 1−q

2
). If (p, q) ∈ S, and aθ is an equilibrium in the game KΘ(p, q),

then the expected payoff matrix facing A,B, given by KA,B(p, q)(·, aθ),

is Q(p, q).

4. For each ε > 0, there is κ = κ(ε) such that if ||Q(p, q) − Q0||∞ ≤ κ

for some Q0, then

||KA,B(p, q)(·, aθ)−Q0||∞ ≤ ε, ∀(p, q) ∈ [−1, 1]2,∀aθ ∈ NE(KΘ(p, q))

We now turn to our normal-form game. Fix ε ≤ min[ 1
4·|I|·|J | ,

1
2
κ(η( 1

4·|I|·|J |))] =

min[ 1
36
, 1

2
κ(η( 1

36
))], where η(·) is defined in Remark 4.3.2 and κ(·) was defined

in Proposition 4.4.1. The payoff depends on a parameter ω = (ωC , ωD) ∈ R2:

• The Players are A,B, θ1, . . . , θM , where M corresponds to Q := Γε

as in Proposition 4.4.1 and Γε was constructed in Section 4.3, as well

as an additional pair, Players C,D. (The auxiliary players θ1, . . . , θM

will not be discussed explicitly; the role they play is only through

Proposition 4.4.1. Intuitively, one can think that the players θ1, . . . , θM

help provide ‘communication’ from C,D to A,B, via their desire to

react optimally to actions taken by the former pair.)

• As in Proposition 4.4.1, Players A,B have action sets I = J =

{L,M,R}, and each player θj has action sets {L,R}; furthermore,

Players C,D each have action set {1,−1}.
• The payoff rω will be the sum of two payoffs, rω := r1 + r2,ω, defined

separately as follows:

• The first payoff function r1 does not depend on ω, satisfies rC,D1 (a) :=

ϑ[aA,B], where ϑ is defined in property (4.8) of Section 4.2, and the

payoff to the other players is the same as in the game of Proposi-

tion 4.4.1 when the profile a−{C,D} is played and the choice aC,D ∈
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{+1,−1}2 is made by Nature; namely,

rC,D1 (a) := ϑ[aA,B], r
−{C,D}
1 (a) = Ka

C,D

(a−{C,D})

• The second payoff function r2,ω depends on ω. It gives a payoff of 0

to all players other than C,D: That is, r
−{C,D}
2,ω ≡ 0. To players C,D,

r2,ω is dependent only on aC,D and is given by:

rC,D2,ω (a) =

C\D 1 −1

1 ωC , ωD 1
2
ωC , 1

2
ωD

−1 1
2
ωC , 1

2
ωD 0

(In the stochastic game - which is built around this game normal-form

game - that we will define, players C,D control the transitions but do not

influence their own stage payoffs, and ωC,D will be the expected continua-

tion payoff for these players if the game does not enter its quitting state.)

For each (p, q) ∈ S, let ap,q be an equilibrium profile in the game with

payoff rω for the players A,B, θ1, . . . , θM when Players C,D are restricted

to playing bp,q := (1+p
2
, 1−p

2
) ⊗ (1+q

2
, 1−q

2
); that is ap,q is an equilibrium in

r
−{C,D}
1 (·, bp,q) = r

−{C,D}
ω (·, bp,q). We will continue formally below, but we

give a geometric image of where we are heading: Property (3) of Proposition

4.4.1, applied to the mapping Q := Γε which has the properties given in

Proposition 4.3.1, together with Figure 4.9 gives the following relationship

between p, q and the payoff in r1 to C,D under the profile ap,q, r
C,D
1 (ap,q, bp,q):

ectaart.cls ver. 2006/04/11 file: stochastic_game_no_eq.tex date: March 27, 2013



31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

(4.11)

p, q r
{C,D}
1 (ap,q, bp,q)

(−1, 1)
SN // (1, 1)

SE

��
(−1,−1)

SW

OO

(1,−1)
SSoo

(1,−1)
SS //

��

(−1,−1)

SW

��

oo

(1, 1)

SE

OO

// (−1, 1)
SNoo

OO

Figure 4.11.a Figure 4.11.b

The diagram is to be understood in the following way: as the point (p, q)

goes around the square, the payoff rC,D1 (ap,q, bp,q) (which is not uniquely

determined) must also go ’around’ the square ’close to it’ - at a distance of

at most 18ε from the edge opposite the edge on which (p, q) lies, because of

(4.7). Formally:

Proposition 4.4.2 Let ω ∈ R2, and let a be an equilibrium profile in the

game rω. Denote p = 2aC [1]− 1, q = 2aD[1]− 1. Then:

1. If ωC > 0, then p = 1; if ωC < 0, then p = −1. The same holds for q

w.r.t. ωD.

2. If ωC > 0, then rC1 (a) ≤ −1
2
. If ωC < 0, then rC1 (a) ≥ 1

2
. Similarly, if

ωD > 0, then rD1 (a) ≤ −1
2
, and if ωD < 0, then rD1 (a) ≥ 1

2
.

3. Let H be the expected matrix facing players A,B; that is, H = rA,Bω (·, a−{A,B}).

Then ||H −G0||∞ < η(1
4
) (regardless of the values of ωC , ωD; this in-

cludes the case where one or both are 0), and rC,D1 (a) 6= 0.

Proof: The first part follows simply from the definition of r2,ω and since

rC,Dω − rC,D2,ω is independent of the actions of players C,D. For the second

part, take, for example, the case ωC > 0, which, by the first part, implies

p = 1. Since a ∈ NE(Q(p, q)) = NE(Γε(p, q)) ∈ ∪x∈ENE(Γε(x)), where

E = {1} × [−1, 1] = SE in this case, it follows from (4.7) that,

||rC,D1 (a)− (−SE)||∞ = ||EaA,B [ϑ]− SW||∞ < 18ε ≤ 1

2
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and hence rC1 (a) ≤ −1 + 1
2

= −1
2
. The case ωC < 0, as well as the cases

ωD > 0,ωD < 0, follow similarly.

For the last part, first note that by property (iii) of Proposition 4.3.1,

||Q(p, q) − G0||∞ < 2ε ≤ κ(η( 1
4|I|·|J |)) for all (p, q) ∈ S. By property (4) of

Proposition 4.4.1, we see that ||H−G0||∞ < η( 1
4|I|·|J |), which, by definition31

of η, implies that there is an equilibrium b of G0 with ||a − b||∞ < 1
4|I|·|J | .

Since for any equilibrium b of G0 we have Eb[ϑ] ∈ S, we see by (4.10)

that rC,D1 (a) = ϑ[aA,B] is in the 1
2
-neighborhood of the square S, and in

particular, rC,D1 (a) 6= 0. Q.E.D.

4.5. The Stochastic Game

The stochastic game has the following components:

• The players are P = {A,B,C,D, θ1, . . . , θM} as in Section 4.4, along

with the actions sets given there.

• The state space Ω is [0, 1], with the Borel σ-algebra.

• The payoff function r(s, ·) in state s is given by (1− s)r1(·), where r1

is defined in Section 4.4. Note that r(1, ·) ≡ 0.

• The transitions q(t, a) are controlled by Players C,D and are given

by:

q(t, a) = (1− ζ(1− t))δ1 + ζ(1− t) · q̃(t, a)

where 0 < ζ ≤ 1 is fixed and satisfies

(4.12)
ζ · ||r||∞

1− ζ
<

1

2

and

q̃(t, a) =

C\D L R

L U(t, 1) 1
2
U(t, 1) + 1

2
δ1

R 1
2
U(t, 1) + 1

2
δ1 δ1

31See Remark 4.3.2.
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where U(a, b) is the uniform distribution on [a, b], and δc is the Dirac

measure at c; we interpret U(1, 1) = δ1. Note that 1 is an absorbing

state.

• β ∈ (0, 1) is a discount factor.

Remark 4.5.1 It is clear that all transitions are absolutely continuous

w.r.t. 1
2
U(0, 1) + 1

2
δ1, and hence the game satisfies ACC. Furthermore, if

one desires absolute continuity w.r.t. a non-atomic measure, we can make

the following alteration: Since 1 is an absorbing state with payoff 0 to all,

one could replace {1} with a continuum [1, 2] of absorbing states with payoff

0 to all, replacing δ1 by U(1, 2) throughout, and hence all transitions would

be absolutely continuous w.r.t the Lebesgue measure.

By way of contradiction, fix a stationary equilibrium σ. Recall the nota-

tions γσ and Xσ from Section 2. We will denote for j = C,D, V j = γjσ and

W j(t) =
∫ 1

t
V j(s)ds. For j = C,D, (2.5) becomes

(4.13) V j(t) = Xj
σ(t, σ(t)) = rj(t, σ(t)) + βζ

(
1− q({1} | t, σ(t))

)
W j(t).

From the definition of the payoffs, it follows that:

Lemma 4.5.2 For 0 ≤ t ≤ 1,

Xσ(t, ·) = (1− t)rω(t)(·) + ξσ(t, ·)

where rω is defined in Section 4.4, ξCσ ≡ ξDσ ≡ 0,

ξ−{C,D}σ (t, a) = βζ · (1− q({1} | t, a)) ·
∫ 1

t

γ−{C,D}σ (t)dt

and ω is given by

ω(t) = (ωC(t), ωD(t)) := ζβ ·
∫ 1

t

γ{C,D}σ (s)dq(t, σ(t)) = ζβ ·(WC(t),WD(t)).

Lemma 4.5.3 For ω as in Lemma 4.5.2, we have ||ω||∞ < 1
2
.
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Proof: Since q([0, 1) | ·) ≤ ζ, it follows for j ∈ {C,D},

|V j| ≤
∞∑
j=1

||r||∞ · ζj−1 =
||r||∞
1− ζ

and hence (4.12) implies that

|ωj| = |ζβ ·W j| < β
ζ · ||r||∞

1− ζ
<

1

2

Q.E.D.

It is immediate that:

Lemma 4.5.4 Let g1, g2 be two payoff functions on the same player set,

such that for any Player p and any pair of pure action profiles a, b that

differ (at most) in Player p’s action,

gp1(a)− gp1(b) = gp2(a)− gp2(b)

Then the set of Nash equilibria under g1 is the same as the set of Nash

equilibria under g2.

Note that under ξσ(t, ·), each player’s payoff is independent of his own ac-

tion. Combining this observation with Lemma 4.5.4 (where g1(·) = Xσ(t, ·)
and g2(·) = (1− t)rω(t)(·)), Lemma 4.5.2, and Proposition 4.4.2, we deduce

that for each t ∈ [0, 1]:

• If WC(t) > 0 (resp. < 0), rC(t, σ(t)) ≤ −1
2

(resp. ≥ 1
2
).

• If WD(t) > 0 (resp. < 0), rD(t, σ(t)) ≤ −1
2

(resp. ≥ 1
2
).

• Regardless of the values of WC(t),WD(t),

(4.14) rC(t, σ(t)) 6= 0 or rD(t, σ(t)) 6= 0

Using these observations, we can further deduce that for each t ∈ [0, 1]:
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• Since Lemma 4.5.3 implies that:

(4.15) ||rC,D(t, ·)−XC,D
σ (t, ·)||∞ = ||ω(t)||∞ <

1

2
,

it follows from (4.13) that if WC(t) > 0 (resp. < 0), then V C(t) < 0

(resp. > 0), and similarly for V D w.r.t. WD.

• We deduce that for at least one j ∈ {C,D}, V j(t) 6= 0: If WC(t) =

WD(t) = 0, we deduce this from (4.14) and (4.13), while otherwise it

follows from the case above.

Furthermore, it is known that for a.e. t, dW j

dt
(t) = −Vj(t) for j = C,D.

Define G = (WC)2 + (WD)2. Our conclusions show that for at least one

j ∈ {C,D}, W j is non-zero somewhere (otherwise, we would have V 1 ≡
V 2 ≡ 0), and hence G is not uniformly 0. Furthermore, it holds a.e. that

G′ = 2 ·W c · dW
C

dt
+ 2 ·WD · W

D

dt
≥ 0

G is absolutely continuous, because both WC ,WD are absolutely continuous

(and hence also bounded.) Therefore, since G′ ≥ 0 a.e. and G is positive at

some point, we deduce that G(1) > 0, a contradiction since G(1) = 0.

4.6. Necessary Components of Construction

As has been discussed in Section 1, the question of existence of stationary

equilibrium in discounted stochastic games under the ACC assumption has

attracted much attention. Much of this attention has resulted from the par-

ticular models used in particular economic interactions, such as capital ac-

cumulation, models with heterogeneous shocks, and others. Future research

will undoubtedly include attempts to formulate very general conditions un-

der which such equilibria do or do not exist in these models. Hence, we

briefly mention here (without proof) what components - or, more specifi-

cally, what anomalies in the manifold of Nash equilibria - are really required
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for the construction of a basic normal-form game which satisfies the prop-

erties of Proposition 4.4.2.

The multi-player normal-form game could be built around a ’base’ normal-

form game G0 (with any finite number of players) with the following prop-

erties:

(1) The set of equilibria NE0 = NE(G0) contains32 a unique hyperstable

set H0. By a hyperstable set, defined in [21], we mean a set that is

minimal w.r.t. the following property: for any ε > 0, there is δ > 0 such

that the equilibria of any game G′ that is in a δ-neighborhood of a game

G that is equivalent33 to G0 are in an ε-neighborhood of H0.

(2) H0 is connected but not nulhomotopic.

(3) Furthermore,34 there exists:

• For some n ∈ N, a continuous semi-algebraic35 injection ψ : Cn →
H0, which is not nulhomotopic in H0, where Cn is the boundary

of the n + 1-cube: Cn = {x ∈ Rn+1 | ∃i ∈ {1, . . . , n + 1} s.t. xi ∈
{1,−1}}.

• A semi-algebraic retract ρ : NE0 → ψ(Cn).

• For all ε > 0, a semi-algebraic mapping Γε from Cn to the ε-

neighborhood of G0, such that for each edge E of Cn (i.e., E is

of the form {x ∈ Cn | xi = q} for some i and some q ∈ {−1, 1}),
any equilibrium of any game in Γε(E) is in an ε-neighborhood of

ρ−1(ψ(−E)).

32NE0 may contain other components which are not hyperstable.
33Two games are equivalent if they have the same reduced form, where the reduced

form is achieved by eliminating actions that are payoff-equivalent to a convex combination

of other actions.
34It is not clear if some of the components of Property (3) already follow from Property

(2); in view of Remark 4.6.1, this is equivalent to saying that it is not clear what regularity

conditions the manifold of Nash equilibria possess.
35See, e.g., [4].
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Remark 4.6.1 Property (3) can be viewed as a regularity condition on

the manifold of Nash equilibria near the game G0.

In our case, in which n = 1, can take ψ : S(= C2) → H0 as in Figure

4.9.a, and ρ to be the identity; Γε was defined in (4.5).

5. APPENDIX: PIECEWISE LINEAR GAMES ON THE SQUARE

In this section we prove Proposition 4.4.1. We recall the following propo-

sition from [24] (we use the notations and conventions - in particular, that

all metrics are w.r.t. the supremum norm - introduced in Section 4.2):

Proposition 5.0.2 Let f : [a, b]→ (0, 1) be a continuous, piecewise linear

function. Then there exist36 an integer N > 0 and two normal-form games,

GL and GR, on the set of players37 A,B, α1, . . . , αN−1, each with action

space {L,R}, such that for any p ∈ [a, b], denoting

G(p) :=
p− a
b− a

·GL +
b− p
b− a

GR

it holds that in any equilibrium of G(p), Players A,B play the mixed action

profile (f(p), 1− f(p))× (f(p), 1− f(p)).

Remark 5.0.3 The construction above has other properties:

(i) The payoffs of each of the (αj) - these players will be referred to as

auxiliary players - are independent of the actions of any other player;

hence, we can refer to the matrix G(p), which is the expected matrix

facing players A,B when each of the αj plays an optimal action; this

turns out to be well-defined, as when any αj are indifferent in G(p) for

some p, any choices yield the same expected payoffs for players A,B.

36N is the number of segments into which [a, b] has to be divided into in order for f

to be linear in each segment.
37When N = 0, the set of players is just A,B.
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(ii) In fact, by construction, G(p) is uniquely determined by the value of

f at p, as it turns out that we have explicitly,

G(p) = G(f(p)), where G(t) =

L R

L 1,−1 1− 4t, 3− 4t

R 4t− 3, 4t− 1 1,−1

(iii) The construction there also shows that if L is a Lipschitz constant of

f , and ||f −f0||∞ ≤ κ for some f0, κ ∈ R, then ||(Gk)A,B−G(f0)||∞ ≤
(b− a)Lκ for k ∈ {L,R}.

Proposition 5.0.4 Let S be the boundary of the square:

S = {(p, q) | −1 ≤ p, q ≤ 1, (|p| = 1) ∨ (|q| = 1)}

and let g : S → (0, 1) be a continuous and piecewise linear38 map. Then for

some integer K, there exists four normal form games on the set of players

A,B, γ, δ, β1, . . . , βK, denoted Hk for k ∈ {1,−1}2, such that:

• A,B and also each of the (βj) has the action set {L,R}, and for each

j and each k ∈ {1,−1}2, the payoff of βj in Hk is independent of any

other player’s action.39

• γ, δ have action set {1,−1}.
• If Nature chooses k ∈ {1,−1}2 with distribution40 (1+p

2
, 1−p

2
)⊗(1+q

2
, 1−q

2
),

(p, q) ∈ S, and β1, . . . , βk all play best responses aβ
1
, . . . , aβ

k
in the

game

H(p, q) =
∑

k∈{1,−1}2

(
(
1 + p

2
,
1− p

2
)⊗ (

1 + q

2
,
1− q

2
)
)
[k] · Hk

38That is, piecewise linear on each of the four edges of S.
39This is unlike the (θj) of Proposition 4.4.1, which we later prove using Proposition

5.0.4; the payoffs of θ1, . . . , θM can be affected by each other’s actions.
40Recall that (φ, 1−φ) denotes the probability distribution choosing 1 with probability

φ, and choosing −1 with probability 1− φ.
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then the expected game facing A,B, denoted

H(p, q) := (H(p, q)(·, aβ1

, . . . , aβ
k

))A,B

is well-defined,41 and its unique equilibrium is (g(p), 1−g(p))×(g(p), 1−
g(p)).

• If L is a Lipshitz constant of g (on each edge) and |g(p, q) − g0| < ε

for all p, q ∈ S, then there is H0 such that

(5.1) ||(Hk)A,B(a)−H0||∞ ≤ 2Lε, ∀a,∀k ∈ {−1, 1}2

Proof: We denote the vertices of the square S by

V−,+ = (−1, 1)
SN // V+,+ = (1, 1)

SE

��
V−,−(−1,−1)

SW

OO

V+,− = (1,−1)
SW

oo

For i ∈ {−,+}2, let i+ be such that Vi+ follows Vi in the clockwise

orientation. For i ∈ {−,+}2, let gi : [−1, 1] → R be the function of one

parameter which is the restriction of g to the arc extending clockwise from

Vi; that is, gi(0) = g(Vi) and gi(1) = g(Vi+), and gi ’behaves’ like g on the

arc from Vi to Vi+. For example, g+,+(t) = g(−t, 1), so g+,+(−1) = g(V+,+),

g+,+(1) = g(V+,−).

For j ∈ {−,+}2, let Nj correspond to gj as in Proposition 5.0.2. Then let

K =
∑

j(Nj−1); and also treatK as the set {1, . . . , K} partitioned into sub-

sets NV±,± of sizes N±,±−1. For each k ∈ {−,+}2, let Gm
k , m = L,R, be the

two games that correspond to gk on the set of players A,B, β1, . . . , βK , as in

Proposition 5.0.2 (the auxiliary players which were there denoted (αj)j<NVk

41I.e., if some βk are indifferent between actions, it doesn’t matter for players A,B

which they choose.
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are now (βj)j∈NVk
- i.e., (βj)j∈K = ∪k∈{−,+}2(αj)j<NVk

, where the union is

disjoint - and βj is given a payoff of 0 in Gm
k for each j /∈ NVk .) For each k ∈

{−,+}2, let Gk(t) denote the corresponding expected matrix to A,B when

auxiliary players play optimally in Gk(t); as we have mentioned in property

(i) of Remark 5.0.3, this bimatrix game is well defined, Gk(t) = G(gk(t)).

Hence, we have Gk(1) = G(gk(1)) = G(g(Vk+)) = G(gk+(−1)) = Gk+(−1).

We can now define (Hk)k from the (Gk)k as follows. First, define the

payoffs to γ, δ. For each of these players, the payoff is determined only by k

and his own action. The payoffs to γ in the various games are given by the

following table:

k = (1, 1) k = (1,−1) k = (−1,−1) k = (−1, 1)

γ plays 1 0 1 0 −1

γ plays − 1 0 −1 0 1

and the payoffs to δ by

k = (1, 1) k = (1,−1) k = (−1,−1) k = (−1, 1)

δ plays + 1 1 0 −1 0

δ plays − 1 −1 0 1 0

The diagram below describes the best-replies of γ, δ when Nature chooses

k ∈ {+1,−1}2 via the distribution (p, 1 − p) ⊗ (q, 1 − q) (with γ,δ, and

Nature making their choices simultaneously). In the diagram, this (mixed)

choice of Nature is represented by the point with coordinates (2p−1, 2q−1),

and the best-reply profile of γ, δ depends on which of the four regions in the

square Nature chooses.
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(5.2) (−1, 1) (1, 1)

·
γ=1

γ=−1

δ=−1

δ=1

δ=1

δ=−1γ=1

γ=−1

(−1,−1) (1,−1)

On one diagonal, γ will be indifferent; on the other, δ will be. More formally,

we deduce from the payoffs of γ, δ defined above that:

• If p > q (resp. <), then γ strongly prefers to play +1 (resp. −1).

• If p > 1− q (resp. <), then δ strongly prefers to play +1 (resp. −1).

Now, we define the payoffs to Players A,B, β1, . . . , βK . Given the choice

of Nature k ∈ {+1,−1}2, the actions of γ and δ determine which game

A,B, β1, . . . , βK face, as depicted in the following table (∗ denotes an arbi-

trary action):

Game Action of γ Action of δ Game Facing A,B, β1, . . . , βK

H1,1 −1 ∗ (G−,+)R

H1,1 1 ∗ (G+,+)L

H1,−1 ∗ −1 (G+,+)R

H1,−1 ∗ 1 (G+,−)L

H−1,−1 −1 ∗ (G+,−)R

H−1,−1 1 ∗ (G−,−)L

H−1,1 ∗ −1 (G−,−)R

H−1,1 ∗ 1 (G−,+)L

Since we have already noticed that Gk(1) = Gk+(0) for all k, one can

verify that these games do indeed satisfy that for any (p, q) ∈ S, the unique

equilibrium of the expected game facing A,B is (g(p), 1− g(p))× (g(p), 1−
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g(p)). For example, if (p, q) ∈ SN is an internal point of the edge, then q = 1

and −1 < p < 1. Then we will have in equilibrium γ = −1, δ = 1, and

hence,

H−{γ,δ}(p, q)(·, γ = −1, δ = 1) = H−{γ,δ}(p, 1)(·, γ = −1, δ = 1)

=
1 + p

2
(H1,1)−{γ,δ}(·, γ = −1, δ = 1)

+
1− p

2
(H−1,1)−{γ,δ}(·, γ = −1, δ = 1)

=
1− p

2
GL
−,+ +

1 + p

2
GR
−,+

and hence, by definition of GL
−,+,G

R
−,+, and of H(p, q), we have

H(p, q) = g+,+(p) = g(p, 1) = g(p, q)

A similar arguments works for the internal points on any edge; the vertices

of S are simpler to verify.

Finally, the last property, given in (5.1), follows from part (iii) of Remark

5.0.3. Q.E.D.

Proof: (of Proposition 4.4.1) It suffices to prove the case42 0 < Q < 1;

otherwise, we will adjust Q to satisfy this normalization via an affine trans-

formation, and then apply to the inverse affine transformation to the game

we derive. For each (p, i, j) ∈ {A,B} × I × J , let Qp,i,j : S → (0, 1) be the

corresponding component of Q; and for each such piecewise linear function,

let (Hk
p,i,j)k∈{1,−1}2 be the four corresponding games from Proposition 5.0.4,

on the set of players Pp,i,j := {Ap,i,j, Bp,i,j, γp,i,j, δp,i,j, β
1
p,i,j . . . , β

Np,i,j

p,i,j } for

some Np,i,j. When Nature chooses k ∈ {−1, 1}2, each set of players Pp,i,j

plays Hk
p,i,j, and the payoff to Player A (resp. B) when action profile (i, j)

is played is 1 if Ap,i,j plays L, and 0 if he plays R. We then take θ1, . . . , θM

42The strong inequalities refer to all coordinates.
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to be some enumeration of ∪p,i,jPp,i,j. Property (4) follows from the upper-

semicontinuity of the equilibrium correspondence, and by (5.1). Q.E.D.
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