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Limits to Rational Learning

Yehuda John Levy∗†

August 13, 2015

Abstract

A long-standing open question raised in the seminal paper of Kalai
and Lehrer (1993) is whether or not the play of a repeated game, in the
rational learning model introduced there, must eventually resemble the
play of exact equilibria, and not just the play of approximate equilibria as
demonstrated there. This paper shows that play may remain distant – in
fact, mutually singular – from the play of any equilibrium of the repeated
game. We further show that the same inaccessibility holds in Bayesian
games, where the play of a Bayesian equilibrium may continue to remain
distant from the play of any equilibrium of the true game.

JEL Classification: C73, D83, C65

1 Introduction

The premise of rational learning is that decision-making agents update their
beliefs about what other agents will do based on the actions that they have
observed. The seminal work of [Blackwell and Dubins (1962)] shows that when
a single agent learns rationally in this way, even if his prior beliefs about the
process are incorrect but do contain a minimal amount of truth, his posterior
beliefs will eventually lead to true beliefs about the process. The staple work
in game theory which incorporates this paradigm into the multi-agent setting is
[Kalai and Lehrer (1993)], in which agents both learn and also try to maximise
their utility in a repeated game. Their work studies the question of whether the
beliefs of the agents not only merge, but converge to beliefs induced by the Nash
equilibria of the repeated game. As it turns out, the answer is, not necessarily.

[Kalai and Lehrer (1993)] was not the only work at that time to explore
questions of convergence under rational learning; in fact, other influential works
that both support it and contrast with it were carried out around the same time
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and in the following years. [Jordan (1991)], for example, shows that under ap-
propriate assumptions, rational learning converges to the set of stage game Nash
equilibria. However, [Kalai and Lehrer (1993)] struck on a property of learning
discussed very little at the time: the convergence of the agents’ strategies to
(approximate) equilibria of the repeated game, not of the strategic game that
is being repeated. While their assumptions that the players’ beliefs all contain
a grain of truth1 have been scrutinised as both an over-demanding coordina-
tion requirement (e.g., [Miller and Sanchirico (1999)]) and a highly non-generic
condition (e.g., [Miller and Sanchirico (1997)]), the resulting body of literature
extending, discussing, and contrasting [Kalai and Lehrer (1993)] “is, in many
respects, a natural successor to the earlier literature on learning rational expec-
tations” as “both literatures address the question of whether decision-makers
can, through repeated experience, learn to make optimal or equilibrium deci-
sions” ([Jordan (1993)]).

A primary and motivating example in which such learning occurs naturally
is the class of Bayesian games, in particular when the preferences of the agents
– that is, their types – are not known publicly but others do have beliefs about
them, which are updated at each stage. Such interactions occur naturally, for
example, in sequential auctions, where the private values of the object being
sold are not commonly known; however, agents learn more about the others’
preferences as time goes on and bids are observed, e.g. [Jeitschko (1998)]. Se-
quential bargaining with incomplete information, wars of attrition, and repeated
duopolistic competition when others’ costs are uncertain all naturally fit under
this umbrella framework as well.

Two main veins of subsequent work exist. One direction generalises the re-
sults of [Kalai and Lehrer (1993)], some works by weakening the absolute con-
tinuity assumptions on the beliefs, as in [Sandroni (1998)] and [Norman (2012)],
others by weakening assumptions on the players’ knowledge, as in [Kalai and Lehrer (1995)],
[Jordan (1995)], and [Nyarko (1998)], and still other variations, e.g., [Gilli (2001)]
and the references there. Another direction, however, was to point out the limi-
tations of the assumptions and results, as in the papers [Lehrer and Smorodinsky (1996)],
[Lehrer and Smorodinsky (1997)], [Miller and Sanchirico (1997)] and [Miller and Sanchirico (1999)],
[Nachbar (1997)], and [Foster and Young (2001)].

The contribution of this paper is to answer a long-standing open question
raised in [Kalai and Lehrer (1993), Sec 7.1]. The classical result of that paper
ensures convergence of the play to the set of approximate equilibria (i.e., ε-
equilibria) of the repeated game. (One cannot in general expect convergence to
a specific equilibrium or approximate equilibrium, as players may, for example,
rotate among different equilibria.) The authors raise, but leave open, the ques-
tion of whether play must converge to the set of exact equilibria. In this paper
we show by example that this need not be the case. Furthermore, not only

1Or somewhat weaker absolute continuity conditions.
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does convergence fail to occur, but the play induced by any Nash equilibrium
remains far – in fact, mutually singular – from actual play.

[Kalai and Lehrer (1993), Sec 6] address in particular the question of ratio-
nal learning in certain Bayesian games, which, as mentioned previously, are a
primary and general class of such interactions. In these games, each player is
privately assigned a type (types are chosen independently) and a player’s payoff
may depend on his own type. Players can then condition their actions both
on the public play so far and on their type. [Kalai and Lehrer (1993), Sec 6]
show that as time goes by, play must converge to the set of the approximate
equilibria of the true game, or informally (p. 1038 there), “even if the players
do not learn the identity of the payoff matrices actually played, they eventually
play almost as ε-Nash players who do know the identity of the payoff matrices.”
We also show in our paper that this result cannot be strengthened to deduce
convergence to the set of plays induced by equilibria of the true game.

Our results are also interesting in light of the results of [Kalai and Lehrer (1993),
Sec 7.1]. There, an additional result is given which shows that rational learning
does approach the exact equilibria provided one uses a much weaker notion of
closeness, one which only guarantees closeness over a fixed finite horizon. Hence,
combined with the result on merging of beliefs of [Blackwell and Dubins (1962)],
our work shows that although agents will make predictions which not only merge
towards each other but resemble Nash equilibria in the short run, their beliefs
may not merge towards the predictions made in the long run by Nash equilibria.
We elaborate on the results of [Kalai and Lehrer (1993), Sec 7.1], and contrast
it with the stronger notion of learning, in Section 9.

The rational learning model is presented formally in Section 2. A brief
informal overview of the construction is given in Section 3. The stage game of
our example is presented in Section 4, while the strategies and beliefs are given
in Section 5. In order to prove that convergence to Nash equilibrium does not
occur, Section 6 contains a preliminary result, while the proof itself is given in
Section 7. Section 8 presents the Bayesian game. Section 9 compares our result
to the short-term merging to equilibria discussed in [Kalai and Lehrer (1993),
Sec 7.1]. Section 10 presents a slightly different example, with its own virtues
and disadvantages. Some probabilistic tools appear in Appendix A, while proofs
from Section 6 appear in Appendix B.

2 The Rational Learning Model

Let P be a finite set of players with finite action spaces (Ak)k∈P, and let G
be a strategic game on this set of players with payoff functions r = (rk)k∈P;
hence rk :

∏
k∈PA

k → R for each k ∈ P. For T = 0, 1, 2, . . . ,∞, let HT+1 =

3



(
∏
k∈PA

k)T be the collection of histories of the T -stage repeated game2 (with
H1 = {∅}). Denote H∗ = ∪

t<∞
Ht.

A behavioural strategy for Player k ∈ P is a mapping3 σk : H∗ → ∆(Ak). A
profile of strategies σ = (σk)k∈P induces a measure Pσ (and associated expecta-
tion operator Eσ) in the T -stage repeated games in the usual way, i.e., on HT+1,
for each T = 0, 1, 2, . . . ,∞, defined by Pσ(a1, . . . , at) =

∏
s<t σ(a1, . . . , as−1)[as];

Pσ extends naturally to H∞. The payoff in the infinitely repeated game G∞ is
given by

r(a1, a2, . . .) =

∞∑
t=1

βt−1r(at)

where 0 < β < 1 is a fixed discount factor. For ε ≥ 0, a strategy profile σ of
G∞ is an ε-equilibrium (or just equilibrium when ε = 0) if for each player k ∈ P

and each strategy τ of Player k,

Eσ[rk] + ε ≥ E(τ,(σj)j 6=k)[r
k]

For each h = (a1, . . . , aT ) ∈ H∗, for t ≤ T we denote h|t = (a1, . . . , at−1),
and for k ∈ P and strategy σk of Player k, let σkh be the strategy defined by
σkh(a′1, . . . , a

′
t) = σk(a1, . . . , aT , a

′
1, . . . , a

′
t), and similarly for profiles of strate-

gies. To recall the results of [Kalai and Lehrer (1993)] and to state our results
clearly, we introduce the following notion:

Definition 2.1. Let (τ j,k)j,k∈P be a P × P collection of strategies, where τ j,k

is a strategy of Player k (interpreted as the belief of Player j about Player k’s
strategy). We say that in (τ j,k)j,k∈P each player is best-replying to his beliefs
if for each j ∈ P, τ j,j is a best reply to (τ j,k)k 6=j, i.e., for each strategy π of
Player j,

E(τj,k)k∈P [rj ] ≥ E(π,(τj,k)k 6=j)[r
j ]

Given such τ = (τ j,k)j,k∈P, by Pτ we mean the distribution induced by the
diagonal (τ j,j)j∈P, interpreted as the strategies which are actually played (since
each player knows his own strategy).

For a measurable space (Ω,B), the set of probability measures on Ω is de-
noted ∆(Ω), and for each µ, ν ∈ ∆(Ω), the total variation distance between µ, ν
is:

||µ− ν|| = 2 · sup
A∈B
|µ(A)− ν(A)|

µ is absolutely continuous w.r.t. ν, denoted µ � ν, if for all A ∈ B, ν(A) = 0
implies µ(A) = 0. µ and ν are mutually singular, denoted µ⊥ν, if there is A ∈ B

such that µ(A) = ν(Ω\A) = 1. Observe that µ⊥ν implies ||µ− ν|| = 2.

2 It is convenient to denote the set of histories of the T -stage game as HT+1, since we will
view this set as the space of plays preceding stage T + 1.

3 For a set X, ∆(X) denotes the space of probability measures on X.
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Definition 2.2. Let P,Q be probability measures (on the same space); then Q
contains a grain of truth of P if P � Q and the Radon-Nikodym derivative dP

dQ
is bounded; equivalently, if for some 0 < λ < 1 and some probability measure
P ′, Q = λP + (1− λ)P ′.

If Ω is any set and f : Ω → RN , denote ||f ||∞ = sup
ω∈Ω,n≤N

|fn(ω)|. We use

this notation also for p, q ∈ ∆(Ω) for finite Ω: ||p− q||∞ = max
ω∈Ω
|p[ω]− q[ω]|.4

The following is the main result of [Kalai and Lehrer (1993)]:

Theorem 2.3. Let τ = (τ j,k)j,k∈P be such that everyone is best-replying to
their beliefs. Denote by τ̃ j = (τ j,k)k∈P the beliefs of Player j. Assume that for
each j ∈ P, Pτ � Pτ̃j . Then for Pτ -a.e. h ∈ H∞ and any ε > 0, there exists
T ∈ N such that for each t ≥ T , there is an ε-equilibrium σ of G∞ such that
||Pτh|t − Pσ|| < ε.

It should be emphasised that this result does not say that there exists any
particular ε-equilibrium σ such that from any late enough time period t, the
play induced in the game after t stages is close to the play induced by σ.5 The
result says that the distribution of play induced after enough time is close to the
set of possible distributions of play induced by all ε-equilibria. That is, at some
periods, the induced play may be close to the play induced by one ε-equilibrium,
but at other periods, close to the play induced by another.

In Section 7.1 of [Kalai and Lehrer (1993)], the following question is posed:
Can Theorem 2.3 be strengthened to require that the process converges to the
set of exact equilibria (that is, 0-equilibria) of G∞, and not just the set of ε-
equilibria? This question has remained open until now. The purpose of this
paper is to present a counter-example showing that we may not, in general, be
able to guarantee that play of the game will eventually resemble the play of an
exact equilibrium. To be more precise:

Result 2.4. We construct a game G and (τ j,k)j,k∈P in which everyone is best-
replying to their beliefs, such that for each j ∈ P, Pτ � Pτ̃j – in fact, the beliefs
contain a grain of truth – and such that for Pτ -a.e. h ∈ H∞, for each t ∈ N,
and each equilibrium σ of G∞, Pτh|t⊥Pσ.

A particular type of beliefs arises from repeated Bayesian games (a.k.a.
games of incomplete information). Each player has a discrete type space,
(T k)k∈P. At the beginning of play, types are chosen by Nature before play begins
independently, i.e., via a commonly known product distribution µ =

∏
k∈P µk.

Each player is informed of his own type, hence a strategy for Player k is a

4 Hence, on ∆(Ω) for finite Ω, we have both the supremum norm || · ||∞ and the total
variation norm || · ||.

5 Indeed, if the stage game possesses multiple equilibria and if the strategies alternate
between these equilibria, we will would never get such convergence.
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mapping ηk : T k × H∗ → ∆(Ak), and a profile η = (ηk)k∈P of such strategies
together with the prior µ induces a measure Pη on

∏
k∈P T

k×H∞. The payoff of
Player k may include dependence on his type (and only his type, not the types
of the others), and hence is a (bounded) function rk : T k ×

∏
k∈PA

k → R. Let
G∞(µ) denote this game of incomplete information, and for each profile of types
(tk)k∈P ∈

∏
k∈P T

k, let G((tk)k∈P) be the strategic game resulting from this se-

lection of types (i.e., the one-shot game in which the types (tk)k∈P are selected
and made public), and let G∞((tk)k∈P) be the game in which the strategic-form
game G((tk)k∈P) is repeated infinitely many times.6 Defining the payoffs also to
be the discounted sum of the stream of the stage payoffs, Bayesian equilibrium
is defined in the same way, that is, no player can increase his expected payoff
by deviating.7

Theorem 2.5. [[Kalai and Lehrer (1993)] , Sec. 6] Let η = (ηj)j∈P be a
Bayesian equilibrium of G∞(µ). Then for each ε > 0, for µ-a.e. choice of
types (tk)k∈P ∈

∏
k∈P T

k of Nature, for Pη(· | (tk)k∈P)-a.e. play h ∈ H∞, there
is a time T such that for each t ≥ T , there is an ε-equilibrium σ = (σj)j∈P of
G∞((tk)k∈P), such that8 ||Pηh|t (· | (tk)k∈P)− Pσ|| < ε.

In this paper:

Result 2.6. We construct a repeated Bayesian game G∞(µ) with finite type
spaces (T k)k∈P and a Bayesian equilibrium (ηk)k∈P of G∞(µ), such that for
some choice of types (tk)k∈P ∈

∏
k∈P T

k by Nature (of positive µ-measure) and

Pη(· | (tk)k∈P)-a.e. play h ∈ H∞, for each t ∈ N, and each equilibrium σ of
G∞((tk)k∈P), Pηh|t (· | (tk)k∈P)⊥Pσ.

We raise a question worthy of further investigation but that we shall not
attempt to answer here. In the examples presented in this paper, the payoffs will
be seen to be highly non-generic, and their success in evading rational learning
converging to equilibria is dependent precisely on how they are defined. Hence,
it is natural to inquire: does convergence to the set of equilibria occur for generic
games, i.e., that the set of stage games for which this strengthened convergence
does not hold is small in an appropriate sense (first category, measure zero,
etc.)? Another question worth investigating is whether convergence to the set
of equilibria holds for two-player games.

6 To clarify: The types are chosen once and become common knowledge at the beginning
of play, and then the game is infinitely repeated with those fixed types.

7 Since the type space is discrete, we needn’t differentiate between ex-ante deviations, i.e.,
deviations proceeding the selections of types, or ex-post deviations, i.e., deviations following
the selection of types. If the type space were more general, technical measurability issues
would arise. However, Theorem 2.5 does not remain correct in such a general framework
anyway; see [Lehrer and Smorodinsky (1997)].

8ηh|t denotes, as earlier, the strategy in the Bayesian game induced by η following play of
h|t. Strictly speaking, the play following h|t is not a sub-game as in itself since it does not
include the previous private announcements of the types.
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3 Informal Construction Overview

• The game has six players, P = {A1, A2, A3, A4, C,D}. Each player has
two actions, L and R.

• C and D play a coordination game between them. When D plays L,
everyone else is incentivised to play L as well. When D plays R, the players
A1, A2, A3, A4 play a sort of anti-coordination game among themselves,
which also depends on C. We will focus on a mixed equilibrium of this
game in which A1, . . . , A4 each mix 1

2 - 1
2 . The equilibrium in which all play

L is far preferred by all players.

• The influence of the players on each other can be viewed via the following
graph:

A1

A2

D //

R

##

L

]]

L

ff

Lxx
L

��

C

��

oo

A3

A4 A1, A2, A3, A4

• When C andD coordinate on (R,R) for the n-th time, playersA1, A2, A3, A4

will incorrectly put some small probability δ3
n on C playing L.9 As a result,

equilibria for A1, A2, A3, A4 deviate slightly from 1
2 - 1

2 . We will concentrate
on the deviation in which each plays L with probability 1

2 + δn.

• Although the beliefs about C’s action contain only a small error, on the
order of δ3

n the n-th time C and D coordinate on R, this leads to a much
larger – order of δn – deviation in equilibrium strategies for A1, A2, A3, A4.
Although (δn) will converge to zero quickly enough to guarantee that the
beliefs contain a grain of truth, they will shrink slowly enough so that if
an equilibrium of the stage game is used at each stage, the play of the
game must be far (in fact, mutually singular) from the true play.

• Thus, to avoid equilibria in the repeated game in which players do not play
equilibria in the stage game – by implementing intertemporal dependence
and coordination – we have in our strategies and beliefs in between such
stages at which C and D coordinate on (R,R) long periods in which they
coordinate on (L,L), hence incentivising A1, A2, A3, A4 to play L as well.
Hence, at those stages in which C and D coordinate on (R,R), play must

9 This can be justified, as we will do later in the framework of Bayesian games, by believing
that with small probability C is actually indifferent between his actions and that he puts
positive probability on both.
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be very close to an equilibrium of the stage game, since all know that
the next time any player has an incentive to play anything other than L
– which, recall, is a much-preferred outcome for all – will be so far into
the future and hence so discounted that no player has any hope that a
deviation could lead to a future profit.

4 The Stage Game

The stage game G has six players, which we denote P = {A1, A2, A3, A4, C,D}.
Each player has action set A = {L,R}. Let x be a mixed action profile. For
k ∈ P, we will write xk instead of xk[L] (the probability that k plays L). For
j = 1, 2, 3, 4, denote ∆−j(x) =

∏
k 6=j(x

Ak − 1
2 ).

The payoff to Players C,D depends only on each other, and is a coordination
game given by:

rC,D(·, a−{C,D}) =

C\D L R
L 2, 2 0, 0
R 0, 0 1, 1

For j = 1, 2, 3, 4, the payoff to Aj is given by:

rAj (·, x−Aj ) =

aD = L aD = R
L 2 xC −∆−j(x)
R 0 0

This gives a well-defined payoff since the payoff for Aj depends in a multi-linear
way on the others’ actions.

Lemma 4.1. For each 0 < δ < 1, there exists η > 0 such that there is no
η-equilibrium z of G satisfying:

• zC = zD = R.

• For j = 1, 2, 3, 4, 1
2 + 1

2δ ≤ z
Aj .

Proof. Fix 0 < δ < 1. Suppose for each η > 0, there was an η-equilibrium zη
satisfying these conditions. Taking a limit of a subnet of (zη)η>0 would give an
equilibrium z of G satisfying these properties, and in particular, since zC = R,
for all j = 1, 2, 3, 4, zC −∆−j(z) ≤ − 1

8δ
3 < 0; hence, since zD = R, we would

have zAj = R for all j = 1, 2, 3, 4, a contradiction since zAj ≥ 1
2 + 1

2δ.

It is immediate to verify:

Lemma 4.2. The profile L with L
k

= L for each k ∈ P is an equilibrium of G.
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5 The Strategies and Beliefs

Let (δn)∞n=1 be any positive sequence with

sup
n
δn < min[

1

4
, ε, ζ−1],

∞∑
n=1

δ3
n <∞,

∞∑
n=1

δ2
n =∞ (5.1)

where ε, ζ > 0 are specified later in Proposition 6.1, and

Ln = T0(δn) ∈ N (5.2)

with T0(·) also defined later in Proposition 6.1. Denote Sn = 1 +
∑
k<n Ln

(note that S1 = 1). We define the following array of strategies (τ j,k)j,k∈P; they
are history-independent and hence we will not reference the history explicitly
in the definition, i.e., we will denote τ j,kt instead of τ j,k(h|t). Recall also that
we denote τk instead of τk,k.

•
τCt = τDt =

{
R if ∃n ∈ N, t = Sn
L if ∀n ∈ N, t 6= Sn

• For each j = 1, 2, 3, 4,

τ
Aj

t =

{
1
2 + δn if t = Sn
L if ∀n ∈ N, t 6= Sn

• All players have correct beliefs about A1, A2, A3, A4, D: Formally, τk,Aj =
τAj , τk,D = τD, for k ∈ P and j = 1, 2, 3, 4.

• However, for all k ∈ P, k 6= C, the beliefs of Player k about C are

τk,C =

{
δ3
n if t = Sn
L if ∀n ∈ N, t 6= Sn

Recall that we denote the beliefs of Player j ∈ P by τ̃ j := (τ j,k)k∈P, and

similarly we denote τ̃ jt := (τ j,kt )k∈P.

Lemma 5.1. In τ = (τ j,k)j,k∈P, each player is best-replying to his beliefs.

Proof. Because of the history independence, it’s enough to check that for each
t ∈ N, each k ∈ P, τkt is a best-reply to his beliefs τ̃kt in the stage game G. If
∀n, t 6= Sn, then τt is just the equilibrium L from Lemma 4.2 and all players have
the correct beliefs of the other players’ action at stage t, i.e, τ j,kt = τkt . Suppose
t = Sn. We contend that the (Aj) are all indifferent; indeed, rAj (R, ·) ≡ 0, and

since τ
Aj ,D
Sn

= τDSn
= R,

rAj (L, (τ
Aj ,k
Sn

)k 6=Aj
) = τ

Aj ,C
Sn

−∆−j(τ̃
Aj

Sn
) = δ3

n − ((
1

2
+ δn)− 1

2
)3 = 0

Furthermore, since τC,Dt = τDt = R, C prefers R; and D prefers R since τD,Ct =
δ3
n < ( 1

4 )2 < 1
3 .
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Lemma 5.2. For each player k ∈ P, Pτ � Pτ̃k , and in fact, Pτ̃k contains a
grain of truth of Pτ .

Proof. C has correct beliefs about all players; i.e., τ̃C = τ . If k 6= C, then
denoting

uCn = δ3
n, u

D = R, uAj
n =

1

2
+ δn j = 1, 2, 3, 4

one verifies that the beliefs of A1, . . . , A4, D satisfy

τ̃
Aj

t = τ̃Dt =

{
un if t = Sn
L if ∀n ∈ N, t 6= Sn

where L is the equilibrium of the stage game given by L
k

= L for all k ∈ P. Let
vn denote the profile

vCn = vDn = R, vAj
n = uAj

n =
1

2
+ δn j = 1, 2, 3, 4 (5.3)

Then, similarly, the players’ strategies are

τt =

{
vn if t = Sn
L if ∀n ∈ N, t 6= Sn

Since ∀a ∈ {L,R}P, un[a] = 0 implies vn[a] = 0, by Proposition 11.1 it suffices
to check that

∞∑
n=1

||un − vn||∞ <∞

and that there is some α > 0 such that for all t ∈ N and all profile a ∈ {L,R}P,
if vn[a] > 0 then un[a] ≥ α. For the latter claim, take10 α = 1

2 ( 1
4 )4. For the

former, observe that ||un − vn||∞ ≤ 2
∑
k∈P |ukn − vkn| ≤ 2|P|δ3

n, and by (5.1),∑∞
n=1 δ

3
n <∞.

6 Equilibrium Analysis

For T ∈ N, denote

Hα
T+1 := {h = (a1, . . . , aT ) ∈ HT+1 | aC1 = aD1 = R and ∀k ∈ P, 2 ≤ t ≤ T, akt = L}

(6.1)
i.e., those histories of length T in which Players C,D plays R in the first round,
and after the first round, everyone plays only L. Note that Hα

T+1 is finite,
|Hα

T+1| = 24. The following is the main proposition that we will require:

10Since vn[a] > 0 implies aC = aD = R, the definition of un shows that vn[a] > 0 →
un[a] ≥ (1− δ3n)( 1

2
− δn)4. Recall then that δn <

1
4

.
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Proposition 6.1. Let ζ = 44, let 0 < δ < 1
2 , let ε > 0 satisfy

ζε(2 + ||r||∞)
1

1− β
<

1

4
(6.2)

and let T0 = 2 · T1 for T1 satisfying

βT1
||r||∞
1− β

≤ min[
η

2
,

1

8
] (6.3)

where η > 0 corresponds to δ as in Lemma 4.1. Let T ≥ T0. Then there does
not exist an equilibrium profile σ which satisfies:

• For all j = 1, 2, 3, 4, 1
2 + 1

2δ ≤ σ
Aj (∅).11

• Pσ(Hα
T+1) > 1− ε and Pσ(h) > 1

2ζ
−1 for each h ∈ Hα

T+1.

Suppose σ were such an equilibrium. The following lemmas are proved in
Appendix B:

Lemma 6.2. For all 2 ≤ t ≤ T − T1, each h ∈ Hα
t , and each player k ∈ P,

σk(h) = L.

The idea is that if enough stages (at least T1) are remaining, each player
knows that that since Pσ(Hα

T+1) > 1 − ε, if he doesn’t deviate he likely faces
only L’s being played for a long time - which is a desired outcome for him, and
hence he will not want to ruin the possibility by deviating.

Lemma 6.3. σC(∅) = σD(∅) = R.

The intuition is the same: Players C,D do not want to ruin the prospect of
a long stream of L’s being played by deviating out of Hα

T+1.

Lemma 6.4. σ(∅) is a η-equilibrium of the stage game G, where η corresponds
to δ as in Lemma 4.1.

The intuition is that, since C,D are coordinating on R in the initial stage
by Lemma 6.3, regardless of what A1, . . . , A4 play in the first stage σ will (by
Lemma 6.2) follow with a long stream of L’s; hence, the action profile chosen
by A1, . . . , A4 will have very little affect on future payoffs, and hence should be
close to an approximate equilibrium response of the stage game.

(Proof of Proposition 6.1). By Lemma 6.4, z := σ(∅) is an η-equilibrium of the
stage game. Hence, we cannot have both the conditions listed in Lemma 4.1
holding. However, Lemma 6.3 shows indeed that zC = zD = R, while by
assumption, zAj ≥ 1

2 + 1
2δ for each j = 1, 2, 3, 4, a contradiction.

11Recall that ∅ denotes the empty history.
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7 Proof of No Convergence to Equilibria

Recall the array τ = (τ j,k)j,k∈P defined in Section 5.

Proposition 7.1. For any equilibrium σ of G∞, Pτ⊥Pσ.

Proof. For each n ∈ N, let Xn = ({L,R}P)Ln = HLn+1 be the possible se-
quences of play in the Ln-repeated game. Then clearly H∞ = X :=

∏
n∈NXn,

while HSn
= Xn :=

∏
k<nXk, where recall that Sn = 1 +

∑
k<n Lk. (Essen-

tially, we’ve partitioned the stages into blocks X1, X2, . . . of lengths L1, L2, . . .)
We use the following notations:

For a strategy profile τ and its induced measure Pτ ∈ ∆(X), let (Pτ )n de-
note the marginal of Pτ on Xn+1 = HSn+1

=
∏
k≤nXk, and let (Pτ )n[·|·] be

the conditional on Xn w.r.t. Xn: I.e., (Pτ )n[· | xn] is the distribution on Xn

given xn = (x1, . . . , xn−1) ∈ Xn; if Pτ (xn) = 0, then these conditional distribu-
tions are arbitrary, and any specifications of it are called a version of (Pτ )n[· | ·].
(Referring back to our game, (Pτ )n is the distribution on the Ln-block of the re-
peated game, given the play of the proceeding blocks of the sizes L1, . . . , Ln−1.)

Now in our case, for our specific strategy profile τ we have the version of
(Pτ )n[· | ·] given by (Pτ )n[· | ·] ≡ vn ⊗Ln

k=2 L, with vn defined in (5.3), and

L
k

= L for all k ∈ P.

On the other hand, for xn ∈ Xn =
∏
k<nXk = HSn

, letting σ be an equi-
librium of G∞, we have the version of (Pσ)n[· | xn] given by (Pσ)n[xn | xn] =
Pσxn

(xn) when Pσ(xn) > 0 (and arbitrary otherwise).

For all xn ∈ Xn with Pσ(xn) > 0, σxn is an equilibrium as well.12 Now,
fix such xn ∈ Xn with Pσ(xn) > 0; for brevity denote σ̂ instead of σxn

and τ̂
instead of τxn

. Applying Proposition 6.1 (recall Ln = T0(δn) by (5.2)) implies
that one of the following holds:

(i) For some j = 1, 2, 3, 4, σ̂Aj (∅) < 1
2 + 1

2δn.

(ii) Pσ̂(Hα
T+1) ≤ 1− ε, where Hα

T+1 is defined just before Proposition 6.1.

(iii) Pσ̂(h) ≤ 1
2ζ
−1 for some h ∈ Hα

T+1.

Going over these case-by-case:

(i) In this case,

|σ̂Aj (∅)− τ̂Aj (∅)| = |σ̂Aj (∅)− (
1

2
+ δn)| ≥ δn

2

so ||(Pτ )n[· | xn]− (Pσ)n[· | xn]|| ≥ δn.

12Indeed, if σ is an equilibrium and h ∈ ∪∞t=1Ht with Pσ(h) > 0, then σh is also an
equilibrium.
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(ii) Pσ̂(Hα
Ln+1) ≤ 1− ε while Pτ̂ (Hα

Ln+1) = 1, hence ||(Pτ )n[· | xn]− (Pσ)n[· |
xn]|| ≥ 2ε ≥ δn by (5.1).

(iii) Pσ̂(h) ≤ 1
2ζ
−1, while Pτ̂ (h) ≥ ζ−1; hence ||(Pτ )n[· | xn]− (Pσ)n[· | xn]|| ≥

ζ−1 ≥ δn by (5.1).

Hence, ||(Pτ )n[· | xn] − (Pσ)n[· | xn]|| ≥ δn. This was for any xn ∈ ∪nXn

with Pσ(xn) > 0. Hence, by Theorem 11.4, since
∑∞
n=1 δ

2
n =∞, Pτ⊥Pσ.

Corollary 7.2. For Pτ -a.e. h ∈ H∞, for all t ∈ N, Pτh|t⊥Pσ for any equilib-
rium σ of G∞.

Proof. Let t ∈ N and h∗ ∈ Ht, and fix an equilibrium σ of G∞. Denote τ ′ = τh∗ .
We will show that Pτ ′⊥Pσ.

First take the case that t = Sn for some n. In this case, one simply ob-
serves that τ ′ is induced by the sequence (Ln, Ln+1, . . .) in the same way that τ
is induced by the sequence (L1, L2, . . .), and applies Proposition 7.1 (since the
sequence (δn, δn+1, . . .) also satisfies (5.1), and Ln = T0(δn)).

Suppose now Sn < t < Sn+1. Denote T = Sn+1 − t. Fix some h′ ∈ HT+1

(hence, (h∗, h′) ∈ HSn+1
) such that Pτ ′(h

′) > 0 and also Pσ(h′) > 0. Let

τ
′′

= τ ′h′ , σ
′ = σh′ ; then σ′ is an equilibrium of G∞ since Pσ(h′) > 0, and τ ′′ is

induced by the sequence (Ln+1, Ln+2, . . .) in the same way that τ is induced by
the sequence (L1, L2, . . .). Hence, like the case above, Pτ ′′⊥Pσ′ , i.e. Pτ ′

h′
⊥Pσh′ ,

and therefore Pτ ′(· | h′)⊥Pσ(· | h′). To sum up, for each h′ ∈ HT+1 such that
Pτ ′(h

′) > 0 and also Pσ(h′) > 0, we have Pτ ′(· | h′)⊥Pσ(· | h′). Hence, from
Proposition 11.5, Pτ ′⊥Pσ, as required.

8 The Bayesian Game

Relying on the payoffs r defined in Section 4 and the strategies and beliefs
τ = (τ j,k)j,k∈P defined in Section 5, we now define a Bayesian game:

• First, let (δn)∞n=1 be a positive sequence satisfying, in addition to (5.1),
the condition δn <

1
2 3√3

, and

∞∏
k=1

1

1− δ3
k

≤ 4

3
(8.1)

(E.g., take δn = 1√
n+M

, for large enough M > 0.)

• The set of players P = {C,D,A1, A2, A3, A4} is the same as before, each
with actions {L,R}.

• Player C has two types, which we denote tC =↑ or tC =↓, and which are
chosen with equal likelihood. All other players can each be of one type
only, and hence we drop reference to their types.
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• For a player k 6= C, the payoff ρk satisfies ρk = rk, while

ρC(↑, ·) = rC(·), ρC(↓, ·) ≡ 0

That is, all players other than C have the payoffs defined in Section 4;
this is also true of C of type ↑, while C of type ↓ is an indifferent type.

• Define a positive sequence (pn)∞n=0 by:

pn+1 =

{ 1
2 if n = 0
pn

1−δ3n
if n > 0 (8.2)

• Now, define the strategies (ηj)j∈P in the following way (recall that we
denote a mixed action in ∆({L,R}) by a single number in p ∈ [0, 1], the
probability of L, instead of (p, 1− p)):

– ηD = τD, i.e., D plays under η as he would in τ .

– For h ∈ ∪tHt,

ηC(tC , h) =


L if ∀n, t 6= Sn
R if t = Sn, t

C =↑
δ3n

1−pn if t = Sn, t
C =↓

(8.3)

Observe then that ηC(↑, h) = τC(h), i.e., C of type ↑ plays as he
would in τ .

– For h = (a1, . . . , at−1) ∈ ∪tHt,

ηAj (h) =


L if ∀n, t 6= Sn
1
2 + δn if t = Sn and ∀k < n, aCSk

= R
1
2 + δn

3
√

1−pn
if t = Sn and ∃k < n, aCSk

= L
(8.4)

Observe that as long as the players A1, . . . , A4 observe C playing R at all
stages in (Sn), they can continue to retain their uncertainty of the type
of C, and play as they would in τ .

Recall the notations G(↑), G(↓) which denote the stage game in which the
type ↑, ↓, respectively, has been chosen and made public. Only C’s payoff differs
between the games. To show Result 2.6, we reason as follows: as long as C only
plays R at the stages in (Sn), his type remains unknown but his expected mixed
action will be precisely what is dictated by the beliefs of τ = (τ j,k)j,k∈P defined
in Section 5 (see Lemma 8.3). This will be the case forever when the type is ↑.
Hence, in this case, the other players play an equilibrium response to C that is
precisely what they would play under τ ; and since C only needs to coordinate
with D (his payoffs are not affected by A1, . . . , A4), C is best-replying as well.
If the type is ↓, C is indifferent anyway, and if he ever plays L when ↑ would not
have, his type is revealed and the other players move to a revised equilibrium
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response in what then becomes a perfect information game (see Lemma 8.5).
Hence, η is a Bayesian equilibrium. It also follows easily (Lemma 8.4) that,
conditional on ↑, η and τ induced the same distribution on plays. We now
formalise these; first, a technical issue:

Lemma 8.1. 1
2 ≤ pn ≤

2
3 for all n ∈ N.

Hence, since δn <
1

2 3√3
, and in particular

δ3n
1−pn ≤

( 1

2 3√3
)3

1
3

= 1
23 , the strategies

given by (8.3) and (8.4) are well-defined.

Proof. This follows by (8.1), since one shows inductively that:

pn+1 =
1

2

∏
k≤n

1

1− δ3
k

Lemma 8.2. pn = Pη(tC =↑| Rn) where

Rn = {(a1, . . . , aSn−1) ∈ HSn
| ∀k < n, aCSk

= R} (8.5)

I.e., the probability that the other players associate with the type of C being
↑, given that only R has been played by him at each stage of the form Sk for
k < n, is pn. Note that R1 = {∅}, the empty history.

Proof. Observe that by the definition of η,

Pη(Rn+1 | Rn ∩ tC =↓) = 1− δ3
n

1− pn
, Pη(Rn+1 | Rn ∩ tC =↑) = 1

Assume inductively pn = Pη(tC =↑| Rn): This clearly holds for n = 1, since
Pη(tC =↑| {∅}) = Pη(tC =↑) = 1

2 = p1. Using Bayes rule, since Rn+1 ⊆ Rn,

Pη(tC =↑| Rn+1)

=
Pη(Rn+1 | Rn ∩ tC =↑) · Pη(tC =↑| Rn)

Pη(Rn+1 | Rn ∩ tC =↑) · Pη(tC =↑| Rn) + Pη(Rn+1 | Rn ∩ tC =↓) · Pη(tC =↓| Rn)

=
1 · pn

1 · pn + (1− δ3n
1−pn ) · (1− pn)

=
pn

1− δ3
n

= pn+1

as required.

Lemma 8.3. For all n ∈ N, all player k 6= C, and any h ∈ Rn, ηk(h) is a
best-response to τ̃kSn

(the beliefs of k at stage Sn) in the stage games G(↑), G(↓).
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Proof. Indeed, by the previous lemma and the definition of τk,CSn
,

Pη(aCSn
= L | Rn) = pn · ηCSn

(↑)[L] + (1− pn)ηCSn
(↓)[L]

= pn · 0 + (1− pn)
δ3
n

1− pn
= δ3

n = τk,CSn

Since for any h, h′ ∈ Rn, ηC(tC , h) = ηC(tC , h′) for either value of tC , we have

τk,CSn
= Pη(aCSn

= L | h), ∀h ∈ Rn

To finish the proof, observe that for h ∈ Rn, τ−CSn
= η−C(h) by comparing (8.4)

with Section 5 and by ηD ≡ τD, and recall τ−CSn
is an equilibrium response to

the shared belief of the other players at stage Sn about C’s action under τ .

The following is clear from (8.3) and the definition of τ , since Pη(h |↑) > 0
implies h ∈ Rn.

Lemma 8.4. For each t ∈ N and each h ∈ ∪tHt with Pη(h |↑) > 0,

Pη(akt = L | h) = Pτ (akt = L | h) = 1

Lemma 8.5. Denote the complement of Rn by

Vn = {(a1, . . . , aSn−1) ∈ HSn | ∃k < n, aCSk
= L}

i.e., the event that at some stage Sk for k < n, C plays L. Then

Pη(aCSn
= L | h) =

δ3
n

1− pn
, ∀h ∈ Vn (8.6)

and if h ∈ Vn, then Pη(tC =↓| h) = 1 and η(↓, h) is an equilibrium of the stage
game G(↓).

Proof. From (8.3), Pη(↓ |h) = 1 for h ∈ Vn, and then also from (8.3), (8.6)
follows. Hence, just as when C is believed to play δ3

n, it is an equilibrium

response from A1, . . . , An to play 1
2 + δn, so when C is believed to play

δ3n
1−pn ,

it is an equilibrium response from A1, . . . , An to play 1
2 + δn

3
√

1−pn
(see proof of

Lemma 5.1).

Corollary 8.6. (ηk)k∈P is a Bayesian equilibrium.

Proof. If tC =↑, then at each stage, C is best-replying in the stage game G(↑)
to the actions of D, as C is playing a coordination game with D.13 If tC =↓,
C is indifferent anyway. For any t ∈ N, the players other than C are always
playing an equilibrium response to C’s expected action in the stage game14 G(↑)
or G(↓) at stage t:

13D’s actions are history-independent, playing R at stages (Sn)∞n=1 and L otherwise.
14These games are equivalent for all players except C.
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• If ∀n, t 6= Sn, this follows from Lemma 4.2.

• If t = Sn and h ∈ Rn, this follows from Lemma 8.3.

• If t = Sn and h ∈ Vn, this follows from Lemma 8.5

Although this reasoning concerns the stage game, it then follows that η gives an
equilibrium response for the other players to C in the repeated game, since no
player’s strategy depends on any other player’s previous actions other than C’s
and C’s strategy depends on no player’s previous actions (only on his type).15

The following corollary is immediate from Lemma 8.4:

Corollary 8.7. Pτ is precisely the marginal of Pη(· |↑) on H∞.

Recall that G∞(↑) is the infinitely repeated version of G(↑), in which the
type ↑ is chosen and made common knowledge. Given Result 2.4:

Corollary 8.8. For Pη(· |↑)-a.e. h ∈ H∞, for all t ∈ N, and for all equilibrium
σ of G∞(↑), we have Pηh|t (· |↑)⊥Pσ.

Indeed, σ must also be an equilibrium of G∞, for G defined in Section 4,
since G = G(↑).

9 Contrast to Short-Run Merging

In [Kalai and Lehrer (1993), Sec. 7.1], an alternative notion of closeness, weaker
than closeness in the total-variation norm, is discussed: Let σ, τ be two strategy
profiles. For ` ∈ N, let π` : H∞ → H`+1 be the projection onto the first `
coordinates, and let π`∗(Pτ ), π`∗(Pσ) denote the measures Pτ ◦(π`)−1, Pσ◦(π`)−1,
i.e., the marginals on H`+1. The following is proven in [Kalai and Lehrer (1993),
Sec. 7.1]:

Theorem 9.1. Let τ = (τ j,k)j,k∈P be such that everyone is best-replying to
their beliefs. Denote by τ̃ j = (τ j,k)k∈P the beliefs of Player j. Assume that for
each j ∈ P, Pτ � Pτ̃j . Then for Pτ -a.e. h ∈ H∞, any ε > 0, and any ` ∈ N,
there exists T ∈ N such that for all t ≥ T , there is an (exact) equilibrium σ of
G∞ such that ||π`∗(Pτh|t )− π`∗(Pσ)|| < ε.

That is, it is possible after a long enough period of learning to find equilibria
which are very similar to the true play in the short run; specifically, over any
fixed-length horizon. However, the examples in our paper show that in gen-
eral will not be possible to ensure that the predictions made will be similar to
equilibria in the long run. Our papers shows a similar limitation in repeated

15In other words, each player other than C is facing a decision process which evolves in-
dependent of his actions; hence, if he is best-replying in the stage game at each stage, he is
best-replying in the repeated game.
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Bayesian games.

The difference can be illuminated by the following example, taken from
[Jackson, Kalai, Smorodinsky (1999)]: A parameter θ is chosen uniformly in
[0, 1] but we are not informed of its value; we then observe an infinite sequence
of coin tosses, distributed16 i.i.d. with parameter θ. After each toss we update
our beliefs on the future. If we wait long enough, our conditional distribu-
tion over the true value of θ will become very ‘narrow’, which will allow us to
make good predictions over short run horizons. However, in the strong con-
vergence notion of total-variation – so seemingly appealing given the success
of [Blackwell and Dubins (1962)] – this learning will always be insufficient for
long-run predictions.

We give another example: A sequence of parameters (θn)∞n=1 is chosen inde-
pendently, where θn takes values 1

2±
1

2
√
n

with equal probabilities. The sequence

(θn)∞n=1 is not revealed to us. We view a sequence of coin tosses, conditionally
independent on the choice of (θn)∞n=1, where the probability of heads on the
n-th toss is θn.

It is easy to see in this case that, for any fixed ` ∈ N, we will eventually make
very good predictions in the horizon of ` periods ahead; we don’t even need to
observe the coin tosses to make these predictions. However, any estimator θ̂n at
stage n for the parameter used at stage n will, with probability 1

2 , be incorrect by
an amount of at least 1

2
√
n

. In such a case, for example, any investor who tries to

make successive bets using the Kelly criterion on a double-or-nothing bet with
estimated parameter θ̂n at stage n will have his wealth grow much slower than
an investor who knows the true underlying sequence (θn)∞n=1; this results from
classical ‘turnpike’ theorems on optimal growth, e.g., [Breiman (1961), Thm. 3].

10 An Alternative Example

We present now an alternative example. The advantage of this example is that
it is simpler in some respects, although shares a similar theme. A disadvantage
of this example is that it cannot be modelled into the framework of Bayesian
games, as we had done for the other construction in Section 8.17 We do not
present a complete proof that convergence to equilibria does not occur, rather
we state parallels of Lemma 4.1 and Proposition 6.1, and the proof from there
continues very similarly.

16 The independence of the coin tosses is conditional on the choice of parameter θ.
17The reason is that, since types must be independent in the Bayesian games model in order

to apply Theorem 2.5, it is always true that any two players must, at any given time, have
the same belief about the type (and hence the actions) of any third player. In this example,
this is not the case, and this disagreement is crucial for the success of the example.
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There are seven player, P = {A,B1, B2, C1, C2, C3, D}. Each has actions
{L,R}. The payoffs are given by:

• For each player p ∈ {C1, C2, C3, A}, we have

rp(R, ·) =

{
0 if aD = R or ap = R
1 if aD = L and ap = L

When D plays L, these players prefer L; otherwise, they are indifferent.
Denote ∆0(x) =

∏
j=1,2,3(xCj − 1

2 ), ∆A(x) = xA − 1
2 .

• For j = 1, 2,

rBj (·, x−Bj ) =

xD = L xD = R
L 2 ∆A(x) + (−1)j∆0(x)
R 0 0

•
rD(·, x−D) =

L 4xA − 3
R 0

Note that A,D are playing a sort of coordinate game between them.

Again, as in Lemma 4.2, the profile L in which L
k

= L for all k ∈ P is an
equilibrium. The parallel of Lemma 4.1 is:

Lemma 10.1. For each 0 < δ < 1
4 , there exists η > 0 such that there is no

η-equilibrium z of G satisfying:

• For j = 1, 2, 3, 1
2 + 1

2δ ≤ z
Cj .

• zB1 , zB2 ∈ [δ, 1− δ].

• zD = R.

Proof. As in the proof of Lemma 4.1, we would get an exact equilibrium z
satisfying these conditions. Then zD = R, and we have ∆0(z) 6= 0, so B1, B2

cannot be both indifferent between L,R.

Similar to Section 5, let (δn)n=1, (Ln)∞n=1 be a sequences satisfying (5.1) and
(5.2), except with ε,ζ and the function T0 being specified by Proposition 10.2
below instead of Proposition 6.1. Define τt = L = (L, . . . , L) if ∀n ∈ N, t 6= Sn,
while

τpSn
=


1
2 + δn if p = C1, C2, C3

R if p = D
1
2 if p = A,B1, B2

The beliefs are defined as such:

• If k 6= B1, B2 or m 6= A, τk,m = τm (i.e., all players except B1, B2 have
correct beliefs; B1, B2 have correct beliefs about all others except A.)

19



• However, for j = 1, 2,

τ
Bj ,A
t =

{
1
2 − (−1)jδ3

n if t = Sn
L if ∀n ∈ N, t 6= Sn

We leave it to the reader to show the parallels of Lemmas 5.1 and 5.2 - that
is, that each player is best-replying to his beliefs in each stage, and that the
beliefs possess grain of truth. Now, like in Section 6, if we denote

Hα
T+1 = {h = (a1, . . . , aT ) ∈ HT+1 | aD1 = R and ∀k ∈ P, 2 ≤ t ≤ T, akt = L}

(10.1)
then:

Proposition 10.2. There exists ε > 0 such that for each 0 < δ small enough,
there exists T0 = T0(δ) ∈ N such that if T ≥ T0 then there does not exist an
equilibrium profile σ which satisfies:

• For all j = 1, 2, 3, 1
2 + 1

2δ ≤ σ
Cj (∅).

• Pσ(Hα
T+1) > 1 − ε and Pσ(h) > 1

2ζ
−1 for each h ∈ Hα

T+1, where ζ =
|Hα

T+1| = 46.

Indeed, one proves parallels of Lemma 6.2, of Lemma 6.3 (for Player D),
and of Lemma 6.4 (using η from Lemma 10.1 instead of Lemma 4.1); one then
observes that if δ ≤ 1

2ζ
−1, then Pσ(h) > 1

2ζ
−1 for each h ∈ Hα

T+1 implies that
σB1(∅), σB2(∅) ∈ [δ, 1 − δ], and then derives a contradiction using Lemma 10.1
just as in the proof of Proposition 6.1.

Following the proof of this proposition, the proof that convergence to equi-
libria does not occur proceeds in the same manner as in Section 7.

11 Appendix A: Probabilistic Tools

Let18 X1, X2, . . . be finite sets, X =
∏
n∈NXn, Xn =

∏
k<nXk. For a mea-

sure19 P ∈ ∆(X), let Pn denote the marginal of P on Xn+1. For P,Q ∈ ∆(X),
we will say that P is locally absolutely continuous w.r.t. Q if Pn � Qn for all
n. For each n, let Pn[·|·] be the conditional on Xn w.r.t. Xn: I.e., Pn[· | xn] is
the distribution on Xn given xn ∈ Xn. The distribution Pn[· | xn] is uniquely
defined20 if P (xn) > 0. A version of Pn[· | ·] is such a conditional distribution
with P [· | xn] defined in this unique way when P (xn) > 0, and an arbitrary
element of ∆(Xn) if P (xn) = 0.

18Some of the notation here is a repeat of Section 7.
19X is endowed with the Borel σ-algebra induced by the Tychonoff topology.
20For all xn = (x1, . . . , xn−1) ∈ X∗, P (xn) =

∏
k<n P [xk | xk].
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Proposition 11.1. Let (pt)
∞
t=1, (qt)

∞
t=1 be sequences with pt, qt ∈ ∆(Xt), such

that for all t ∈ N, pt � qt. Let P = ⊗
t∈N

pt, Q = ⊗
t∈N

qt. Suppose
∑∞
t=1 ||pt −

qt||∞ <∞, and for some α > 0, for all t, pt[x] > 0 implies qt[x] ≥ α. Then Q
contains a grain of truth of P (i.e., P � Q and dP

dQ is bounded).

Proof. For each element x ∈ X s.t. P (xn) > 0 for all n (which implies Q(xn) > 0
for all n), denote

Tn(x) =
P (xn)

Q(xn)
=
∏
k≤n

pk[xk]

qk[xk]

Denote Z = limn→∞ Tn(x); it is known that this limit exists Q-a.e., and if
Z < ∞ Q-a.s., then P � Q and dP

dQ = Z (e.g., [Shiryaev (1995), Sec. VII.6,

Thm. 1]). For Q-a.e. x,

ln(Tn(x)) ≤
∞∑
t=1

sup
x∈Xt,pt[x]>0

max(ln(pt[x])− ln(qt[x]), 0)

≤ 1

α

∞∑
t=1

sup
x∈Xt,pt[x]>0

max(pt[x]− qt[x], 0) ≤ 1

α

∞∑
t=1

||pt − qt||∞ <∞

The following is known as the Kakutani dichotomy (the version for products
of finite spaces); see [Shiryaev (1995), Sec. VII.6], Theorem 4, which generalises
[Kakutani (1948)].

Theorem 11.2. Let P,Q ∈ ∆(X) with P locally absolutely continuous w.r.t.
Q. Then

P � Q⇐⇒ P
[ ∞∑
n=1

(
1−

∑
a∈Xn

√
Pn[a | xn] ·Qn[a | xn]

)
<∞

]
= 1

and

P⊥Q⇐⇒ P
[ ∞∑
n=1

(
1−

∑
a∈Xn

√
Pn[a | xn] ·Qn[a | xn]

)
=∞

]
= 1

Note that the summand is well-defined - since if Q(xn) = 0 then P (xn) = 0
- and is seen to be non-negative.

Corollary 11.3. Let P,Q ∈ ∆(X), and for each n, let Pn[·|·], Qn[· | ·] be
versions of the marginals and suppose that for P -a.e. x ∈ X,

∞∑
n=1

(
1−

∑
a∈Xn

√
Pn[a | xn] ·Qn[a | xn]

)
=∞ (11.1)

Then P⊥Q.
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Note that the power that Corollary 11.3 adds to the Kakutani criterion for
the divergent case is that P need not be locally absolutely continuous w.r.t. Q.

Proof. Fix ε > 0, denote εn = ε
4n·|Xn|2 , and define for each n a new marginal

by
Qεn[· | ·] = (1− εn)Qn[· | ·] + εnPn[· | ·]

Let Qε ∈ ∆(X) denote the induced measure. It’s easy to show21 that if (11.1)
holds for some x ∈ X, then it also holds with Qεn[· | ·] replacing Q[· | ·], and
clearly P is locally absolutely continuous w.r.t. Qε. Applying the Kakutani
criterion, we have P⊥Qε; repeating this for any ε > 0 gives a sequence Qε → Q
in total-variation norm22 and shows P⊥Q.23

Theorem 11.4. Let P,Q ∈ ∆(X) and suppose that for some versions of Pn[· |
·], Qn[· | ·], it holds for those x = (x1, x2, . . .) ∈ X satisfying P (x1, . . . , xn) > 0
for all n that

∞∑
n=1

||Pn[· | x1, . . . , xn−1]−Qn[· | x1, . . . , xn−1]||2 =∞ (11.2)

Then P⊥Q.

Proof. Lemma 1 of [Lehrer and Smorodinsky (1997)] shows that if p, q ∈ ∆(A)

for finite A, then 1−
∑
a∈A

√
p[a] · q[a] ≥ ||p−q||

2

8 . Hence the result follows from
Corollary 11.3.

We will also make use of the following:

Proposition 11.5. Let P,Q ∈ ∆(X) and T ∈ N. Denote P+ = {xT ∈
XT |P (xT ) > 0} and similarly define Q+. Suppose for each xT ∈ P+ ∩ Q+,
P (· | xT )⊥Q(· | xT ). Then P⊥Q.

Proof. For each xT ∈ P+∩Q+, let SP (xT ), SQ(xT ) ⊆
∏
n≥T Xn be disjoint such

that P (xT × SP (xT ) | xT ) = 1, Q(xT × SQ(xT ) | xT ) = 1. For xT /∈ P+ ∩Q+,
take SP (xT ) = SQ(xT ) =

∏
n≥T Xn. Then define,

SP =
⋃

xT∈XT

(xT × SP (xT )), SQ =
⋃

xT∈XT

(xT × SQ(xT ))

Then it is easy to check that

P (SP ) = Q(SQ) = 1−Q(SP ) = 1− P (SQ) = 1

21E.g., using the inequality |
√
x−√y| ≤

√
|x− y| for x, y ≥ 0.

22It’s easy to show that if µ, ν ∈ ∆(X),

||µ− ν|| ≤
∞∑
n=1

∑
xn∈Xn

sup
xn∈Xn

|µn[xn | xn]− νn[xn | xn]|

23Indeed, this implies that for each ε > 0, there is A ⊆ X with P (A) < ε, Q(A) > 1 − ε;
this easily implies P⊥Q.
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12 Appendix B: Proofs from Section 6

Suppose σ were an equilibrium satisfying the conditions given in Proposition 6.1,
with ε > 0 and T ≥ T0 satisfying the inequalities there. Recall ζ = |Hα

T+1| = 44.
Observe that for 2 ≤ t ≤ T , the elements of Hα

t+1 are initial segments of the
respective elements of Hα

T+1

For t ∈ N and (a1, a2, . . .) ∈ H∞, denote

rt[a1, a2, . . .] :=
∑
s≤t

βs−1r(as) (12.1)

and
g(a1, a2, . . .) =

∑
t>T

βt−1r(at)

Lemma 12.1. For each 2 ≤ t ≤ T and each h ∈ Hα
t ,

Pσ(Hα
T+1

∣∣{h}) > 1− 2ζε

Proof. If not, let 2 ≤ t ≤ T and h∗ ∈ Hα
t be such that Pσ(HT+1\Hα

T+1

∣∣{h∗}) ≥
2ζε. Since, by assumption, Pσ(h∗) ≥ 1

2ζ
−1,

Pσ(HT+1\Hα
T+1) ≥ Pσ(HT+1\Hα

T+1

∣∣{h∗}) · Pσ(h∗) ≥ (2ζε) · (1

2
ζ−1) = ε

and therefore Pσ(Hα
T+1) ≤ 1− ε, a contradiction.

Proof. (Proof of Lemma 6.2) Suppose not; let k ∈ P, 2 ≤ t ≤ T − T1 and
h∗ ∈ Hα

t such that σk(h∗) < 1. Let σL (resp. σR) be strategy profiles such that
σkL(h∗) = L (resp. σkR(h∗) = R) and agrees with σ otherwise.24 We have:

EσR
[rk|{h∗}] = rkt−1(h∗) + EσR

[ T∑
s=t

rk(as)β
s−1 + gk(h) | {h∗}

]
≤ rkt−1(h∗) + 1 · βt−1 + 2 ·

T∑
s=t+1

βs−1 + ||g||∞

where we have used the fact that rk(R, x−k) ≤ 1 for any profile x, and rk ≤ 2.
On the other hand, since for any (a1, . . . , aT ) ∈ Hα

T+1, rk(at) = 2 for all 2 ≤
t ≤ T , and rk ≥ −||r||∞,

EσL
[rk|{h∗}] = rkt−1(h∗) + EσL

[ T∑
s=t

rk(as)β
s−1 + gk(h) | {h∗}

]
≥ rkt−1(h∗) + (2 · PσL

(
Hα
T+1

∣∣{h∗})− ||r||∞ · (1− PσL
(Hα

T+1

∣∣{h∗}))) T∑
s=t

βs−1 − ||g||∞

≥ rkt−1(h∗) + (2(1− 2ζε)− 2ζε||r||∞)

T∑
s=t

βs−1 − ||g||∞

24That is, σmL = σmR = σm for m 6= k, and σkL(q) = σkR(q) = σk(q) for any q ∈ ∪t≤THt
except for the one case q = h∗.
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where we have used Lemma 12.1, since PσL
(Hα

T+1

∣∣h∗) ≥ Pσ(Hα
T+1

∣∣h∗). In order

to have EσR
[rk] < EσL

[rk] (which implies Eσ[rk] < Eσk
L

[r] and gives the desired

contradiction to σk(h∗) < 1 since σ is an equilibrium), it suffices to have,

1 · βt−1 +

T∑
s=t+1

2βs−1 + ||g||∞ < (2− 2ζε(2 + ||r||∞))

T∑
s=t

βs−1 − ||g||∞

or equivalently,

2||g||∞ < βt−1 − 2ζε(2 + ||r||∞)

T∑
s=t

βs−1

Since ||g||∞ ≤ βT ||r||∞1−β ,
∑T
s=t β

s−1 ≤ βt−1

1−β , and t ≤ T − T1, it suffices to have

βT1+1 ||r||∞
1− β

+ ζε(2 + ||r||∞)
1

1− β
<

1

2

For this to hold, it suffices to require each term to be < 1
4 , which follow from

(6.3) and (6.2).

Proof. (Proof of Lemma 6.3) We deal with Player D; Player C follows similarly.
Like in the previous proof, let σL (resp. σR) be the strategy profile such that
σDL (∅) = L (resp. σDR (∅) = R) and agrees with σ otherwise. Observe that
Pσ(Hα

T+1) > 1− ε implies σC(∅)[R] > 1− ε; and PσL
(Hα

T+1) = 0 by definition.
Hence

EσL
[rD(a1)] = EσL

[rD(a1)|Hα
T+1]PσL

(Hα
T+1) + EσL

[rD(a1)|HT \Hα
T+1](1− PσL

(Hα
T+1))

≤ EσL
[rD(a1)|Hα

T+1] · 0 + (2 · σC(∅)[L] + 0 · σC(∅)[R]) · (1− 0) ≤ 2ε <
1

4

by (6.2), which implies ε < 1
8 , and since rD ≤ 2. Hence, also since rD ≤ 2, we

have

EσL
[rD] = EσL

[

T∑
s=1

rD(as)β
s−1 + g(h)] ≤ 1

4
+ 2

T∑
s=2

βs−1 + βT
||r||∞
1− β

Similarly, since PσR
(Hα

T+1) ≥ Pσ(Hα
T+1) > 1− ε and rD ≥ 0, and rD(a1) = 1 if

(a1, . . . , aT ) ∈ Hα
T+1,

EσR
[rD(a1)] ≥ EσR

[rD(a1)|Hα
T+1]PσR

(Hα
T+1) ≥ 1 · (1− ε) ≥ 3

4

Therefore, since rD ≥ 0 (and hence gD ≥ 0), and for any (a1, . . . , aT ) ∈ Hα
T+1,

rk(at) = 2 for all 2 ≤ t ≤ T ,

EσR
[rD] = EσR

[

T∑
s=1

rD(as)β
s−1 + gD(h)]

≥ 3

4
+ 2 · PσR

(Hα
T+1)

T∑
s=2

βs−1 ≥ 3

4
+ 2(1− ε)

T∑
s=2

βs−1
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where we have used again the fact that PσR
(Hα

T+1) ≥ Pσ(Hα
T+1) > 1 − ε. In

order to have EσR
[rD] > EσL

[rD] it is sufficient to require

3

4
− 2ε

T∑
s=2

βs−1 >
1

4
+ βT

||r||∞
1− β

which holds if

2ε

T∑
s=2

βs−1 + βT
||r||∞
1− β

<
1

2

and since T ≥ T1, this holds if

ε
1

1− β
+

1

2
βT1
||r||∞
1− β

<
1

4

This will hold if both terms are less than 1
8 , which follows from (6.3) and (6.2).

Proof. (Proof of Lemma 6.4) For each u ∈ {L,R}P, where P = {A1, A2, A3, A4},
let σu be the strategy profile in which σP

u (∅) = u, and σu agrees with σ other-

wise.25 z = σP(∅) must then be an equilibrium of the game with payoff

Eσu [rP] = rP[u] + ξ(u)

where

ξ(u) = Eσu
[

∞∑
s=2

rP(as)β
s−1]

If we can show that ||ξ(u) − ξ(v)||∞ < η for any two u, v ∈ {L,R}P, then
x = σ(∅) will be an η-equilibrium in the stage game r(·), since σC,D(∅) = (R,R)
by Lemma 6.3.

We have by Lemmas 6.2 and 6.3,

Pσ(∀2 ≤ s ≤ T − T1, as = L) = 1

and hence for 2 ≤ s ≤ T − T1,

Pσ(rP(as) ≡ 2) = 1

Furthermore, since Pσ(h) > 0 for all h ∈ Hα
T+1, σ(∅)[u] > 0 and σ(∅)[v] > 0 for

any u, v ∈ {L,R}P, hence Pσu
� Pσ and Pσv

� Pσ. Hence, for 2 ≤ s ≤ T −T1,

Eσu
[rP(as)] = Eσv

[rP(as)] ≡ 2

Hence, to show that ||ξ(u)− ξ(v)||∞ < η, it’s enough to require that

(
||r||∞ · βT−T1

1− β
=)

∞∑
s=T−T1+1

||r||∞βs−1 <
η

2

which follows from (6.3), since T − T1 ≥ T1.

25That is, σC,Du (∅) = σC,D(∅) and if q ∈ ∪∞t=2Ht, σu(q) = σ(q).
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