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Projections and Functions of Nash Equilibria

Yehuda John Levy∗†

October 16, 2015

Abstract

We show that any non-empty compact semi-algebraic subset of mixed
action profiles on a fixed player set can be represented as the projection
of the set of equilibria of a game in which additional binary players have
been added. Even stronger, we show that any semi-algebraic continu-
ous function, or even any semi-algebraic upper-semicontinuous correspon-
dence with non-empty convex values, from a bounded semi-algebraic set
to the unit cube can be represented as the projection of an equilibrium
correspondence of a game with binary players in which payoffs depend
on parameters from the domain of the function or correspondence in a
multi-affine way. Some extensions are also presented.

Keywords: Nash Equilibrium, Structure Theorem, Semialgebraic Geometry
JEL Classifications: C62, C65, C72

This work is dedicated to the memory of John Nash, who passed on during
revision of this manuscript.

1 Introduction

As Nash equilibrium is the most fundamental solution concept in game theory,
questions about the structure of Nash equilibria have received much attention.
It is clear that, given a finite collection of players and action spaces, not every
(non-empty, compact) set of mixed action profiles can arise as the set of Nash
equilibria of a game on these players. Hence, it is natural to question which sets
can arise.
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†The author is very grateful to Guillaume Vigeral and Yannick Viossat for discussions on

the topic - see Section 5.1 for a discussion on their work and how it compares to ours; to Xavier
Venel and Ron Peretz for their remarks; to Yakov Babichenko for bringing to my attention
the relation between my work and that on computational complexity; to Dominik Karos for
proofreading some sections; and to Abraham Neyman for his excellent introductory paper on
semi-algebraic sets with applications to game theory,[15], without which the author would
undoubtably have significantly less comprehension on the subject; and to two anonymous
referees for their suggestions and corrections.
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Nash equilibrium was defined by Nash (1950), [13], [14]. In the standard
non-cooperative framework, Nash equilibria are those profiles of actions, in the
mixed extension of the game (that is, in the extension in which players are al-
lowed to use randomised strategies), against which no player has an incentive
to unilaterally deviate. Nash equilibria are always guaranteed to exist (when
the player and action spaces are finite), and it follows easily that the the set of
Nash equilibria of a game is always compact. In addition, since Nash equilibria
are formally defined in terms of polynomial inequalities, the set of equilibria is
semi-algebraic.

It is clear from observing the cases of only one or two players that, once the
set of players is fixed, not every semi-algebraic, non-empty, compact subset of
mixed action profiles can be the set of Nash equilibria of some game. Even if the
player set is larger, once it has been fixed, algebraic techniques can give bounds
on the number of components it may possess, or even on the ’complexity’ of the
individual components; the set of equilibria also must satisfy a multi-convexity
property; see Section 2.4. Hence, a notable vein in the literature has been
to study the topological and/or algebraic structures of the set of equilibria. In
particular, it is known that every compact connected semi-algebraic set is home-
omorphic to a connected component of the set of Nash equilibria of some game;1

see [1] and the references within. Datta had already shown [7] that any algebraic
variety (i.e., a set defined via polynomial equalities) is stably isomorphic to the
set of completely mixed equilibria of a 3-player game, where this isomorphism
notion allows for semi-algebraic homeomorphisms and equivalences of the form
V × RK ∼ V . Bubelis [4] also gives a method of studying equilibria in general
games by studying those of 3-player games; see Section 5.4. However, these
results leave open questions on whether perhaps any compact semi-algebraic set
can arise precisely - and not just up to topological or algebraic equivalence - in
some way in the universe of Nash equilibria.

In this paper we present such a way. More specifically, given a non-empty
compact semi-algebraic set X of mixed action profiles, we show that one can
enlarge the player set by adding finitely many binary players, and define a game
G on the larger player set, such that the projection of the set of equilibria of G
to the actions of the original players is precisely X. As it turns out, at the same
time of our research, an almost identical question was researched via different
techniques by Guillaume Vigeral and Yannick Viossat, [19]. We contrast our
work to theirs in Section 5.1; we mention at this point that their techniques
do allow them to derive a bound on the number of additional binary players
required as a function of the set.

For the purpose of our main result (and in contrast to [19]), we actually
show a stronger result, which generalizes a strain of work from the literature on
the computational complexity of computing Nash equilibria. A central step in

1Semi-algebraic sets always possess finitely many connected components.
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the seminal paper of [6] is ”constructing games that perform simple arithmeti-
cal operations on mixed strategies”, [6, p. 215]. In this paper, we show that
any semi-algebraic continuous function from a bounded semi-algebraic set to the
unit cube can be represented as the projection of an equilibrium correspondence
of a game with binary players in which payoffs depend on parameters from the
function’s domain in a multi-affine way. We also generalize this result to upper
semi-continuous semi-algebraic correspondences with convex non-empty values.

Section 2 presents the model of games and equilibria, the notion of semi-
algebraic sets and some discussion on the restrictions on the set of Nash equilib-
ria. The results are stated in Section 3, along with some discussion and exam-
ples, and the proofs are given in Section 4. Section 5 discusses some extensions
and variations.

2 Games, Algebra, and Equilibria

2.1 Games

For a finite set of players I, with action spaces (Ai)i∈I , a game is a mapping
G :

∏
i∈I A

i → RI which assigns to each action profile a payoff for each player.
G extends multi-affinely to action profiles z ∈

∏
i∈I ∆(Ai), where ∆(Ai) denotes

the simplex of probability distributions on Ai, by

G(z) =
∑

a=(ai)i∈I∈
∏
i∈I

Ai

(∏
i∈I

zi[ai]
)
G(a)

We introduce the following notion which will be very useful for us: For
N ∈ N, an RN -parametrized game G[·](·) on a set of players I with action
spaces (Ai)i∈I is a game whose payoffs depend on a parameter x = (x1, . . . , xN )
in a multi-affine way: I.e., for each action profile a ∈

∏
i∈I A

i, each 1 ≤
k ≤ N , and each (xj)j 6=k = (x1, . . . , xk−1, xk+1, . . . , xN ) ∈ RN−1 the map-
ping x → G[x1, . . . , xk−1, x, xk+1, . . . , xN ](a) is affine, of the form a · x + b for
some a, b ∈ RI .

To understand a bit the meaning of an RN -parametrized game, by denoting
Gt = G[t] for each t ∈ {0, 1}N , we see that we can express

G[x] =
∑

t∈{0,1}N

( ∏
k,tk=1

xk
∏

k,tk=0

(1− xk)
)
Gt (2.1)

Hence, for x ∈ [0, 1]N , one can view the game G[x] as the expected game facing
the players as a result of the following process: There are 2N games, each for
one sequence of bits in {0, 1}N . Nature chooses the N bits independently, the
i-th bit with probably (xi, 1−xi), and the players simultaneously have to choose
their actions; their payoff is then assigned according to the game Nature chose
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and the actions played. Alternatively but similarly, instead of Nature, we could
have N binary players (in addition to the original I players) who are indifferent
between their two actions; hence, any action profile for these N can result in
equilibrium, and when they play the profile ⊗Nj=1(xj , 1−xj), the expected game
facing the players I is G[x1, . . . , xN ].

We adopt several conventions:

If J ⊆ I is a subset of players, GJ(z) denotes the payoffs to the play-
ers in J , and zJ denotes the mixed actions of the players in J ; formally,
GJ(z) = (Gi(z))i∈J , zJ = (zi)i∈J .

A binary player is a player with two actions, which we think of as ’1’ and
’0’, and instead of writing a mixed action as (p, 1 − p), we denote the mixed
action by the single number p ∈ [0, 1], the probability of ’1’. Similarly, if x =
(x1, . . . , xI) ∈ RI , we view x as a mixed action profile of binary players I, and
similarly sets X ⊆ [0, 1]I are viewed as sets of mixed action profiles.

2.2 Semi-Algebraic Sets and Functions

Let R[x1, . . . , xN ] denote the ring2 of polynomials in N variables, x1, . . . , xN .
A semi-algebraic subset of RN is a set of the form

∪mj=1 ∩
mj
i=1 {(x1, . . . , xN ) ∈ Rn | Pi,j(x) ∗i,j 0} (2.2)

for some finite collection (Pi,j)i,j ⊆ R[x1, . . . , xN ], where for each i, j, ∗i,j is one
of the relations >,<,≥,≤,=, 6=. The semi-algebraic sets form an algebra: I.e.,
they are closed under finite unions, finite intersections, and complements.

Equivalently (e.g., [3, Ch. 2]), semi-algebraic sets are those that can be
expressed as a formula in first-order logic whose atoms are of the form P (x) > 0
or of the form P (x) = 0 for some P ∈ R[x1, . . . , xN ]. In particular, we mention
the Tarski-Seidenberg theorem:

Theorem 2.1. Let A ⊆ RN be semi-algebraic, let πK : RN → RK denote the
projection to a subset K ⊆ {1, . . . , N} of coordinates. Then πK(A) is semi-
algebraic.

A semi-algebraic function f : A → RK , where A ⊆ RN , is one whose
graph Gr(f) := {(x, y) ∈ A × RK | y = f(x)} is semi-algebraic: It follows
from Theorem 2.1 that the domain A is semi-algebraic, and that the image
/ inverse image of a semi-algebraic set under a semi-algebraic function is also
semi-algebraic; it also follows that the composition of semi-algebraic functions
is semi-algebraic. A correspondence, denoted F : A =⇒ RK , assigns to each

2A ring is an algebraic structure with operations of addition and multiplication satisfying
certain axioms; we will not need to make use of the specific axioms, which can be found in
any introductory text on abstract algebra.
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x ∈ A a subset F (x) ⊆ RK ; a correspondence is semi-algebraic if its graph
Gr(F ) := {(x, y) ∈ A × RK | y ∈ F (x)} is semi-algebraic. Recall also that
F : A =⇒ RK is called upper semi-continuous if Gr(F ) is closed in A× RK .

2.3 Nash Equilibria

The Nash equilibria of a game G are those z ∈
∏
i∈I ∆(Ai) satisfying

Gj(z) ≥ Gj(b, z−j), ∀j ∈ I, b ∈ Aj

where z−j = (zi)i 6=j . It is easy to see that the set of Nash equilibria of a game
G with action sets (Ai)i∈I is a compact semi-algebraic set; indeed, it is the

collection of z ∈
∏
i∈I RA

i

, such that:

zj [b] ≥ 0, ∀j ∈ I, b ∈ Aj∑
b∈Aj

zj [b] = 1, ∀j ∈ I

∑
a∈

∏
(Ai)i∈I

(
∏
i∈I

zi[ai])Gj(a) ≥
∑

a∈
∏

(Ai)i∈I ,aj=b

( ∏
i∈I,i6=j

zi[ai]
)
Gj(a), ∀j ∈ I, b ∈ Aj

It’s easy to see similarly, using (2.1), that if G[·] is an RN -parametrized game,
then the correspondence EG : RN =⇒

∏
i∈I ∆(Ai), where EG(x) is the Nash

equilibria of G[x], is semi-algebraic and upper semi-continuous.

2.4 Sets Which Are Not Sets of Equilibria

To motivate our results, we first discuss limitations to the ’complexity’ the set
of Nash equilibria can have (given a collection of players).

Given a finite set of players I with finite action spaces (Ai)i∈I , not every
compact semi-algebraic subset X of

∏
i∈I ∆(Ai) can be the set of equilibria E

of some game. For example, if I consists of a single player, then E must be the
convex hull of pure strategies. If I consists of two players, it can be shown that
E must be the finite union of products of the form S1×S2 with Sj being a con-
vex polytype in ∆(Aj), [8]; one can also observe that the set of Nash equilibria
in two-player games must be bi-convex.3

Even for more players, even though the set of Nash equilibria can be some-
what richer (e.g., [4], [7]) not every compact semi-algebraic subset of the space
of mixed actions need be the set of equilibria of some game. Like in the two-
player case, the set of equilibria satisfies a multi-convexity property: If x, y are

3That is, if (x, y), (x, z) are equilibria and α ∈ [0, 1], then (x, αy + (1 − α)z) is also an
equilibrium, and similarly w.r.t. the first coordinate. Hence, for example, in a 2 × 2 game,
the set of profiles in which at least one player plays pure cannot be the set of equilibria of any
game. I am grateful to an anonymous referee for pointing this out.
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two equilibria profiles that differ only in the action of a single player, then any
convex combination is an equilibrium as well. To place further restrictions on
the set of equilibria, we recall:

Proposition 2.1. There is a function φ : N3 → N such that the set of solutions
of r polynomial equalities and inequalities in N variables of degrees4 at most
d ≥ 2 has at most φ(r,N, d) connected components.

Although we will not need it, we remark that a crude bound is φ(r,N, d) =
d(2d− 1)N+r−1, [5]; a better bound of rN ·O(d)N is given in [18].

In particular, we deduce from Section 2.3, since the set of Nash equilibria are
defined via |I| + 2

∑
j∈I |Aj | polynomial inequalities and equalities, of degrees

at most I, and is a subset of R
∑
j∈I |A

j |, that:

Corollary 2.2. There is a function ψ : N2 → N such that the number of
connected components of the set of Nash equilibria of any I-player game in
which Player k ∈ I has mk pure strategies is at most ψ(|I|,

∑
k∈I mk).

We can also always find connected sets which cannot be the set (or even a
component) of the set of Nash equilibria for the players I with action spaces
(Ai)i∈I . Again applying Proposition 2.1, we can deduce:

Corollary 2.3. There is a function ψ′ : N2 → N such that if E is the set
of Nash equilibria of any I-player game in which Player k ∈ I has mk pure
strategies, and P is an affine space of co-dimension 1,5 then E ∩P has at most
ψ′(|I|,

∑
k∈I mk).

Indeed, the restriction to P requires adding a single additional equality.
Hence, for example, for k ∈ N, define the function fk : [0, 1]→ [0, 1] by

fk(x) = 2k ·min{|x− 1

k
· n| | n ∈ Z}

and let L = {(x, y) ∈ R2 | y = 1
2}. (See Figure 1.) Let V : R2 →

∏
i∈I RA

i

be an injective affine map such that V ([0, 1]2) ⊆
∏
i∈I ∆(Ai). Then for k >

1
2ψ
′(|I|, (|Ai|)i∈I), V (Gr(fk)) cannot be the set of equilibria of any game, since

V (Gr(fk)) ∩ P has 2k components (all singletons) for any affine space P such
that V (R2) ∩ P = V (L).

3 Results

The main result of this paper is:

4The degree of a monomial is the sum of the degrees from all variables; e.g., the degree of
x3y2z is 6.

5That is, P ⊆
∏

i∈I RAi is of the form u+ V , where V is a linear space of dimension one

less than the space
∏

i∈I RAi .
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Figure 1: The Function f3 with the line L = {(x, y) | y = 1
2}.

Theorem 3.1. Let I be a finite set of players with finite sets (Ai)i∈I of actions,
and let ∅ 6= X ⊆

∏
i ∆(Ai) be compact and semi-algebraic. Then there exists a

set of binary players J , and a game G on the player set I∪J such the projection
of the set of equilibria of G to

∏
iA

i is X; i.e.,

X = {(zi)i∈I | z ∈
∏
i∈I

∆(Ai)×
∏
j∈J

∆({1, 0}) is an equilibrium of G}

From the examples and arguments in Section 2.4, we deduce that the size
of the set of additional binary players J in Theorem 3.1 cannot be bounded as
a function only of I and the (Ai)i∈I , but may be arbitrary large as a function
of the given compact semi-algebraic set X (even when X is connected). Our
proofs, in attempt to keep things simple and with the focus on using Theorem
3.2 below as our main tool, have not made an attempts to derive a bound on
the size of J as a function of X (e.g., on the number of polynomials needed
to define X). The parallel work of [19], which employs different techniques,
gives an alternative proof of Theorem 3.1 for the case that (Ai)i∈I are binary,6

and does give a bound as a function of the set X, which we discuss in Section 5.1.

Note also that the projection of the set of equilibria must be semi-algebraic
by Theorem 2.1, as well clearly as compact. Hence, clearly the conclusion of
Theorem 3.1 can not be strengthened to give more general sets.

6This is not a serious restriction, as one can then deduce the general case using Lemma
4.11 below.
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Although there are many questions for further research that could be posed,
we raise one at this point: Can the construction in Theorem 3.1 be done such
that the projection from the equilibria of G to X is injective? Even for relatively
simple sets (e.g., a line segment with a non-differentiable ’kink’ in it), we do not
know.

As mentioned above, the main step in proving Theorem 3.1 is the following
theorem, which is of interest in itself.

Theorem 3.2. Let A ⊆ RN be bounded and semi-algebraic; and let f : A →
[0, 1]K be a continuous semi-algebraic function. Then there exists an RN -
parametrized game G[·](·) on a set of binary players {α1, . . . , αK}∪ J such that
for each x ∈ A, in any equilibrium z of G[x], we have (zα1 , . . . , zαK ) = f(x).

In other words, any semi-algebraic function on a bounded semi-algebraic set
can be realised as the projection of the equilibrium correspondence of a game
with binary players in which payoffs depend multi-affinely on coordinates from
the function’s domain. As mentioned in the introduction, [6, Sec. 4] already
discusses such techniques when considering functions which represent arithmetic
operations.7 We remark that the theorem does not imply that the equilibrium
of G[x](·) is unique; only that the projection of the equilibria to the players
α1, . . . , αK is uniquely determined by x.

Theorem 3.2 was proven by the author in [12] for the case A = [0, 1], K = 1,
and f which is piece-wise linear. We remark that the semi-algebraicity and the
continuity is necessary by Theorem 2.1 and since the equilibrium correspon-
dence is upper-semicontinuous.

We will in fact strengthen Theorem 3.2 (although this is not needed for the
proof of Theorem 3.1):

Theorem 3.3. Let A ⊆ RN be bounded and semi-algebraic, and let F : A =⇒
[0, 1]K be an upper semi-continuous semi-algebraic correspondence with non-
empty convex values (i.e., ∀x ∈ A, F (x) 6= ∅ and is convex). Then there exists
a RN -parametrized game G[·] on a set of binary players {α1, . . . , αK} ∪ J such
that for each x ∈ A,

F (x) = {(zα1 , . . . , zαK ) | z is an equilibrium of G[x]} (3.1)

In other words, any semi-algebraic u.s.c. correspondence with non-empty
convex values on a bounded semi-algebraic set can be realised as the projection

7To quote, for example, from p. 214 there, ”...if a player v has two pure strategies, say 0
and 1, then every mixed strategy of that player corresponds to a real number p[v] ∈ [0, 1] which
is precisely the probability that the player plays strategy 1. Identifying players with these
numbers, we are interested in constructing games that perform simple arithmetical operations
on mixed strategies; for example, we are interested in constructing a game with two input
players v1 and v2 and another output player v3 so that in any Nash equilibrium the latter
plays the sum of the former, i.e., p[v3] = min(p[v1] + p[v2], 1).
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of the equilibrium correspondence of a game with binary players in which pay-
offs depend multi-affinely on coordinates from the function’s domain. Clearly,
by the same reasoning above, the upper-semicontinuity and semi-algebraicity
are necessary.

We remark that this theorem is not true if the convexity assumption is
dropped. Let F : [0, 1] =⇒ [0, 1] be defined by

F (x) =

 {0} if x < 1
2

{0, 1} if x = 1
2

{1} if x > 1
2

Suppose the conclusion of the theorem held for this F with an R-parametrized
game G[·] on a set of players {α} ∪ J . Then there is a connected component C
of the of set of equilibria of G[ 1

2 ] which is essential, i.e., for any neighbourhood
V of C, there is a neighbourhood U of 1

2 such that for y ∈ U , G[y] contains
equilibria in V ; see [9], or [10] for the related notion of stability. The projection
of C is connected. Hence, for any ε > 0 there is δ > 0 such that for any x1, x2,
with 1

2 − δ < x1 < 1
2 < x2 < 1

2 + δ, G[x1], G[x2] either must both contain
equilibria y with yα < ε, or must both contain equilibria y with yα > 1− ε.

It appears that the convexity assumption may be weakened somewhat, but
it is left for future research to determine the full class of correspondences for
which the result holds. (E.g., what if F is contractible-valued?)

3.1 Examples of Theorem 3.1

In this section we present three simple examples of Theorem 3.1. The first
introduces a useful component which will be used in the proofs. The third
demonstrates the technique used in the proof of Proposition 4.3.

Example #1: The Identity Function (Extended) Observe the following
useful R-parametrized two-player game (for q = 1

2 , this is the game matching
pennies):

H[q] =
−1, 1 4q − 1, 4q − 3

3− 4q, 1− 4q −1, 1
(3.2)

For 0 < q < 1, the unique equilibrium is (q, 1− q)⊗ (q, 1− q); for q ∈ {0, 1}, the
set of equlibria is {(q, 1 − q) ⊗ (w, 1 − w) | w ∈ [0, 1]}; for q > 1 (resp. q < 0)
the unique equilibrium is (1, 0)× (0, 1) (resp. (0, 1)× (1, 0)). Hence, denoting

u(x) = min[max[x, 0], 1] =

 1 if x ≥ 1
x if 0 ≤ x ≤ 1
0 if x ≤ 0

(3.3)

then for any q ∈ R and equilibrium (zα, zβ) of H[q], zα = u(q). A game
that gives a similar representation of the identity function in [0, 1] follows from

9



Lemma 4.11.

Example #2: Addition. Let + : [0, 1
2 ] × [0, 1

2 ] → [0, 1] be the addition
function. Define the R2-parametrized two-player game by G+[x, y] := H[x+ y],
where H is defined by (3.2). Again, for any x, y ∈ [0, 1

2 ], and equilibrium (zα, zβ)
of G[x, y], zα = x+ y.

Example #3: Define f : [0,
√

2
2 ]× [0,

√
2

2 ]→ [0, 1] by f(x, y) = x2 +y2. Define a
R2-parametrized 6-player game G[·](·) with binary players (α1, β1, α2, β2, α, β)
in the following way:

Gα1,β1 [x, y](u) = H[x](uα1 , uβ1)

Gα2,β2 [x, y](u) = H[y](uα2 , uβ2)

Gα,β [x, y](u) = H[uα1 · uβ1 + uα2 · uβ2 ](uα, uβ)

where recall that up denotes the mixed action - represented as up ∈ [0, 1] - of
Player p. Since Gα,β depends affinity on each other player’s action, Gα,β is
well-defined. If z is an equilibrium of G[x, y](·), then

zα1 = zβ1 = x, zα2 = zβ2 = y

Therefore, for mixed action profile v of α, β, we have

Gα,β [x, y](v, z−{α,β}) = H[x2 + y2](v)

and therefore zα = x2 + y2.

4 Proofs

To simplify notation, if α1, . . . , αn are players and J1, . . . , Jk are sets of players,
we write (α1, . . . , αn, J1, . . . , Jk) instead of {α1, . . . , αn} ∪ J1 ∪ · · · ∪ Jk.

4.1 Proof of Theorem 3.2

To facilitate the proof, we introduce the following terminology:

Definition 4.1. A function f : A → [0, 1] will be called exactly representable
if it satisfies the conclusion of Theorem 3.2; i.e., there is an RN -parametrized
game Gf [·] on a set of binary players {αf} ∪ Jf such that for any x ∈ A and
any equilibrium z of Gf [x], zαf = f(x).
It will be called representable if for some a, b ∈ R with a 6= 0, a · f + b is exactly
representable.

Theorem 3.2 states in particular (the case K = 1) that every continuous
semi-algebraic function from a bounded semi-algebraic set to [0, 1] is exactly
representable.
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4.1.1 Representable Functions

This section is dedicated to showing that the family of representable functions
is an algebra lattice (i.e., a vector space closed under multiplication and taking
of point-wise maxima/minima) which is closed under composition and contains
all polynomials.

Corollary 4.2. If D ⊆ RN and Λ : RN → R is affine in each coordinate,8 and
Λ(D) is bounded, then Λ is representable. If Λ(D) ⊆ [0, 1], then Λ is exactly
representable.

Proof. Let a 6= 0, b ∈ R such that a · Λ(D) + b ⊆ [0, 1]. (If Λ(D) ⊆ [0, 1], take
a = 1, b = 0.) Letting H be the R-parametrized game on two binary players
which represents the identity in [0, 1] in Example #1 of Section 3.1, we define

GΛ[x1, . . . , xN ](·) = H[Λ(x1, . . . , xN )](·)

which clearly obeys the required multi-affine conditions, and gives the required
game as 0 ≤ aΛ(D) + b ≤ 1; if x ∈ D and (zα, zβ) is an equilibrium of GΛ[x](·),
then zα = aΛ(x) + b.

Proposition 4.3. The composition of (exactly) representable functions is (ex-
actly) representable.

Proof. Let a1 · f1 + b1, . . . , aK · fK + bK , ag · g + bg (a1, . . . , aK , ag 6= 0) be
exactly represented by RN -parametrized games G1[·], . . . , GK [·] and an RK-
parametrized game Gg[·], on player sets (αj , Jj), j = 1, . . . ,K, and (αg, Jg),
respectively. (If f1, . . . , fK , g are exactly representable, take a1, . . . , aK , ag ≡ 1,
b1, . . . , bK , bg ≡ 0.) Define G on the set of players (αg, (αj)j , Jg, (Jj)j) by

Gαj ,Jj [x](z) = Gj [x](zαj ,Jj ), j = 1, . . . ,K

i.e., (αj , Jj) play as in Gj , while

Gαg,Jg [x](z) = Gg
[ 1

a1
(zα1 − b1), . . . ,

1

aK
(zαK − bK)

]
(zαg,Jg ) (4.1)

Clearly G[·] represents ag · g ◦ (f1, . . . , fK) + bg (via the player αg), since in any
equilibrium z of G[x], ∀j, zαj = ajfj(x) + bj , and

zαg = ag · g(
1

a1
(zα1 − b1), . . . ,

1

aK
(zαK − bK)) + bg

The following corollaries follow easily:

Corollary 4.4. A representable function f in A is exactly representable iff
0 ≤ f ≤ 1 in A.

8I.e., if 1 ≤ k ≤ N , and (xj)j 6=k ∈ RN−1, then the map R → R given by x →
Λ(x1, . . . , xj−1, x, xj+1, . . . , xN ) is affine.
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Corollary 4.5. The sum, difference, and product of finitely many representable
functions in a set A is representable in A.

Note that A need not be bounded in these last two corollaries.

Corollary 4.6. Every polynomial is representable on any bounded set.

Proposition 4.7. The functions RN → R given by (x1, . . . , xN )→ min[x1, . . . , xN ]
and → max[x1, . . . , xN ] are representable on any bounded subset of RN .

Proof. By Corollary 4.5 and Proposition 4.3, it suffices to show that the function
(x, y) → max[x, y] is representable in any bounded set D × D. Letting M =
supx∈D |x|, this follows from the above results and Example #1 of Section 3.1,
which establishes the representability of the function u given by (3.3), and the
observation

max[x, y] = M ·max[
1

M
(x− y), 0] + y = M ·

(
u(

1

M
(x− y))

)
+ y

4.1.2 Proof of Theorem 3.2 (For K = 1)

Proposition 4.8. Let ∅ 6= B ⊆ RN be an open semi-algebraic set. Then there
is a continuous function ψ : RN → R which is representable on any bounded
subset of RN , and such that ψ(x) > 0 if x ∈ B and ψ(x) = 0 if x /∈ B.

Proof. By the finiteness theorem (e.g., [3, 2.7.2]), since B is open, B can be
written as9

B = ∪ni=1 ∩
mi
j=1 {x ∈ RN | Pi,j(x) > 0}

for some polynomials (Pi,j)i=1,...,n;j=1,...,mi . Define φ : RN → R by

φ(x) = max
{

min{Pi,j(x) | j = 1, . . . ,mi} | i = 1, . . . , n
}

and then ψ : RN → R by ψ(x) = max[φ(x), 0]. ψ has the desired properties, and
is representable on any bounded set by Corollaries 4.6 and 4.7 and Proposition
4.3.

Lemma 4.9. Let U ⊆ A ⊆ RN be semi-algebraic, with U relatively open in A.
Then there is a semi-algebraic open set V ⊆ RN with V ∩A = U .

Proof. Denote B = A\U , which is also semi-algebraic; hence, so is its closure
(in RN ), B (e.g, [3, Prop. 2.2.2]). Since U is relatively open in A, U ∩ B = ∅;
hence, V := RN\B is open, semi-algebraic, and satisfies V ∩A = U .

9A little bit of thought shows that the fact that every open semi-algebraic set can be written
in this way - using only the strong inequalities - is not an obvious conclusion, although it may
appear so at first glance.
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Now we prove Theorem 3.2 for the case K = 1, i.e., f : A → [0, 1] with
A ⊆ RN being bounded and semi-algebraic. Define

B+ = {(x, y) ∈ A× [0, 1] | y > f(x)} (4.2)

B− = {(x, y) ∈ A× [0, 1] | y < f(x)} (4.3)

Note that B± are semi-algebraic and, due to the continuity of f , are relatively
open in A × [0, 1]. Let ψ+, ψ− : RN × [0, 1] → R be representable in A × [0, 1]
such that for each x ∈ A and y ∈ [0, 1], ψ+(x, y) > 0 (resp. ψ−(x, y) > 0)
if (x, y) ∈ B+ (resp. ∈ B−), and = 0 otherwise. To obtain such functions,
one applies Proposition 4.8 to open semi-algebraic sets whose intersection with
A × [0, 1] are precisely B+, B−, respectively, which exist by Lemma 4.9. Since
A is bounded, we may assume w.l.o.g. that ψ+, ψ− < 1 on A× [0, 1].

Let ψ+ (resp. ψ−) be exactly represented inA×[0, 1] by the RN+1-parameterized
gamesG+, G− with players (α+, J+) (resp. (α−, J−)). Then define on (αf , α+, J+, α−, J−)
the RN -parametrized game G[·](·) given by:

Gα+,J+ [x1, . . . , xn](z) = G+[x1, . . . , xn, z
αf ](zα+,J+)

Gα−,J− [x1, . . . , xn](z) = G−[x1, . . . , xn, z
αf ](zα−,J−)

Gαf [x1, . . . , xn](z) = −zα+ · zαf − zα− · (1− zαf )

G then clearly represents f . (See Figure 2.) Indeed, let z be an equilibrium of
G[x](·) for some x ∈ A. If zαf < f(x), then (x, zαf ) ∈ B− and (x, zαf ) /∈ B+, so
(since z is an equilibrium) zα− = ψ−(x, zαf ) > 0 while zα+ = ψ+(x, zαf ) = 0.
Therefore, −zα+ > −zα− , so (again, since z is an equilibrium) zαf = 1, a con-
tradiction. A similar contradiction is reached if zαf > f(x).

4.1.3 Proof of Theorem 3.2 (General Case)

Now suppose f = (f1, . . . , fK). Informally, we represent each of the fj on their
own and then play them ’independently’. Formally, for each 1 ≤ j ≤ K, there
is an RN -parametrized game Gj [·] on the set of binary players (αj , Jj) which
exactly represents fj . Then define the RN -parametrized game G[·] on the set
of players (α1, . . . , αK , J1, . . . , JK) by

Gαj ,Jj [x](z) = Gj [x](zαj ,Jj )

G is clearly the desired game.

4.2 Proof of Theorem 3.1

4.2.1 Proof of Theorem 3.1 (Binary Players)

First we assume the players in I are binary: Ai = {1, 0} for all i ∈ I. Recall in
such a case a mixed action profile of the players I is an element of [0, 1]I . Let’s
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Figure 2: The sets B+, B−.

say a subset X ⊆ [0, 1]I is representable if it satisfies the conclusion of Theorem
3.1; i.e., there is a set of binary players J and a game G on the set of players
I ∪ J such that the projection of the equilibria of G to RI is X. For brevity, for
a game G, let NE(G) be the set of equilibria of G.

Proposition 4.10. 1. Finite products of representable sets are representable;
i.e., if for j = 1, . . . ,M , Xj ⊆ [0, 1]mj is representable, then ×jXj ⊆
[0, 1]

∑
j mj is representable.

2. If X ⊆ [0, 1]I is representable and ψ : X → [0, 1]K is continuous and
semi-algebraic, then image(ψ) = ψ(X) is representable.

3. The sets [0, 1] and F := {0, 1
2 , 1} are representable.

Proof. 1. Intuitively, we play the games which represent each of the sets
independently. Formally: Let Gj be a game on a set of players Ij ∪ Jj
withXj = {zIj | zIj ,Jj ∈ NE(Gj)}. DefineG on a set of players ∪j(Ij∪Jj)
by GIj ,Jj (u) = Gj(u

Ij ,Jj ). Then ×jXj = {z∪iIi | z∪jIj∪Jj ∈ NE(G)}.

2. By Theorem 3.2, there is an RI -parametrized game Gψ[·] on a set of play-
ers K ∪ Jψ such that for each x ∈ [0, 1]I and any equilibrium z of Gψ[x],
zK = ψ(x). There is also a game GX on a set of players I ∪ JX such that
X = {zI | zI∪JX ∈ NE(GX)}.

Define then the desired game G on a set of players I ∪K ∪ Jψ ∪ JX by

GI∪JX (u) = GX(uI∪JX )

14



GK∪Jψ (u) = Gψ[uI ](uK∪Jψ )

3. The representability of [0, 1] is obvious. For F , take a 2 × 2 symmetric
coordination game.

Using the well-known triangulation of semi-algebraic sets, e.g., [3, Ch. 9], it
follows that for N = dim(X),10 X is the union of finitely many semi-algebraic
continuous images of [0, 1]N , and hence, for some M ∈ N, there is a continuous
semi-algebraic mapping ψ : [0, 1]N × FM → [0, 1]I such that image(ψ) = X.11

12 By parts (1) and (3) of Proposition 4.10, [0, 1]N×FM is representable; hence,
by part (2) of Proposition 4.10, X = image(ψ) is representable.

Hence, we have proved Theorem 3.1 when I consists of binary players.

4.2.2 Proof of Theorem 3.1 (General Players)

To move to the general case, we use:

Lemma 4.11. Given a finite set B of actions, there is an RB-parametrized
(|B| + 1)-player game, Gℵ[x], where Player α has action set B and the play-
ers (βj)j∈B are binary, such that for x ∈ ∆(B), any equilibrium13 z of Gℵ[x]
satisfies zα = x.

Proof. For each b ∈ B, x = (xb)b∈B ∈ RB and action profile y, define

Gβbℵ [x](1, y−βb) = yα[b]

Gβbℵ [x](0, y−βb) = xb

and

Gαℵ[x](b, y−α) =
1

2
− yβb

Since zα, x ∈ ∆(B), if zα 6= x, then we must have some b∗ ∈ B with zα[b∗] >
x[b∗] and some bo ∈ B with zα[bo] < x[bo]; but then we would have

Gβb∗ℵ [x](1, z−βb∗ ) > Gβb∗ℵ [x](0, z−βb∗ )

Gβb
o

ℵ [x](1, z−βbo ) < Gβb
o

ℵ [x](0, z−βbo )

and therefore, since z is an equilibrium,

zβb∗ [1] = zβbo [0] = 1

10The notion of the dimension of a semi-algebraic set is well-defined; for our purposes, it is
enough to know that there exists an N for which this decomposition is possible.

11This is where we use the non-emptiness of X.
12We could have used a set F of two elements, which is also representable - but the advantage

of three elements is that the equilibria of game representing can be taken to be stable; two
equilibria is a degenerate situation.

13If x is completely mixed, the equilibrium is also unique: each βj mixes equally.

15



so

Gαℵ[x](b∗, z−α) = −1

2
<

1

2
= Gαℵ[x](bo, z−α)

Since z is an equilibrium, zα[b∗] = 0 ≤ x[b∗], a contradiction to zα[b∗] > x[b∗].

Now, let I be a finite set of players with finite sets (Ai)i∈I of actions, and

let ∅ 6= X ⊆
∏
i∈I ∆(Ai) ⊆ [0, 1]∪iA

i

be compact semi-algebraic. By the already
established Theorem 3.1 for binary players, there is a game G on a set of binary
players {γi,b | i ∈ I, b ∈ Ai} ∪ J such that

X = {(zp)p∈{γi,b|i∈I,b∈Ai} ∈ R∪iA
i

| z is an equilibrium of G} (4.4)

Extend the game G by adding players (αi, Ji)i∈I , where Ji = {βi,b | b ∈ Ai},
the Ji being binary and αi having action set I, and payoffs defined by

Gαi,Ji(u) = Gℵ[(u
γi,b)b∈Ai ](u

αi,Ji)

with Gℵ defined in Lemma 4.11. G is then the desired game, as in any equilib-
rium z of G, zi = (zγi,b)b∈Ai , i.e., zi[b] = zγi,b for b ∈ B; then apply (4.4).

4.3 Proof of Theorem 3.3

4.3.1 Proof of Theorem 3.3 (The Case K = 1)

This proof follows precisely as the proof of Theorem 3.2 (the case K = 1) in
Section 4.1.2, except that the sets B+, B− are now defined by:

B+ = {(x, y) ∈ A× [0, 1] | ∀t ∈ F (x), y > t)}

B− = {(x, y) ∈ A× [0, 1] | ∀t ∈ F (x), y < t}

Indeed, by the upper-semicontinuity of F on A, the sets B+, B− are relatively
open in A × [0, 1]; they are also semi-algebraic by Theorem 2.1, as B+ is the
complement in A× [0, 1] of the projection of the set

{(x, y, t) ∈ A× [0, 1]× [0, 1] | (x, t) ∈ Gr(F ), y ≤ t)}

and similarly for B−.

4.3.2 Proof of Theorem 3.3 (General Case)

Now we prove the general version of Theorem 3.3 - i.e., for range of arbitrary
dimension K. We do so inductively; suppose K ≥ 2 and we have proven for
correspondences with range in K − 1 dimensions. Let F : A =⇒ RK be as in
Theorem 3.3, with A ⊆ RN semi-algebraic and bounded.

Define the projection of Gr(F ) to the first N +K − 1 coordinates,

Π = {(x, y1, . . . , yK−1) ∈ A×[0, 1]K−1 | ∃yK ∈ [0, 1] s.t. (x, y1, . . . , yK−1, yK) ∈ Gr(F )}
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By Theorem 2.1, Π is semi-algebraic; it is also easily seen (since F takes values
in the compact set [0, 1]K) to be bounded. Let H : Π =⇒ [0, 1] be such that
Gr(H) = Gr(F ), and by slightly abusive notation, let Π also denote the corre-
spondence Π : A =⇒ [0, 1]K−1 with graph Gr(Π). H,Π are then semi-algebraic,
and are seen to have non-empty convex values contained in [0, 1], [0, 1]K−1 re-
spectively.

By the induction hypothesis, there is an RN+K−1-parametrized game GH
on a set of binary players (αK , JH) such that for each (x, y1, . . . , yK−1) ∈ Π,

H(x, y1, . . . , yK−1) = {zαK | z is an equilibrium of GH [x, y1, . . . , yK−1]}

and there is an RN -parametrized game GΠ on a set of players (α1, . . . , αK−1, JΠ)
such that for each x ∈ A,

Π(x, y1, . . . , yK−1) = {(zα1 , . . . , zαK−1) | z is an equilibrium of GΠ[x]}

Now, define the RN -parametrized gameG[·] on the set of players (α1, . . . , αK−1, αK , JΠ, JH)
by

Gα1,...,αK−1,JΠ [x](z) = GΠ[x](zα1 , . . . , zαK−1 , zJΠ)

GαK ,JH [x](z) = GH [x, zα1 , · · · , zαK−1 ](zαH ,JH )

Clearly, if x ∈ A, z is an equilibrium of G[x] iff zαK ,JH is an equilibrium
of GH [x, zα1 , . . . , zαK−1 ] and (zα1 , . . . , zαK−1 , zJΠ) is an equilibrium of GΠ[x],
which can be iff zαK ∈ H(x, zα1 , . . . , zaK−1) and (zα1 , . . . , zαK−1) ∈ H(x), which
is iff (zα1 , . . . , zαK−1 , zαK ) ∈ H(x).

5 Extensions & Discussion

5.1 Bounds on Additional Players in Theorem 3.1 & Com-
parision to [19]

Our techniques do not give a bound on the size of the set of additional binary
players J needed in Theorem 3.1 in order to define a game whose projection
of equilibria onto the first I players coordinates is precisely X. One does see
that given a function represented explicitly using only polynomials, composition
of functions, and the maximum / minimum functions, it would not be difficult
to follow the construction of Section 4.1.1 to give a bound on the number of
players needed in the parametrized game used to represent the function in the
sense of Theorem 3.2. However, there is a difficulty using this bound to de-
duce a bound for the number of additional players needed in Theorem 3.2 for
more general functions, even given representation of the graph using polyno-
mials equalities/inequalities, and there is a further difficulty to make the leap
from a bound on additional players for functions in Theorem 3.2 to a bound on
additional players for sets in Theorem 3.1:
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In the first deduction, the problem arises that even given an explicit descrip-
tion of the graph of a function f as a semi-algebraic set, what we actually need
in Theorem 3.2 is not this description but descriptions of the strict epigraph
and strict hypograph of f (the sets B+, B− defined by (4.2) and (4.3) in Section
4.1.2) using only strict polynomial inequalities via the finiteness theorem; it is
unclear to what extent this complexifies the representation. In the second de-
duction, a problem arises since the proof of Theorem 3.1 from Theorem 3.2 uses
a triangulation and does so in an implicit, rather than explicitly constructive,
way; it is also not clear to what extent this complicates matters.

It is possible that both difficulties could be overcome using more carefully
techniques of computational geometry, but we have not attempted to do so.

The related work of [19] shows that in Theorem 3.1, if (Ai)i∈I are binary,
and X can be written14

X = ∪Nn=1 ∩Mm=1 {x ∈ RI | Pn,m(x) ≥ 0}

and dmax is a uniform bound on the maximal degree of any variable15 in the
polynomials (Pn,m), then we can bound the number of additional players J by

|J | ≤ 1 +M ·N + 2|I| · (1 + ln2(dmax))

If one deduces our Theorem 3.1 from the version of Theorem 3.1 in which all
action spaces are binary, via the argument used in Section 4.2.2, one can show
that in the general case, if

X = ∪Nn=1 ∩Mm=1 {
∏
i∈I

RA
i

| Pn,m(x) ≥ 0}

then
|J | ≤ 1 +M ·N +

∑
i∈I
|Ai| · (3 + 2 ln2(dmax)) + |I|

We remark that the work in [19] is different than ours in that the construc-
tion of the games there are very explicit, instead of going through results on
functions à la Theorem 3.2. This allows them to tweak the results to derive
other interesting conclusions, for example that if the set X of Theorem 3.1 con-
tains only rational points, then the payoffs in the game can be chosen to be all
integers (although it may require adding more players than otherwise needed).

5.2 Payoffs

It follows easily from Theorem 3.1 that:16

14As in Section 4.1.2, such a representation exists due to the finiteness theorem.
15For example, the maximal degree of x4 · y2 is 4.
16Our deduction of Theorem 5.1 from Theorem 3.1 is different from a parallel deduction

done in [19].
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Theorem 5.1. Let ∅ 6= P ⊆ RN be a compact semi-algebraic set. Then there
is K ≥ N and a K-player game G with binary players {α1, . . . , αK} such that
the projection of the set of equilibrium payoffs to G to the players {α1, . . . , αN}
is P ; precisely,

P = {(pα1 , . . . , pαN ) | (pα1 , . . . , pαK ) is an equilibrium payoff of G}

We remark that if N ≥ 3 and one would allow the players in the game G to
have arbitrarily large (but finite) action spaces, it is not clear that one cannot
suffice with K = N . (If N = 2, [11] shows that the set of Nash equilibrium
payoffs must be a finite union of rectangles.) This question is left for future
research.

Proof. Let a1, . . . , aN , b1, . . . , bN ∈ R, with a1, . . . , aN 6= 0, be such that for all
p = (p1, . . . , pN ) ∈ P and each 1 ≤ j ≤ N , 0 ≤ aj · pj + bj ≤ 1. Define

Q = {(ajpj + bj)1≤j≤N | (p1, . . . , pN ) ∈ P}

By Theorem 3.1, there are sets of binary players I, J , where I = {β1, . . . , βN},
and a game G on the set of players I ∪ J such that

Q = {(zβ1 , . . . , zβN ) | z ∈ (∆({0, 1})I∪J is an equilibrium of G}

Now extend G to the set of players {α1, . . . , αN} ∪ I ∪ J by

Gαj (y) =
yβj − bj
aj

It’s easy to see that this extension of G is the required game.

It follows in a similarly fashion from Theorem 3.3:

Theorem 5.2. Let A ⊆ RN be bounded and semi-algebraic, and let F : A =⇒
RK be an upper semi-continuous semi-algebraic bounded17 correspondence with
convex non-empty values.18 Then there exists an RN -parametrized game G[·](·)
on a set of binary players {α1, . . . , αM}, for some M ≥ K, such that for all
x ∈ A,

F (x) = {(pα1 , . . . , pαK ) | (pα1 , . . . , pαM ) is an equilibrium payoff of G[x]}

5.3 Countably Many Players

If I is an infinite set of players19 with finite action spaces (Ai)i∈I , we say that
G is a game on the set of players I if G :

∏
i∈I A

i → RI is continuous in the

17I.e., ∪x∈AF (x) is bounded.
18In particular, F may be a bounded continuous semi-algebraic function.
19I am grateful to Xavier Venel for posing to me the question of what one could derive if

one allowed for countable many players.
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Tychonoff topology.20 The payoffs extend naturally to mixed strategies.21 The
continuity requirement is equivalent to that for every i ∈ I and every ε > 0,
there is a finite set I0 ⊆ I such that if x, y are two action profiles (mixed or
pure) with xj = yj for each j ∈ I0, then |Gi(x)−Gi(y)| < ε.

Under this condition, [16] has shown that equilibrium (in mixed strategies)
exists; it is easy to show that the set of equilibria is compact.

We can use countably many players to generalize Theorem 3.2 to any contin-
uous function. The notion of RN -parametrized games extends to RN-parametrized
games with countably many players and countably many parameters when one
adds the requirement of continuity w.r.t. the Tychonoff topology jointly on
action profiles and on parameters.

Theorem 5.3. Let K,M ∈ N ∪ {∞}, A ⊆ RK be compact and let f : A →
[0, 1]M be continuous. Then there exists an RK-parametrized game G on a
countable set of binary players {αj}Mj=1 ∪ J such that for each x ∈ A, in any

equilibrium z of G[x], we have (zαj )Mj=1 = f(x).

Proof. As in Section 4.1.3, it suffices to treat the case M = 1; call such a
function exactly countably representable on A, or ECR.

Lemma 5.1. The family of ECR functions on A is closed under uniform limits.

Proof. We sketch a proof:

• Using techniques as in Section 4.1.1, one shows that the linear space
spanned by the ECR functions on A is a vector lattice closed under compo-
sitions, and that Corollary 4.2 extends to exact countable representability
for Λ : RN → [0, 1] when one requires Λ to be continuous.

• A standard argument, e.g. [17, Thm. 3.11],22 shows that if ψ is a uniform
limit of ECR functions, it can be written as ψ =

∑∞
k=1Mkψk, where

(Mk)∞k=1 is a sequence in R satisfying
∑∞
k=1 |Mk| < ∞, and each 0 ≤

ψk ≤ 1 is ECR.

• Combining these, with Λ(x1, x2, . . .) =
∑∞
k=1Mkxk, shows that if (ψk)∞k=1

are ECR on A, ψ =
∑∞
k=1Mkψk is ECR on A.

Theorem 5.3 now follows: By the Stone-Weierstrauss approximation theo-
rem,23 for each k ∈ N, we can find a polynomial24 pk satisfying 0 ≤ pk ≤ 1 in A

20This is equivalent to requiring that each player’s payoff is continuous in the Tychonoff
topology.

21The extension is well-defined because the assumed continuity w.r.t. the Tychonoff topol-
ogy implies Borel measurability and boundedness.

22In particular, the decomposition f = max[f, 0] − max[−f, 0] is useful to guarantee that
we can have ψk ≥ 0 for all k.

23It is here that the compactness of the domain is used.
24When K =∞, we emphasise this is a polynomial in finitely many coordinates.
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(which is clearly ECR by Theorem 3.2) and such that supx∈A |pk(x)− f(x)| ≤
1
k .

Theorem 3.1 also generalizes:

Theorem 5.4. Let I be a finite or infinitely countable set of players with finite
action spaces (Ai)i∈I . Let ∅ 6= X ⊆

∏
i∈I ∆(Ai) be compact. Then there exists

a countable set of binary players J and a game G on the set of players I ∪ J
such that

X = {(zi)i∈I | z ∈
∏
i∈I

∆(Ai)×
∏
j∈J

∆({1, 0}) is an equilibrium of G}

It suffices to prove the case in which the players I are binary; a profile of
mixed actions is then an element of [0, 1]I . The general case follows by the same
argument used in Section 4.2.2.

Like in Section 4.2.1, call a set which satisfies the conclusion of Theorem 5.4
countably representable. The parallel of Proposition 4.10, with almost identical
proof (except using Theorem 5.3 instead of Theorem 3.2), shows:

Proposition 5.2. 1. Countable products of countably representable sets are
countably representable.

2. If X ⊆ [0, 1]N is countably representable and ψ : X → [0, 1]I is continuous,
then image(ψ) = ψ(X) is countably representable.

3. F := {0, 1
2 , 1} is countably representable.

It is well-known, since X is compact and metrizable, that there is a contin-
uous surjective function ψ : FN → X, e.g. [2]. Hence it follows by Proposition
5.2 that any compact ∅ 6= X ⊆ RI is countably representable.

5.3.1 An Example

Take the set

A = {x, y ∈ [0, 1]2 | x = 0 or ∃n ∈ N, y = n · x}

(See Figure 3.) A is clearly compact but not semi-algebraic; if it were, then
A\{0} would be semi-algebraic but with infinitely many connected components,
an impossibility, e.g., [3, Thm. 2.4.4]. Now, define the following game G:

• The players are α, β, ζ and countably many pairs (γj , δj)j∈N. The players
are binary; actions are {0, 1}.

• Each pair (γj , δj) plays a game which has two pure equilibria (1, 1) and
(0, 0), e.g.,

1, 1 0, 0
0, 0 0, 0
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Figure 3: The Set A of the Example

• ζ is indifferent; Gζ ≡ 0.

• For a pure action profile uγ of the players (γj)j∈N, denote

n(uγ) = min{j ∈ N | uγj = 1}

where min ∅ =∞.

• For pure profile u,

Gα,β(u) = H[uζ/n(uγ)](uα, uβ)

where H was defined in (3.2) and ∗
∞ = 0.

These payoffs are easily checked to be continuous. Let (x, y) ∈ A. Then there
is an equilibrium z of the game with (x, y) = (zα, zζ): Indeed, write x = y

n (we
may have n = ∞). Define zζ = y, zα = zβ = y/n. Let zγj = zδj = 1 if j = n
and = 0 otherwise. z is easily seen to be an equilibrium. Conversely, if z is an
equilibrium, (zγj , zδj )j∈N are pure, and zα = zζ/n(z), so (zα, zζ) ∈ A.

5.4 Theorem 3.1 With Non-Binary Additional Players

In [4], a scheme for understanding equilibria of general games through equilibria
of 3-player games is presented. We will use this method to prove the following
variation of Theorem 3.1:

Theorem 5.5. Let I be a finite set of players with finite sets (Ai)i∈I of actions,
and let ∅ 6= X ⊆

∏
i ∆(Ai) be compact and semi-algebraic. Then there exists a

game G on a player set I ∪{µ, ν, η}, where µ, ν, η have some finite action spaces
Aµ, Aν , Aη, such that the projection of the equilibria of G to

∏
iA

i is X; more
precisely,

X = {(zi)i∈I | z ∈
∏

i∈I∪{µ,ν,η}

∆(Ai) is an equilibrium of G}
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Hence, it is possible to add only 3 additional players; however, their action
spaces can be arbitrarily large.25

It is not clear if this result can be improved to two additional players; how-
ever, it follows from the following proposition (and the discussion in Section 2.4)
that this result can not be improved to a single additional player:

Proposition 5.3. Let N ∈ N, and let A1, . . . , AN , AN+1 be finite action spaces.
Denote K = 1+(N +1)×

∏N
j=1 |AN |. Then for any game G with N +1 players

with action spaces A1, . . . , AN , AN+1, there is a subset BN+1 ⊆ AN+1 of size
at most K such that

{(zj)j≤N | (z1, . . . , zN , zN+1) is an equilibrium of G}
= {(zj)j≤N | (z1, . . . , zN , zN+1) is an equilibrium of G′}

where G′ denotes the restriction of G to the action spaces A1, . . . , AN , BN+1.

Proof. (Sketch) Each action of Player N + 1 can be viewed as a function of

profiles of the other players
∏N
j=1A

N to payoff profiles in RN+1, i.e., an element

of (RN+1)
∏N
j=1 A

N

. One then applies Caratheodory’s theorem to represent each
action as a convex combination of at most K actions.

In order to prove Theorem 5.5, we recall the terminology and a result from
[4]. Let (Ck)k∈K , (Dm)m∈M be finite action sets. Denote C =

∏
k∈k C

k, D =∏
m∈M Dm. A reduction scheme consists of partial mappings26 ρ : ∪k∈KCk →
∪m∈MDm, φ : M ×D → R, ψ : M ×D → K × C, such that dom(φ), dom(ψ) -
the domains of φ, ψ - form a partition of M ×D. Denote Ĉk = dom(ρ) ∩ Ck.

Let x (resp. y) be a mixed action profile in
∏
k∈K ∆(Ck) (resp.

∏
m∈M ∆(Dm)).

We say that x is generated by y if27

∑
ξk∈Ĉk

y[ρ(ξk)] 6= 0 and xk[ck] =
y[ρ(ck)]∑

ξk∈Ĉk y[ρ(ξk)]
, ∀k ∈ K, ck ∈ Ĉk (5.1)

and
xk[ck] = 0 ∀k ∈ K, ck ∈ Ck\Ĉk

Clearly each mixed profile in
∏
m∈M ∆(Dm) generates at most one profile

∏
k∈K ∆(Ck).

We say that a game GC on the action sets (Ck)k∈K reduces to the game GD on
the action sets (Dm)m∈M via the reduction scheme (ρ, φ, ψ) if:

• If (m, d) ∈ dom(φ), then GmD(d) = φ(m, d) ∈ R.

25Indeed, the discussion in Section 2.4 shows that we cannot hope to bound the sizes of
their action spaces without considering the structure of X.

26A partial mapping from U to V is a mapping from a subset of U to V .
27If dm ∈ Dm ⊆ ∪m′Dm′ , y[dm] = ym[dm]; this is convenient as ρ(ck), ρ(c′k) may belong

to different action spaces even if ck, c′k are both actions of Player k.
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• If (m, d) ∈ dom(ψ), then GmD(d) = GkC(c), where (k, c) = ψ(m, d) ∈ K×C.

• Any equilibrium of GD generates an equilibrium of GC .

• Any equilibrium of GC is generated by an equilibrium of GD.

Theorem 3 of [4] states:

Theorem 5.6. Let (Ck)k∈K be fixed finite action spaces. Then there exists a
reduction scheme by which any game on these action spaces reduces to a 3-player
game.

Remark 5.4. Note that in such a scheme, we must have Ĉk = Ck for each
k ∈ K - i.e., dom(ρ) = ∪k∈KCk - since no strategy not in Ĉk can be used in any
equilibrium; and we must have ρ being injective, since if i, j ∈ I, ai ∈ Ai, bj ∈ Aj ,
ρ(ai) = ρ(bj), then for any equilibrium x of any game on

∏
k C

k, we would have
xi[ai] > 0 iff xj [bj ] > 0.

We now construct a general technique, and deduce Theorem 5.5 easily from
it. Let I,K,M be sets of players with action spaces (Ai)i∈I , (C

k)k∈K , (D
m)m∈M .

Let (ρ, φ, ψ) be a reduction scheme from (Ck)k∈K to (Dm)m∈M as above, with
ρ being injective with domain ∪kCk, like the scheme guaranteed by Theorem
5.6 and Remark 5.4.

Let G0 be a game on the players I ∪ K. Define the R∪iAi-parametrized
G0[·](·) on the players K defined, for x ∈

∏
i∈I ∆(Ai) by G0[x](·) = GK0 (x, ·)

(i.e., the game induced for the players in K when the players I are restricted to

playing x), and then extended multi-affinely to R∪iAi .

Let S be the map from games on (Ck)k∈K to games on (Dm)m∈M induced
the reduction scheme (ρ, φ, ψ). Define the game G on the players I ∪M by:

GM ((yi)i∈I , (y
m)m∈M ) = (S ◦ (G0[(yi)i∈I ]))((y

m)m∈M ) (5.2)

which is well-defined as S is affine, and

GI [yI , yM ] = GI0(yI , xK)×
∏
k∈Ck

( ∑
ξk∈Ck

y[ρ(ξk)]
)

(5.3)

where xK ∈
∏
k∈K ∆(Ck) is defined by (5.1) (when Ĉk = Ck). By (5.1),

for each k ∈ K, the mapping (ym)m∈M → xk ×
∏
k∈Ck

(∑
ξk∈Ck y[ρ(ξk)]

)
is

linear. Since ρ is injective and the payoffs in GI0(yI , xK) depends affinely on each
coordinate of xK = (xk)k∈K , Gi[yI , yM ] depends affinely on each coordinate of
yM = (ym)m∈M . Note that G[·](·) then is induced by G in the same way G0[·](·)
is induced by G0; by restricting the action profiles of the players in I, and setting
G[y](·) = GM (y, ·). This is shown in the following diagram:

Lemma 5.5. Let x ∈
∏
i∈I ∆(Ai), let z ∈

∏
k∈K ∆(Ck) be an equilibrium of

G0[x](·), and let v ∈
∏
m∈M ∆(Dm) be an equilibrium of (S◦G0[x])(·) = G[x](·)

which generates z. Then (x, z) is an equilibrium of G0 iff (x, v) is an equilibrium
of G.
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G0
Restriction // G0[·](·)

S

��
G

Restriction→
// G[·](·)

←(5.2),(5.3)oo

Figure 4: The Construction

Proof. It suffices to show that x is an equilibrium of GI0(·, z) iff and it is an
equilibrium of GI(·, v). This follows since (5.3) implies that GI0(·, z) = GI(·, v)×∏
k∈Ck

(∑
ξk∈Ck v[ρ(ξk)]

)
.

Now, we prove Theorem 5.5, let ∅ 6= X ⊆
∏
i∈I ∆(Ai) be compact and semi-

algebraic. Let G0 be a game on a set of binary players I ∪ K such that the
projection of the Nash equilibria of G0 to

∏
i ∆(Ai) is X. Such G0 exists by

Theorem 3.1. Apply the above construction, Theorem 5.6, and Lemma 5.5 to
G0 to obtain a game G on a set of players I ∪M , where |M | = 3, such that the

projection of the Nash equilibria of G to
∏
iRA

i

is X.
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