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Corrigendum to: “Discounted Stochastic Games

with No Stationary Nash Equilibrium: Two

Examples”∗

Yehuda John Levy† Andrew McLennan‡

January 12, 2015

Abstract

Levy (2013) presents examples of discounted stochastic games that do
not have stationary equilibria. The second named author has pointed
out that one of these examples is incorrect. In addition to describing
the details of this error, this note presents a new example by the first
named author that succeeds in demonstrating that discounted stochastic
games with absolutely continuous transitions can fail to have stationary
equilibria.

1 Introduction

The paper “Discounted Stochastic Games with No Stationary Nash Equilibrium:
Two Examples” (Levy (2013)) presents two constructions of discounted stochas-
tic games with continuous state spaces that do not possess stationary equilibria.
One is in the class of stochastic games with deterministic transitions, while the
other is in the class of games in which all transitions are absolutely continuous
with respect to a fixed measure.

The construction of the game from the second class is accomplished in three
steps. 1. An example presented in Kohlberg and Mertens (1986) has a circular
set of Nash equilibria, and a map from the set of equilibria to small perturba-
tions of the game is constructed. 2. An intricate construction concerning real-
ising piece-wise linear functions on the square as outcomes of strategic games
is presented. 3. These techniques are combined to define the desired stochastic
game.

∗The authors are grateful to Abraham Neyman, for uncountably many proofreads, sug-
gestions, and corrections. The authors also wish to thank Wei He and Yeneng Sun for their
feedback.

†Nuffield College, University of Oxford, UK, OX1 1NF.
‡School of Economics, The University of Queensland, St Lucia Qld 4072
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The second named author has pointed out a serious error in Step 1 of the
construction. Roughly, it is desired that each point in the set of equilibria be
distant from the set of equilibria of the associated perturbed game, but for the
given construction this is not the case. Section 4.6 of Levy (2013) describes
conditions on a “base” strategic game (instead of the game from Kohlberg and
Mertens (1986)) that would allow the construction to be carried out. However,
topological obstructions preclude the existence of such a game; an accompanying
note (McLennan (2014)) gives a theorem (which is stated in Section 5) that
implies this. (We remark that Proposition 4.3 of Levy (2013), which is the core
of Step 2 mentioned above, is correct, and both it and the techniques used to
prove it will hopefully prove useful in future work.)

In addition to describing the details of the error, we present a new example,
due to the first named author, of a stochastic game with absolutely continuous
transitions that has no stationary equilibria for any positive discount factor,
thereby confirming a negative answer to the question of existence of stationary
equilibria for such games. The new example resembles the earlier erroneous
construction, but is significantly shorter and simpler, and it is well behaved in
the following senses: the state space is compact, payoffs are continuous, and the
transitions are norm-continuous. It retains the mechanism that transmits in-
formation around a circle, but instead of the “base game” taken from Kohlberg
and Mertens (1986)1 there is a new base game, which shares some similarities
to the game from Kohlberg and Mertens (1986),2 but which achieves the rele-
vant conditions (as summarized in Lemma 3.1) in perhaps the simplest possible
manner. The underlying topological “engine” of the previous example has been
replaced by a phenomenon drawn from measure theory, namely the existence of
functions having a type of erratic behaviour that is exhibited, e.g., by the path
of a Brownian motion.

The stochastic game model is recalled in Section 2. The new example is
presented in Section 3. The proof that it possesses no stationary equilibria is in
Section 4. Section 5 gives details of the error in Levy (2013).

2 Stochastic Game Model

A stochastic game Γ = 〈Ω,P, I, r, q〉 with a continuum of states and finitely
many actions has the following components:

• A standard Borel space3 Ω of states.

• A nonempty finite set P of players.

• I =
∏

ℓ∈P
Iℓ, where each Iℓ is a nonempty finite set of actions for ℓ.

1The game from Kohlberg and Mertens (1986) was used in an earlier version of this corri-
gendum.

2In particular, its set of equilibria form an infinite connected set, but none of them are
stable.

3That is, a space that is homeomorphic to a Borel subset of a complete, metrizable space.
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• A bounded Borel-measurable stage payoff function r : Ω× I → R
P.

• A Borel-measurable4 transition function q : Ω× I → ∆(Ω).

For a discount factor β ∈ (0, 1), Γ(β) is the associated discounted stochastic
game. Throughout (except in the statements of some results) we work with a
fixed β.

Definition 2.1. An Absolutely Continuous (A.C.) stochastic game is a stochas-
tic game Γ = 〈Ω,P, I, r, q〉 for which there is a ν ∈ ∆(Ω) such that for all z ∈ Ω
and a ∈ I, q(z, a) is absolutely continuous with respect to ν.

A stationary strategy for player ℓ is a Borel-measurable mapping σℓ : Ω →
∆(Iℓ). Let Σℓ

0 denote the set of stationary strategies for player ℓ, and let
Σ0 =

∏

ℓ∈P
Σℓ

0 be the set of stationary strategy profiles. Together with the
transition function and an initial state z, a stationary strategy profile σ induces
a probability measure P σ

z on the space H∞ := (Ω × I)N of infinite histories in
a canonical way (see, e.g., Bertsekas and Shreve (1996)). Let

γσ(z) := Eσ
z

(

∞
∑

n=1

βn−1r(zn, an)
)

be the expected payoff vector under σ in the game starting from state z = z1.
A profile σ ∈ Σ0 is a stationary equilibrium of Γ(β) if

γℓσ(z) ≥ γℓ(τ,σ−ℓ)(z)

for all z ∈ Ω, ℓ ∈ P, and τ ∈ Σℓ
0.

For z ∈ Ω and a ∈ I let

Xσ(z, a) := r(z, a) + β

∫

Ω

γσ dq(z, a). (2.1)

Note that γσ(z) = Xσ(z, σ(z)). We recall the following classical dynamical
programming criterion for a stationary equilibrium, which is called the one-shot
deviation principle.

Proposition 2.2. A profile σ ∈ Σ0 of stationary strategies is a stationary
equilibrium of Γ(β) if and only if, for all z ∈ Ω, σ(z) is a Nash equilibrium of
the game Xσ(z, ·).

3 The Example

This section presents the example (or class of examples, insofar as there is a
given function that is a parameter) of an A.C. stochastic game that does not
possess stationary Nash equilibria for any positive discount factor.

4Where ∆(Ω), the space of regular Borel probability measures on Ω, possesses the Borel
structure induced from the topology of narrow convergence.
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3.1 Notations

Recall that 〈·, ·〉 denotes the inner product of vectors. In addition the following
notational conventions will be used:

• Throughout ‖ · ‖ denotes the L∞ norm. That is, for a vector or bounded
real-valued function f , ||f || = sup |f |, where the supremum is taken over
the set of indices or the domain of f .

• If p is a mixed action over an action space I and i ∈ I, then p[i] denotes
the probability that p chooses i.

• In connection with a tuple c indexed by the elements of some set T ⊂ P

of players, if ℓ1, . . . , ℓk ∈ T , then cℓ1,...,ℓk will denote (cℓ1 , . . . , cℓk).

3.2 The Base Game

Our construction has three phases: a) selecting four perturbations of a “base”
game; b) specification of a rescaled version of the stage game; c) the stochastic
game itself.

The base game G has four players, A, B, C, and D. The pure strategies of
player A are U and D, the pure strategies of B are L, M , and R, and players C
and D are dummy players, because their sets of pure strategies are singletons.
The payoffs of players A and B are shown below.

A\B L M R
U (1, 1) (1, 1) (0, 0)
D (0, 0) (1, 1) (1, 1)

Figure 3.1: The Payoffs to A and B (GA,B)

The Nash equilibria are the pure strategy profiles (U,L), (U,M), (D,M),
and (D,R), as well as all “convex combinations” of successive pairs of elements
of this list. The payoffs to C and D are as follows.

A\B L M R
U (−1, 1) (1, 1) (0, 0)
D (0, 0) (1,−1) (−1,−1)

Figure 3.2: The Payoffs to C and D (GC,D)

We state the properties of G that figure in the subsequent analysis. For a
mixed strategy profile x, let G(x) be the vector of expected payoffs.

Lemma 3.1.

(a) For each (j, k) ∈ {−1, 1}2, any neighborhood of G contains a game Gj,k

whose unique Nash equilibrium x satisfies GC,D(x) = (j, k).
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(b) For any equilibrium x of G, ||GC,D(x)|| = 1.

Proof. Obvious.

In view of (b) and the bounds on payoffs for C and D, the upper semicon-
tinuity of the Nash equilibrium correspondence implies that there is an η0 > 0
such that

7
8 ≤ ||GC,D(x)|| ≤ 1

whenever x is an equilibrium of a game G′ such that ||G′ −G|| ≤ η0. For each
(j, k) ∈ {−1, 1}2 we fix such a perturbation Gj,k of G such that the unique Nash
equilibrium x of Gj,k satisfies GC,D(x) = (j, k). (The payoffs of A and B in Gj,k

play no role in our analysis after Lemma 3.1 has been established.) For each
z = (zE, zF ) ∈ [−1, 1]2 let Gz be the convex combination of the (Gj,k) given by

Gz =
∑

(j,k)∈{−1,1}2

(1 + j · zE)(1 + k · zF )

4
Gj,k.

3.3 The Stage Game

Next we describe a second strategic form game; in our stochastic game the
stage game in each state will be a rescaling of this game. The set of players is
P = {A,B,C,C′, D,D′, E, F}. As above, player A has the pure strategies U
and D, and player B has the pure strategies L, M , and R, but in this game
players C and D have pure strategies 0 and 1. Players C′ and D′ also have pure
strategies 0 and 1, and players E and F have pure strategies −1 and 1. Pure
and mixed strategy profiles will be denoted by

a = (aA, aB, aC , aC
′

, aD, aD
′

, aE , aF ) and x = (xA, xB, xC , xC
′

, xD, xD
′

, xE , xF ).

The payoffs in the stage game depend on a parameter ̺ ∈ (− 1
2 ,

1
2 ). For such

a ̺ let v̺E = (1, ̺) and v̺F = (−̺, 1). Let

ψ(a) = (ψC(aC), ψD(aD)) = (2aC − 1, 2aD − 1)

and
ψ(x) = (ψC(xC), ψD(xD)) = (2xC [1]− 1, 2xD[1]− 1). (3.1)
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The payoffs in the game g(̺, ·) are:

gA(̺, a) = GA
aE ,aF (aA, aB),

gB(̺, a) = GB
aE ,aF (a

A, aB),

gC(̺, a) =

{

−GC(aA, aB)− 1
16 , aC = aC

′

,

−GC(aA, aB) + 1
16 , aC 6= aC

′

,

gC
′

(̺, a) = −gC(̺, a),

gD(̺, a) =

{

−GD(aA, aB)− 1
16 , aD = aD

′

,

−GD(aA, aB) + 1
16 , aD 6= aD

′

,

gD
′

(̺, a) = −gD(̺, a),

gE(̺, a) = aE · 〈v̺E , ψ(a)〉,

gF (̺, a) = aF · 〈v̺F , ψ(a)〉.

In the stochastic game given below, the transitions are controlled by C,
C′, D, and D′, so in each period the other players will only be concerned
with maximizing their stage payoffs. Players A and B are in effect playing a
perturbation of the game G, as described above.

The stage game payoff to C′ is the negation of the stage game payoff to C, so
C and C′ will have opposite views concerning the desirability of the stochastic
game continuing (as opposed to transitioning to an absorbing state with zero
payoffs). Leaving aside the components of the stage game payoffs for C and C′

that depend only on the behavior of A and B, the conflict between C and C′ at
time t is a zero sum game that consists of matching pennies perturbed by these
concerns about future payoffs. These perturbations will be small enough that
there is always a unique equilibrium which is mixed.

The conflict between D and D′ is similar to the conflict between C and C′.
However, the impact ofA andB’s behavior on the payoffs ofD andD′ is different
from its impact on the payoffs of C and C′. Consequently the perturbation of the
matching pennies game, and the resulting stage game equilibrium, will almost
surely be different.

The best responses of players E and F depend on the signs of the ex-
pectations of the inner products 〈v̺E , ψ(a)〉 and 〈v̺F , ψ(a)〉 respectively. For
̺ ∈ (− 1

2 ,
1
2 ) and j, k = ±1 let

D
̺
j,k := {ψ ∈ R

2 | j · 〈v̺E , ψ〉 > 0 and k · 〈v̺F , ψ〉 > 0 }.

Observe that v̺E and v̺F are orthogonal, so the D̺
j,k are just the open quadrants

of the plane under a certain rotation. (See Figure 1.) Set

D
̺ =

⋃

j,k=±1

D
̺
j,k.

In the stochastic game defined below ̺ will be a function of the state t ∈ [0, 1],
and we will see that in any stationary equilibrium, for almost all t, behavior at
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state t is characterized by a mixed strategy profile x such that ψ(x) lies in D̺(t),
so that E and F play pure strategies, and consequently A and B are playing
one of the perturbations Gj,k of G. In this sense the behavior of A and B is
well controlled.

b

v̺E

v̺F

D
̺
1,−1

D
̺
1,1

D
̺
−1,−1

D
̺
−1,1

Figure 1.

3.4 The Stochastic Game

We now specify the stochastic game. Let ̺ : [0, 1] → (− 1
2 ,

1
2 ) be a measurable

function. For a ∈ I let

h(a) = aC + aC
′

+ aD + aD
′

, (3.2)

and for t ∈ [0, 1] let
q̃(t, a) = (1 − t) · 1

64h(a).

Let δ1 be the Dirac measure at 1. For t ∈ [0, 1] let Ut be the uniform distribution
on [t, 1]. (We identify U1 with δ1.) The stochastic game Γ̃ is as follows:

• The state space Ω is [0, 1], with the Borel σ-algebra.

• The set of players and their action spaces are the same as in g(̺, ·).

• The stage payoff function is r(t, a) = (1 − t)g(̺(t), a).

• The transition function is q(t, a) = q̃(t, a)Ut + (1 − q̃(t, a))δ1.

The game Γ̃ has the following features. First, 1 is an absorbing state, with
payoff 0 for all players. The transitions from state t are mixtures of two types:
Ut, which distributes uniformly in [t, 1], or quitting to 1. As such, the game
progresses towards the right. Note that Γ̃ is A.C. because for all t ∈ [0, 1] and
all a ∈ I, q(t, a) is absolutely continuous w.r.t. 1

2 (U0 + δ1). Also, the stage

payoffs of Γ̃ are continuous functions on Ω× I when ̺ is continuous.
We now state the main step in the argument:
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Proposition 3.2. Suppose that ̺ : [0, 1] → (− 1
2 ,

1
2 ) is a Lebesgue measurable

function such that π(t) 6= ̺(t) a.e. whenever π : [0, 1] → R is differentiable
a.e. Then for any β ∈ (0, 1), the game Γ̃(β) does not possess a stationary
equilibrium.

To see the key intuition underlying the construction, suppose that σ is a
stationary equilibrium of Γ̃(β). The stage game payoff is by far the largest part
of γC,D

σ (t), and the contribution of the perturbation of G is by far the largest
part of the stage game payoff. Therefore γC,D

σ (t) 6= (0, 0) when t < 1.

For t ∈ [0, 1] let WC,D(t) = β
∫ 1

t
γC,D
σ (s) ds. Since γC,D

σ is a bounded mea-
surable function, WC,D is absolutely continuous and consequently, for almost
every t, differentiable at t with derivative equal to −β times γC,D

σ (t). Since
γC,D
σ (t) 6= (0, 0) when t < 1, WC,D is not identically equal to the origin in R

2.
Because ̺ is erratic, for almost all t such that WC,D(t) 6= (0, 0), the best

responses of E and F are pure, leading the perturbation of the base game to
be one of the Gj,k whose equilibrium pushes the vector of future payoffs of C
and D away from the origin in R

2 as we go forward in time (i.e., toward the
right), which is to say that the derivative of s 7→ ‖WC,D(s)‖ is positive at t, for
almost all t. Since ‖WC,D‖ is absolutely continuous and WC,D(1) = (0, 0), this
is impossible, which is the desired contradiction.

An essential feature of the construction is that G does not have any equilibria
that give expected utility zero to both C and D, but nonetheless the origin is
in the convex hull of the set of pairs of expected payoffs for C and D induced
by the equilibria of G. For this reason one cannot replace the base game with a
single agent decision problem: for a decision problem the set of optimal mixed
strategies, and its image in the set of pairs of expected payoffs for C and D,
are both convex. In addition, one cannot replace C and D with a single agent
C: if every neighborhood of G contained a game whose unique equilibrium gave
agent C an expected payoff of 1, and also a game whose unique equilibrium
gave an expected payoffs of −1, then (as a consequence of a theorem of Browder
(1960) and Mas-Colell (1974)) every neighborhood of G would contain games
with equilibria giving C an expected payoff of 0.

To pass from Proposition 3.2 to the existence of a game without a stationary
equilibrium it remains to show that there is a measurable function ̺ that dis-
agrees a.e. with any a.e. differentiable function. It turns out that it is not enough
to require that ̺ be nowhere differentiable, but there is a stronger condition that
works. Let λ denote Lesbesgue measure.

Definition 3.3. If E ⊆ R is Lesbesgue measurable, f : E → R is Lebesgue
measurable, x ∈ E, and L ∈ R, then f is approximately differentiable at x with
approximate derivative L if, for all ε > 0,

1

2δ
λ
(

(x− δ, x+ δ) ∩
{

y ∈ E :
∣

∣

∣

f(y)− f(x)

y − x
− L

∣

∣

∣
< ε

}

)

→ 1

as δ → 0.
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Clearly, if f is differentiable at x with f ′(x) = L, then f is approximately
differentiable at x with approximate derivative L. The following is included in
Theorem 3.3 of (Saks, 1937, Sec VII.3)5:

Lemma 3.4. If f, g : [0, 1] → R are Lesbesgue measurable, f is approximately
differentiable a.e., g is approximately differentiable almost nowhere, and E =
{ x : f(x) = g(x) }, then λ(E) = 0.

Berman (1970) shows that, with probability one, the path of a Brownian mo-
tion is nowhere approximately differentiable; by definition the path of a Brow-
nian motion is continuous. The existence of almost nowhere approximately
differentiable continuous functions is also shown more directly in Jarńık (1934);
see also Preiss and Zaj̈ıcek (2000) and the references within. Consequently:

Theorem 3.1. There exists stochastic games of the form Γ̃, for continuous ̺,
such that for each β ∈ (0, 1), Γ̃(β) does not possess a stationary equilibrium.

4 Proof of Proposition 3.2

Let ̺ : [0, 1] → (− 1
2 ,

1
2 ) satisfy the hypothesis of Proposition 3.2. Fix a discount

factor β ∈ (0, 1). By way of contradiction, we suppose that σ is a stationary
equilibrium of Γ̃(β). We first introduce a new function, along with its most
basic properties, after which our analysis has two phases.

For each t ∈ [0, 1] let

ω(t) = (ωC(t), ωC′

(t), ωD(t), ωD′

(t)) = β

∫ 1

0

γC,C′,D,D′

σ (s) dUt(s).

Lemma 4.1. For all t ∈ [0, 1], ωC′

(t) = −ωC(t) and ωD′

(t) = −ωD(t).

Proof. For any t, γC(t) and γC
′

(t) are the expectations of random variables, each
of which is the negation of the other, and similarly for γD(t) and γD

′

(t).

Lemma 4.2. For all t, ||ω(t)|| < 2.

Proof. The probability of the game continuing (i.e., of the game not going to
the absorbing state 1) is never greater than 1

16 , and ||rC,C′,D,D′

|| ≤ 17
16 , so

||ω(t)|| ≤

∫ 1

t

||γC,C′,D,D′

σ (s)|| ds ≤
∞
∑

j=0

1
16j · ||rC,C′,D,D′

|| = 16
15 · 17

16 < 2.

5For the sake of self containment we sketch the proof. A point x ∈ E is a density point

of E if limδ→0
1

2δ
λ(E ∩ (x − δ, x + δ)) = 1. Let x be a density point at which f is approx-

imately differentiable. Then f |E is approximately differentiable at x because f is, and g is
approximately differentiable at x because g|E is. By the Lesbesque density theorem (which
is a special case of the Lesbesque differentiation theorem (e.g. Federer (1969) Thm. 2.9.8))
almost every x ∈ E is a density point.
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4.1 Equilibrium in a Stage

Fix a particular t ∈ [0, 1). For a ∈ I, ̺ ∈ (− 1
2 ,

1
2 ), and ω = (ωC , ωC′

, ωD, ωD′

) ∈
R

4 let gω(̺, ·) be the perturbation of g(̺, ·) given by

gℓω(̺, a) =

{

gℓ(̺, a), ℓ = A,D,E, F,

gℓ(̺, a) + 1
64h(a)ω

ℓ, ℓ = C,C′, D,D′.

where h(·) is defined in (3.2). Since γσ(1) ≡ 0, for ℓ = C,C′, D,D′ the definition
of the transitions gives6

Xℓ
σ(t, a) = rℓ(t, a) + q̃(t, a) · β

∫ 1

0

γℓσ(s) dUt(s)

= (1− t)
(

gℓ(̺(t), a) + 1
64h(a)β

∫ 1

0

γℓσ(s) dUt(s)
)

(4.1)

= (1− t)
(

gℓ(̺(t), a) + 1
64h(a)ω

ℓ(t)
)

= (1 − t)gℓω(t)(̺(t), a).

For ℓ = A,B,E, F the difference between Xℓ
σ(t, a) and (1 − t)gℓ

ω(t)(̺(t), a) is

the expected future payoff, which is unaffected by aℓ. Therefore the one shot
deviation principle implies that:

Lemma 4.3. In the game Xσ(t, ·)− (1− t)gω(t)(̺(t), ·) no player has any effect
on her own payoff. Consequently, σ(t) is an equilibrium of gω(t)(ρ(t), ·).

For the sake of more compact notation we write x in place of σ(t) and ̺ and
ω in place of ̺(t) and ω(t) in the remainder of this subsection, which extracts the
relevant consequences of x being an equilibrium of gω(̺, ·). Recall the definition
of ψ(x) given in (3.1), and denote

z = (zE , zF ) = (2xE [1]− 1, 2xF [1]− 1).

Equilibrium analysis for gω(̺, ·) has the following consequences:

Lemma 4.4.

(a) xA,B is an equilibrium of Gz;

(b) xC [1] = 1
2 + 1

16ω
C and xC

′

[1] = 1
2 − 1

16ω
C′

;

(c) xD[1] = 1
2 + 1

16ω
D and xD

′

[1] = 1
2 − 1

16ω
D′

;

(d) zE = 1 (−1) if 〈v̺E , ψ(x)〉 >(<) 0;

(e) zF = 1 (−1) if 〈v̺F , ψ(x)〉 >(<) 0;

(f) If ωC,D ∈ D
̺
j,k, then z = (j, k).

(g) If ωC,D ∈ D
̺
j,k, then G

C,D(x) = (j, k).

6Recall the definition of Xσ given in (2.1).
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Proof. Here (a) follows from gA,B
ω (̺, ·) = gA,B(̺, ·). Observe that gC,C′

ω (̺, x) is
the sum of

(−GC(xA, xB), GC(xA, xB)) + 1
64 (x

D[1] + xD
′

[0])ωC,C′

,

which is unaffected by xC,C′

, and 1
16 times the payoffs resulting from applying

xC,C′

to the bimatrix game below.

C\C′ 1 0

1
(

− 1 + 1
2ω

C , 1 + 1
2ω

C′
) (

1 + 1
4ω

C ,−1 + 1
4ω

C′
)

0
(

1 + 1
4ω

C ,−1 + 1
4ω

C′
) (

− 1, 1
)

(For example, the part of C’s payoff affected by C and C′’s behavior that accrues
in the future is (aC + aC

′

) 1
64ω

C .) Since |ωC |, |ωC′

| < 2 (Lemma 4.2) and ωC′

=
−ωC (Lemma 4.1) this bimatrix game has a unique equilibrium, which must
be xC,C′

. To see that xC [0] = 1
2 + 1

16ω
C′

and xC [1] = 1
2 − 1

16ω
C′

one can

simply compare the payoff differences for C′. Similarly, xC
′

[0] = 1
2 + 1

16ω
C and

xC
′

[1] = 1
2 − 1

16ω
C , and now (b) follows from Lemma 4.1. Of course (c) follows

by symmetry.
Substituting into the definition of ψ(x) gives ψ(x) = 1

8ω, after which (d),
(e), and (f) follow from gE,F

ω (̺, ·) = gE,F (̺, ·), while (g) follows from (a) and
(f) and the choice of the games Gj,k.

From the specification of the payoffs we have ||gC,D(̺, x)− (−GC,D(x))|| ≤
1
16 . Since ‖Gz−G‖ < η0 we have

7
8 ≤ ||GC,D(x)|| ≤ 1, which yields the following

result, and if ωC,D ∈ D̺, then (g) of Lemma 4.4 yields (a) of Lemma 4.6 below.

Lemma 4.5. 13
16 ≤ ||gC,D(̺, x)|| ≤ 17

16 .

Lemma 4.6. If ωC,D ∈ D̺, then:

(a) 15
16 ≤ |gC(̺, x)| ≤ 17

16 and 15
16 ≤ |gD(̺, x)| ≤ 17

16 ;

(b) if |ωC | ≥ 1
2 |ω

D|, then gC(̺, x) · ωC < 0;

(c) if |ωD| ≥ 1
2 |ω

C |, then gD(̺, x) · ωD < 0.

Proof. By symmetry it suffices to prove (b). As ω 6= 0, |ωC | ≥ 1
2 |ω

D| implies
ωC 6= 0. Since |̺| < 1

2 , if ω
D 6= 0 then |̺ · ωD| < 1

2 |ω
D| ≤ |ωC |, so

sign(〈v̺E , ω
C,D〉) = sign(ωC − ̺ωD) = sign(ωC).

Clearly this holds if ωD = 0 as well. If ωC,D ∈ D
̺
j,k, then sign(〈v̺E , ω

C,D〉) =

j = GC(x) (Lemma 4.4(g)) and |gC(̺, x)− (−GC(x))| ≤ 1
16 .
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4.2 Equilibrium Over Time

For t ∈ [0, 1] let

V ℓ(t) = γℓσ(t) and W ℓ(t) =

∫ 1

t

V ℓ(s) ds.

Clearly W (1) = 0, and since 1 is an absorbing state with payoff 0, V (1) = 0.
Since V is measurable and bounded, W is Lipschitz. Rademacher’s theorem
(e.g., Federer (1969) Thm. 3.1.6) implies thatW is a.e. differentiable. The main
remaining step in the argument concerns the function

J(t) = 1
2 (W

C(t))2 + 1
2 (W

D(t))2.

Proposition 4.7. J ′ > 0 a.e.

Since J is absolutely continuous, the fundamental theorem of calculus holds,
so 0 = J(1) > J(0) ≥ 0. This contradiction proves Proposition 3.2.

It remains only to prove Proposition 4.7. Two lemmas prepare the main
argument.

Lemma 4.8. For all t ∈ [0, 1):

(a) ||V C,D(t)− rC,D(t, σ(t))|| ≤ 1
8 (1 − t).

(b) 11
16 (1 − t) ≤ ||V C,D(t)|| ≤ 19

16 (1− t).

Proof. Since, using (4.1),

V C,D(t) = γC,D
σ (t) = XC,D

σ (t, σ(t)) = (1− t)gC,D

ω(t) (̺(t), σ(t)),

(a) follows from ‖ω(t)‖ < 2 (Lemma 4.2) and h(a) ≤ 4. To obtain (b), combine
(a) and the result of multiplying the inequality of Lemma 4.5 by 1− t.

Lemma 4.9. For a.e. t ∈ [0, 1):

(a) WC,D(t) 6= 0.

(b) ωC,D(t) ∈ D̺(t).

(c) If |WC(t)| ≥ 1
2 |W

D(t)|, then V C(t) ·WC(t) ≤ − 13
16 (1− t)|WC(t)|.

(d) If |WD(t)| ≥ 1
2 |W

C(t)|, then V D(t) ·WD(t) ≤ − 13
16 (1− t)|WD(t)|.

Proof.

(a) This follows Lemma 4.8 since dW
dt

= −V a.e.

(b) Define η : [0, 1] → R
2 by η(t) = ωC,D(t)

||ωC,D(t)|| = WC,D(t)
||WC,D(t)|| . This is a.e.

defined and a.e. differentiable, since W is Lipshitz and therefore both
the denominator and numerator are Lipshitz, hence a.e. differentiable,
and the latter is a.e. non-zero by (a). Clearly, η(t) ∈ D̺(t) if and only

12



if ωC,D(t) ∈ D̺(t). For a.e. t, the requirement η(t) /∈ D̺(t) is equivalent
(because ||η(·)|| ≡ 1 and ||̺|| < 1

2 ) to η(t) ∈ {±(−̺(t), 1),±(1, ̺(t))}. Due
to the assumed irregularity of ̺(·), ηC(t) 6= ±̺(t) and ηD(t) 6= ±̺(t) for
almost all t.

(c) Since WC,D(t) is a positive scalar multiple of ωC,D(t), it suffices to prove
the claim with ωC,D(t) in place ofWC,D(t). In view of (b) we may assume
that ωC,D(t) ∈ D̺(t), so rC(t, σ(t)) · ωC(t) < 0, 15

16 (1 − t) ≤ |rC(t, σ(t))|,
and |rC(t, σ(t))−V C(t)| ≤ 1

8 (1−t). (These inequalities follow from Lemma
4.6(b), Lemma 4.6(a), and Lemma 4.8(a) respectively). Collectively these
facts imply the claim.

(d) By symmetry, the proof of (c) also establishes (d).

Proof of Proposition 4.7. Let t ∈ [0, 1) be such that all the properties of Lemma
4.9 hold. To simplify notation we drop the argument t. The chain rule gives
J ′ = −WC ·V C −WD ·V D, so it suffices to show that WC ·V C +WD ·V D < 0.
Either

|WC | ≥ 1
2 |W

D| and hence V C ·WC ≤ − 13
16 (1− t)|WC |

or
|WD| ≥ 1

2 |W
C | and hence V D ·WD ≤ − 13

16 (1− t)|WD|.

If both hold, then

V C ·WC + V D ·WD ≤ − 13
16 (1− t) · (|WC |+ |WD|) < 0.

(The final inequality is from Lemma 4.9(a).) Therefore we may suppose that
one of these holds, say the first without loss of generality, and the other does
not, so |WD| < 1

2 |W
C |. Since |V D| ≤ 19

16 (1− t) (Lemma 4.8),

V C ·WC +WD · V D ≤ − 13
16 (1− t)|WC |+ |WD| · |V D|

≤ (1− t) · (− 13
16 |W

C |+ 19
16 |W

D|)

< (1− t) · (− 13
16 |W

C |+ 19
16 · 1

2 |W
C |)

= − 7
32 (1− t)|WC | < 0.

5 Description of the Error

The error in Levy (2013) has the following description. Part (iv) of the Propo-
sition 4.1 on page 1991 is not correct. On page 1990 there is the following game

13



with ε positive and small:

GZ(
1
2 ) =

A\B L M R
L 1 - ε,1 - ε -ε,-1 -1, 1 - ε
M -1,-ε ε, ε -1 + ε, -ε
R 1 - ε, -1 -ε, -1 + ε -2,-2

(When ε = 0 this is an examples from Appendix B of Kohlberg and Mertens
(1986).) As the paper points out, this has the pure equilibria (L,L) and (M,M)
and the mixed equilibrium

(

2ε
2+ε

L+ 2−ε
2+ε

M, 2ε
2+ε

L+ 2−ε
2+ε

M
)

.

The problem, which concerns (iv) of Proposition 4.1, arises from the fact that
these are not the only equilibria. Indeed, in no equilibrium can both players use
the strategy R with positive probability due to dominance. However, there are
equilibria in which one player uses R. Specifically, the entire set of equilibria is
NE := {(M,M)} ∪ P1 ∪ P2 where

P1 = con{L, ε2L+ (1− ε
2 )R} × {L}

∪ { ε
2L+ (1− ε

2 )R} × con{L, 2ε
2+ε

L+ 2−ε
2+ε

M}

∪ con{ ε
2L+ (1− ε

2 )R,
2ε
2+ε

L+ 2−ε
2+ε

M} × { 2ε
2+ε

L+ 2−ε
2+ε

M}

(here con denotes the convex hull) and P2 is the image of this under transposition
of the players.

In Proposition 4.1 Ex⊗y[ϑ] is a bilinear R2-valued function of (x, y), and (iv)
of Proposition 4.1 holds if and only if the first component of Ex⊗y[ϑ] is close to 1
for all (x, y) ∈ NE but for

(

ε
2L+(1− ε

2 )R,L
)

and
(

ε
2L+(1− ε

2 )R,
2ε
2+ε

L+ 2−ε
2+ε

M
)

this is quite far from being the case.
As we mentioned at the outset, Section 4.6 of Levy (2013) specifies conditions

on a game (which would have the role played by the Kohlberg-Mertens game
in the overall construction) that would allow the construction to succeed, but
Corollary 5.1 below implies that they cannot hold.

McLennan (2014) gives the following theorem.

Theorem 5.1. Let X be a compact convex subset of a locally convex topological
space, let U ⊂ X be open with U compact, let F : U → X be an upper semi-
continuous convex valued correspondence with no fixed points in U \ U , let P
be a compact absolute neighborhood retract, and let ρ : U → P be a continuous
function. If the fixed point index of F is not zero, then there is a neighborhood
V of F in the (suitably topologized) space of upper semicontinuous convex valued
correspondences from U to X such that for any continuous function g : P → V
there is a p ∈ P and a fixed point x of g(p) such that ρ(x) = p.

To obtain the following result as a consequence of this, let X be the set of
mixed strategy profiles of G, let F be its best reply correspondence, and for
e ∈ P , let g(e) be the best response correspondence of h(e).
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Corollary 5.1. If G is a finite strategic form game, NE is its set of Nash
equilibria, P is a compact subset of NE that is an absolute neighborhood retract7,
U is a neighborhood of NE in the space of mixed strategy profiles, and ρ : U → P
is a retraction, then there is a neighborhood W of G in the space of games (for
the given strategic form) such that for any continuous h : P →W there is some
e ∈ P such that ρ−1(e) contains a Nash equilibrium of h(e).
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