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Chemoattractant gradients are usually considered in terms of sources and

sinks that are independent of the chemotactic cell. However, recent interest

has focused on ‘self-generated’ gradients, in which cell populations create

their own local gradients as they move. Here, we consider the interplay

between chemoattractants and single cells. To achieve this, we extend a

recently developed computational model to incorporate breakdown of extra-

cellular attractants by membrane-bound enzymes. Model equations are

parametrized, using the published estimates from Dictyostelium cells chemo-

taxing towards cyclic AMP. We find that individual cells can substantially

modulate their local attractant field under physiologically appropriate con-

ditions of attractant and enzymes. This means the attractant concentration

perceived by receptors can be a small fraction of the ambient concentration.

This allows efficient chemotaxis in chemoattractant concentrations that

would be saturating without local breakdown. Similar interactions in which

cells locally mould a stimulus could function in many types of directed cell

motility, including haptotaxis, durotaxis and even electrotaxis.
1. Introduction
Cell movement is fundamental throughout medicine and biology. In particular,

embryonic development is largely mediated by cells moving relative to one

another; immune responses are entirely dependent on white blood cells’ amoe-

boid migration, and cancer metastasis is fuelled by inappropriate movement of

tumour cells into the blood, lymph and surrounding tissues. Random move-

ment is an extremely inefficient way to move cells any distance, and limits

the ability of cells to explore. Hence, the steering of cell migration by gradients

of diffusible chemicals (chemotaxis), and its relatives haptotaxis and durotaxis,

is central to moving cells’ ability to move between defined sites.

In the mainstream view of chemotaxis described in most of the literature, the

gradients of attractants are imposed by external influences, and cells respond rela-

tively passively, simply reading the gradients and moving in response to them.

Recently, however, a new paradigm has emerged in which cells have the capa-

bility to alter local levels of ligand molecules [1,2]. This can lead to populations

of cells generating their own gradients in their local environment. This interaction

occurs in various biological contexts. For example, in Dictyostelium cells, cyclic

AMP (cAMP) is a key chemoattractant that mediates multicellular aggregation.

However, cAMP is broken down by secreted and membrane-bound phospho-

diesterases; without them, it cannot function [3–5]. Dictyostelium cells use an

alternative chemoattractant, folate, to locate their bacterial food; folate is broken

down, using a dedicated deaminase [6,7]. During zebrafish neural development,

the cells of the lateral primordium migrate in a chain that is driven by a self-

generated gradient. Migration requires the CXCR7 receptor, which recognizes

the chemokine SDF-1 [8]. However, the role of this receptor is not to transduce
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the SDF-1 signal but to sequester it and hence remove it from

the back of the primordium. This leads to a gradient in SDF-1

across the primordium that is actually read and responded to

by a separate receptor CXCR4.

Many other types of signalling molecule are used in self-

generated gradients. Growth factors, for example—one study

shows the ability of epithelial cells to migrate persistently

through microscopic mazes that are seeded initially with

homogeneous concentrations of epidermal growth factor

(EGF). Migration is achieved through the local depletion of

EGF, the restricted transport of EGF through the constrained

maze structure and the subsequent chemotactic response to

the locally self-generated EGF microgradients [9]. Similarly,

the lipid signal LPA is a key determinant of melanoma metas-

tasis [10]. Melanoma cells rapidly break down LPA, giving

gradients that are low inside and high outside tumours, and

provide a steering cue that directs cells out of the tumour.

Because self-generated gradients involve many feedback

loops, which can lead to unpredictable behaviour, they are

best analysed using mathematical and computational models.

The invasion of fibroblast cells in wound healing was con-

sidered in [11]. A one-dimensional model was constructed to

include the effect of breakdown of platelet-derived growth

factor (PDGF), which is both a chemoattractant and a mitogen,

through endocytosis of its receptor. The model is shown to pre-

dict an invasive wave of cells that dynamically maintain a

moderate gradient of PDGF at its leading edge. The invasive

wave is robust in the sense that it travels over large length

scales where the PDGF concentration varies over orders of mag-

nitude, and is not strongly affected by a range of PDGF secretion

rates. In [12], the authors consider a simple one-dimensional

model incorporating ligand diffusion, receptor expression and

receptor and ligand co-internalization in the vicinity of a

moving cell collective. The existence of a dynamically main-

tained travelling wave solution was established for the

coupled system. Furthermore, it was shown that movement of

the cell collective results in a higher ligand concentration at

the front of the collective compared with that at the rear, thus

creating a ligand gradient in the migration direction. This

self-generated chemotactic gradient therefore allows the cell col-

lective to migrate over large distances. In [7], an agent-based

approach was used to simulate the self-generated chemotaxis

of a population of cells. Simulations compared well with exper-

imental data from Dictyostelium cells migrating in an under agar

assay that was homogeneouslyseeded with the chemoattractant

folate. The agent-based model assumed that individual cells

move with a biased random walk with directional persistence

arising from an estimate of the difference in receptor occupancy

of the individual cells based on the local concentration of the

ligand field. Each agent breaks down the ligand, and a linear

diffusion model with time-dependent sinks is used to evolve

the ligand field in the extracellular region.

While the agent-based approach is flexible and relatively

easy to implement computationally, it does not account

for important effects such as changes to cell morphology

and individual cell polarization. In [13,14], we developed a

‘pseudopod-centred’ [15] model based on a three species

reaction–diffusion system involving an autocatalytic local

activator, a global inhibitor and a local inhibitor. The read-

out level of the local activator was used to drive a simple

biomechanical model of forces exerted on the cell membrane

by cortical tension and actin polymerization. External signals,

where present, steer the cells by slightly biasing their
endogenous movement. Using advanced numerical tech-

niques to solve the coupled biochemical and biomechanical

system equations, the computational model was remarkably

successful in capturing multiple aspects of real cell behaviour

including persistent cell migration in the absence of directional

signals and chemotaxis in shallow and steep gradient fields

[14]. The computational framework was extended recently

to model the coupling of physical processes in the extracellular

region with those taking place on an evolving cell membrane

[16]. This required the development of novel numerical

techniques to solve the resulting bulk-surface system of partial

differential equations (PDEs). In this paper, we couple the

pseudopod-centred model to enzymatic local degradation of

chemoattractants to study the ability of single cells, not the

populations used in previous work, to affect their own steering

by breaking down attractants. Previous studies of self-gener-

ated gradients typically consider populations of cells. By

fitting parameters to our equations using published estimates

from Dictyostelium responding to cAMP, we ensure that these

studies are physiologically relevant.

The layout of this paper is as follows. In the next section,

we introduce the model equations for cell polarization, cell

movement and interaction with an extracellular ligand field.

This section also includes details of the non-dimensionaliza-

tion of the model equations and the reference quantities

used based on parameter estimates in the literature. In §3,

we outline the numerical techniques used to approximate

the time-dependent coupled bulk-surface systems arising

from the model. The predictions using the computational

model are presented in §4. Finally, we make some con-

clusions and suggest some biological implications of our

results and suggestions for future research in §5.
2. Methods
2.1. Pseudopod-centred model for cell polarization and

movement
A schematic of the domains over which the model equations are

posed is shown in figure 1. The cell membrane G(t) is assumed to

move through a stationary laboratory frame of reference L. The

governing equations for the extracellular region are solved on

the evolving region between the cell membrane and a time-

dependent circular far-field boundary @V(t), which is located a

distance rf from the centroid of the intracellular region enclosed

by G(t). We assume that each material point P located at Xp(t)
on G(t), has velocity _XpðtÞ. Therefore, there exists a velocity

field u, so that points on G(t) evolve such that _XpðtÞ ¼ uðXpðtÞ,tÞ.
Let n ¼ (n1, n2) denote the unit outward normal to G(t), and

let N ðtÞ be any open subset of R2 containing G(t). For any func-

tion z which is differentiable in N ðtÞ, we define the tangential

gradient on G(t) by rGz ¼ rz� ðrz � nÞn, where � denotes the

usual scalar product and rz denotes the usual gradient on R2.

For a vector function z ¼ ðz1, z2Þ [ R2, the tangential divergence

is defined by

rG � z ¼ r � z�
X2

i¼1

ðrzi � nÞni:

The Laplace–Beltrami operator on G(t) is defined as the tan-

gential divergence of the tangential gradient DGz ¼ rG � ðrGzÞ.
The following set of equations was derived from a discrete

model proposed by Meinhardt [17]. The model describes the

interaction between a membrane-bound local autocatalytic acti-

vator a, a rapidly distributed global inhibitor b and a local

http://rsfs.royalsocietypublishing.org/
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Figure 1. We consider the simulation of a motile cell through a fixed laboratory frame of reference L. The cell membrane is denoted by G(t) and the extracelluar
region close to the cell is denoted by V (t) with far-field boundary @V (t). After a time interval of size Dt, the material point located at X p(t) on the cell
membrane G(t) evolves to the new location X p(t þ Dt).
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inhibitor c. Assuming that the cell boundary G(t) moves with

velocity u, then for x [ GðtÞ the equations take the form

@a
@t
þrG � ðuaÞ ¼ DaDGaþ sða2=bþ baÞ

ðsc þ cÞð1þ saa2Þ � raa, ð2:1Þ

@b
@t
þrG � ðubÞ ¼ DbDGb� rbbþ rb

jGðtÞj

þ
GðtÞ

a dx ð2:2Þ

and
@c
@t
þrG � ðucÞ ¼ DcDGcþ bca� rcc: ð2:3Þ

The linear rates of decay of the local activator, global inhibi-

tor and local inhibitor are denoted by ra, rb and rc, respectively.

The diffusion coefficients for the three species are denoted by

Da, Db and Dc. In the activator equation, sa is a saturation coeffi-

cient, sc is a Michaelis–Menten constant and ba is a basal

production rate of the activator. The rate of growth of the local

inhibitor c in the presence of the activator a is determined by

the constant bc. The signal term s incorporates the effect of any

external chemotactic field. Owing to the complexity of real cells

and the difficulty in obtaining definitive experimental data, at

this stage, we do not prescribe specific molecular realizations

to the activators and inhibitors in this model. We therefore

prefer to view the model as a top-down approach, where each

parameter can potentially represent several molecular species.

For example, SCAR/WAVE proteins could play the role of the

local activator leading to pseudopod actin nucleation [18].

Actin polymerization creates a protrusive pressure that

pushes the cell membrane outward in the normal direction. We

assume that the rate of polymerization is proportional to the con-

centration of the local activator. The effect of cortical tension is

modelled by a retractive force that is proportional to the local

curvature of the membrane. The cell membrane is therefore

assumed to evolve according to the geometrical evolution law

for the normal velocity

Vðx, tÞ ¼ Kprotaðx, tÞ � lðtÞk, x [ GðtÞ, ð2:4Þ

where Kprot is a positive constant and k denotes curvature.

Numerical experimentation with a constant cortical tension coef-

ficient can lead to large unphysical variations in the area

enclosed by G(t). We have therefore used a spatially constant

but time-dependent cortical tension factor which is the solution

of the dynamic equation

dl
dt
¼ l0lðA� A0 þ dA=dtÞ

A0ðlþ l0Þ
� bl: ð2:5Þ
Here, A0 is the initial area of the cell and b and l0 are positive

parameters. The solution of equation (2.5) is found using an

explicit Euler method, and the parameter values for b and l0

are the same as used in [13].

A more sophisticated model, which includes the effect of the

bending rigidity of the membrane, leads to a fourth-order geo-

metric evolution law [19]. Although more faithful to the

underlying physics, simulations presented in [19] suggest that

there is little qualitative difference in the resulting cell mor-

phologies and behaviour using this model compared with the

simpler second-order model (2.4).
2.2. Ligand diffusion in the extracellular region
We will assume that the material velocity u ¼ 0 in the extracellu-

lar region V(t) and the concentration of ligand evolves according

to the linear diffusion equation

@l
@t
¼ DDl, x [ VðtÞ, ð2:6Þ

where l denotes the ligand concentration and D is the extracellu-

lar ligand diffusion coefficient. At the far-field boundary, we

assume

lðx, tÞ ¼ hðxÞ, x [ @VðtÞ, ð2:7Þ

where h(x) corresponds to a fixed imposed field. At the cell mem-

brane, G(t), we assume that a chemoattractant ligand molecule L
binds to a receptor R at the rate k1 to form a receptor–ligand

complex LR. The complex LR can then disassociate at the rate

k�1 releasing the ligand L back off the membrane. We also

allow the possibility of the complex LR to diffuse laterally

along the membrane. Finally, we also assume that the total con-

centration of bound and unbound receptors is constant and takes

the value Rtot. The concentration of bound receptors, ls, therefore

evolves such that

@ls
@t
þrG � ðulsÞ ¼ DsDGls þ k1ðRtot � lsÞl� k�1ls,

x [ GðtÞ,
ð2:8Þ

where Ds is the membrane diffusion coefficient.
2.3. Enzyme degradation of extracellular ligand field
We now consider extending the model to include membrane-

bound enzyme degradation of the extracellular ligand field. We

http://rsfs.royalsocietypublishing.org/
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assume that a ligand molecule L first binds to a membrane-

bound enzyme molecule E at the rate kon forming an enzyme–

ligand complex LE. The complex can disassociate at the rate

koff, or go on to form a product P and the original enzyme mol-

ecule at the rate kcat. Assuming a quasi-steady state in the

concentration of LE and that the total number of enzyme mol-

ecules (bound and unbound) is fixed at Etot, then it can be

shown that

dp
dt
¼ Vmax

l
Km þ l

� �
, ð2:9Þ

where p is the concentration of product, Vmax ¼ kcatEtot is the

maximum rate of degradation at a saturating ligand concen-

tration, and Km ¼ ðkoff þ kcatÞ=kon is the Michaelis–Menten

constant [20]. A balance of fluxes of ligand molecules at the

moving cell membrane is expressed in terms of the normal flux

boundary condition

�D
@l
@n

����
GðtÞ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Diffusive flux

þ ðu � nÞljGðtÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Advective flux

¼ k1ðRtot � lsÞljx[GðtÞ � k�1ls � Vmax
l

Km þ l

� �����
x[GðtÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Rate of surface reaction

, ð2:10Þ

where the cell is advancing into the extracellular region,

ðu � nÞ . 0, leading to an advective flux onto G(t). Where the

cell is retracing away from the extracellular region, ðu � nÞ , 0,

leading to a flux off of G(t). This asymmetry in terms of the

advective flux can potentially lead to increased ligand flux at

the advancing edge of a cell and less at its receding edge. Cell

movement can therefore potentially result in a positive feedback

of increased ligand concentration at the cell front thus stabilizing

the current direction of motion.
2.4. Intrinsic noise
Determining the concentration of bound receptors, ls allows the

estimation of the local fractional receptor occupancy

Roðx, tÞ ¼ lsðx, tÞ
Rtot

: ð2:11Þ

In the absence of any external cues, it has been observed that cer-

tain cells move randomly. We therefore include an intrinsic noise

component that is independent of the external chemotactic

signal. For this purpose, we assume that the intrinsic noise ht

satisfies a stochastic differential equation of mean reverting

type [13]. The combined effect of the response to the external

signal and random intrinsic noise is modelled by the term

sðx, tÞ ¼ raðht þ Roðx, tÞÞ,

which feeds in multiplicatively to the autocatalytic activator

equation (2.1).
2.5. Equation non-dimensionalization
For computational purposes, we next non-dimensionalize the

coupled bulk-surface system of equations (2.6), (2.8) and (2.10).

To do this, we define the non-dimensional variables

�x ¼ x

L�
, �l ¼ l

l�
, �t ¼ t

t�
and �D ¼ D

L2
�=t�

, ð2:12Þ

where L* is a characteristic length scale, l* is a characteristic ligand

concentration and t* is a characteristic time scale. In terms of the

non-dimensional variables, the ligand diffusion equation (2.6)

takes the form

@�l
@�t
¼ �D�D�l, ð2:13Þ
where �D denotes the Laplace operator with respect to the non-

dimensional spatial variables. The non-dimensional variables

associated with processes at the membrane take the form

�ls ¼
ls
ðlsÞ�

, �u ¼ u

L�=t�
, �Ds ¼

Ds

L2
�=t�

, �Vmax ¼
t�
ðlsÞ�

Vmax ð2:14Þ

and

�Rtot ¼
Rtot

ðlsÞ�
, �k1 ¼

k1

1=ðt�l�Þ
, �k�1 ¼

k�1

1=t�
, �Km ¼

Km

l�
,

where ðlsÞ� is a characteristic concentration of the ligand–

receptor complex. In terms of these variables, equation (2.8)

can be written as

@�ls
@�t
þ �r�G � ðu�lsÞ ¼ �Ds

�DG
�ls þ �k1ð�Rtot � �lsÞ�lj�x[�GðtÞ � �k�1

�ls: ð2:15Þ

Finally, if ðlsÞ� ¼ l�L�, the normal flux condition (2.10) can be

expressed as

� �D
@�l
@n

����
�GðtÞ
þ½ð�u � nÞ��lj�GðtÞ ¼ �k1ð�Rtot � �lsÞ�lj�x[�GðtÞ � �k�1

�ls

� �Vmax

�l
�Km þ �l

� �����
�x[�GðtÞ

: ð2:16Þ

The non-dimensionalized equations therefore take exactly the

same form as the original dimensional equations as long as

ðlsÞ� ¼ l�L�.

2.6. Choice of reference scales
2.6.1. Time scale
The reference time scale t* is chosen such that the cell speed

obtained from the numerical simulations is 10 mm min21 which

is approximately the speed of a migrating Dictyostelium cell. In

the numerical experiments, we have used the reference time

scale t* ¼ 1/80 s.

2.6.2. Length scale
The non-dimensional initial radius of the cell in the simulations is
�r ¼ 0:1. Assuming an initial cell radius r0 ¼ 5 mm [21], we there-

fore have a reference spatial scale L* ¼ 50 mm.

2.6.3. Ligand and receptor concentration scales
In the simulations that follow, the reference ligand concentration is

l* ¼ 1 nM. For the non-dimensional and the dimensional flux con-

ditions to be equivalent, we therefore set ðlsÞ�¼ l�L�¼ 1 nM

50 mm. With the reference scales chosen above, the non-dimensional

values for all simulation parameters are therefore specified

according to (2.12) and (2.14).
3. Numerical solution of model equations
The solution of the model equations poses a considerable

computational challenge involving the approximation of non-

linear systems of reaction–diffusion systems on evolving

curves coupled to a diffusion equation on an evolving two-

dimensional domain. Motivated by the desire to model

complex problems in biology and the physical sciences, the

numerical solution of bulk-surface PDEs is an area that has

received much attention recently. Specific studies include the

development and analysis of finite-element discretization

methods for steady-state problems on stationary domains

[22], and the application of finite-element methods to time-

dependent problems on stationary domains [23,24]. The

situation is made far more complicated, however, once the

http://rsfs.royalsocietypublishing.org/


Table 1. Dimensional parameters used in the model of cell migration
based on Dictyostelium discoideum cells and the ligand cyclic AMP.

quantity symbol typical value

diffusion coefficient of

ligand

D 4.44 � 102 mm2 s21 [27]

diffusion coefficient of

receptor – ligand complex

Ds 1 � 1021 mm2 s21 [28]

enzyme Michaelis – Menten

constant

Km 0.75 mM [3]

ligand disassociation rate k�1 1 s21 [29]

ligand association rate k1 1/30 nM21 s21 [29]

number of receptors

per cell

Nrec 75 000 [30]

radius of cell r0 5 mm [21]

ligand concentration (nM)
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Figure 2. Simulated ligand concentration and receptor occupancy for a stationary circular cell with no breakdown. The far-field concentration corresponds to a
saturating field on which is imposed a shallow 2% linear gradient in the ligand concentration from the back to the front of the cell.
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bulk and surface domains are time-dependent, and the surface

domain is driven by solution components on the surface that

are changing dynamically themselves. Here, we outline only

the computational techniques used here with detailed descrip-

tions given in [13,16]. The reaction–diffusion system (2.1)–(2.3)

is approximated, using an arbitrary Lagrangian evolving finite-

element method (ALE–FEM) [25]. The ALE framework is

necessary when the time-dependent computational mesh

does not necessarily move with the material velocity of individ-

ual mesh points. The approximation of the cell membrane is

obtained using a novel adaptive moving mesh method that

moves mesh points in the normal direction with a velocity

determined by the geometrical evolution law (2.4). The

method simultaneously moves points in the tangential direc-

tion to increase the resolution of solution features or rapid

changes to the cell morphology as well as maintaining the over-

all quality of the mesh. The bulk diffusion equation is

approximated using an ALE–FEM method with piecewise

linear elements on an evolving triangular mesh. The bulk

mesh is generated using an adaptive approach based on the

solution of a system of moving mesh partial differential

equations (MMPDEs) [26]. Finally, the coupling of the solution

components between the bulk region and the cell membrane is

achieved, using a predictor–corrector approach based on a

second-order Crank–Nicolson time integration scheme.

For the numerical simulations, we have assumed an initial

circular cell radius r0 ¼ 5 mm. The non-dimensional par-

ameter values for the Meinhardt system (2.1)–(2.3) and the

mechanical response to the activator level (2.4) are those

used in [13,16]. The physical parameters used for the ligand

diffusion model, receptor binding–unbinding and enzyme

degradation are based on estimates in the literature for

Dictyostelium cells and are given in table 1.
4. Results and discussion
4.1. Effect of breakdown
To investigate the effect of enzyme breakdown, simulations

were first performed using a stationary circular cell embedded

in a linear gradient of chemoattractant. In terms of polar

coordinates, the initial ligand concentration is set to

lðuÞ ¼ lm þmr sinðuÞ, 0 � u � 2p, ð4:1Þ
where lm is the ligand concentration when u ¼ 0,p and m the

gradient. At the far-field boundary, the ligand concentration

is kept fixed at its initial value. The initial ligand field at

the back of the cell is determined by an imposed equilibrium

receptor occupancy R0, so that

linit
back ¼

RoKd

1� Ro
,

where Kd ¼ k�1=k1 is the receptor disassociation constant. The

initial ligand field at the front of the cell is then set to a given

percentage increase on that at the back of the cell and this

then allows the determination of the linear gradient m.

Simulations were performed using a saturating ligand

concentration which results in 95% of available receptors

(R0 ¼ 0.95) being occupied. A very shallow 2% gradient in

the initial ligand concentration from the back to the front of

the cell was then imposed. Figure 2 shows the computed

steady-state ligand field in the absence of breakdown. We

can see that the interaction of the cell membrane receptors

alone has a limited effect on the linear field close to the cell.

This is due to the inability of the receptors to sequester

enough ligand molecules to the cell surface. We see further

that the gradient in the receptor occupancy is extremely
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small, and the absolute value of the receptor occupancy is very

close to the initial saturating level. By contrast, figure 3 shows

equivalent results when Vmax ¼ 1000 nmoles per 107 cells per

minute. We can see that receptor occupancy has been reduced

to levels corresponding to a ligand concentration level compar-

able to the receptor disassociation constant Kd ¼ 30 nM. Larger

values of Vmax lead to significant degradation of the ligand

field, so that noise dominates the chemotactic signal. On the

other hand, smaller values of Vmax lead to insufficient degra-

dation and receptor saturation and loss of chemotactic

efficiency. The value of Vmax used here is somewhat larger

than that reported in the literature. For example, Malchow

et al. [31] find that Vmax ¼ 1.8 nmoles per 107 cells per minute

for aggregative stage Dictyostelium cells. It is important to

point out, however, that the membrane ligand concentration

also depends on the extracellular diffusion coefficient. In the

simulations presented here, we have used a value in the litera-

ture for cAMP diffusing in agar. However, cAMP is multiply

charged, so will interact with other charged molecules in its

neighbourhood, so its effective diffusion coefficient will be
lower. Degradation of the ligand field towards Kd-like levels

would then require a far smaller breakdown rate.

4.2. Ligand breakdown modulates external chemotactic
signals in a saturating environment

We next allow the cell to move in the same saturating linear

chemotactic field considered above. In the simulations that

follow, we set Vmax ¼ 1000 nmol min21 per 107 cells. Figure 4a
shows five time-lapsed frames of the computed ligand field

and position of the cell. We can see that the effect of ligand

breakdown and cell movement leads to a narrow depletion

zone around the moving cell that displays an elongated mor-

phology with generally two pseudopods driving the

migration of the cell at its front. While the cell initially moves

in the wrong direction, after a short period it is able to discern

the shallow gradient and then directs its movement upgradient.

The polarized nature of the local activator concentration driving

the cell motion can be seen in figure 4b. As seen in multiple real

cell types, directed cell migration is a result of a biased selection
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of pseudopods generated at the front of the cell mainly by a

pseudopod splitting mechanism [32].

The computed ligand concentration and receptor occu-

pancy on the evolving cell membrane are shown in

figure 5. We can see that the ligand concentration has been

degraded significantly to a level well below the value of Kd.

The maximum value occurs at the cell pseudopods, whereas

the minimum occurs in proximal lateral regions. There is

therefore a significant lateral gradient in the ligand field

resulting in a considerable relative difference. We see that

the resulting receptor occupancy ranges from around 8% to

20%, and at this level, it is possible for the cell to modulate

the generation of pseudopods leading to directed migration.

Figure 6a shows the trajectories of the centroids of 16

simulated cells over a time period of 20 min. All of the cells

display a biased random walk behaviour, with all but one

of them ending up with a net movement in the direction of

the chemoattractant gradient. To quantify the directional

data, a rose plot of the angle between the straight line joining

the initial cell position and the cell centroid at t ¼ 20 min is

shown in figure 6b. The resultant vector of all the cell dis-

placements is shown in red indicating strong evidence of

chemotaxis. A Rayleigh test [33] was carried out to investi-

gate the null hypothesis that the population is distributed
uniformly around the circle. The test was implemented

using the Matlab toolbox CircStat [34]. A calculated value

of p ¼ 2 � 1024 strongly supports evidence of directional

migration. We have also calculated the chemotactic index
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(CI) of each simulated cell, which is defined here as the ratio

of the displacement in the gradient direction to the total

length of the cell trajectory. Figure 7 shows a box plot of

the distribution of CI. The mean value CI ¼ 0:26 compares

well with the experimentally observed value of CI ¼ 0:25

obtained using a similar linear chemotactic field with an

initial mean concentration of 500 nM and gradient

jrlj ¼ 1 nM mm21 [35].
4.3. Breakdown and cell migration in an initially
homogeneous ligand field

Simulations were performed to test the ability of the modelled

cells to migrate in an initially homogeneous ligand field.

A saturating concentration l ¼ 570 nM was used correspond-

ing to 95% receptor occupancy. Figure 8 shows four

snapshots of the computed ligand field in the extracellular

region close to a typical migrating cell. We can see that

enzyme degradation of the ligand field close to the cell has

resulted in a narrow depletion zone where the concentration

drops dramatically from the saturating far-field value to a

value resulting in a mean receptor occupancy of around 15%.
The cell displays undirected persistent cell migration even

though the homogeneous far-field concentration would nor-

mally lead to receptor saturation.

Figure 9a shows the trajectories of the centroids of 16 simu-

lated cells over a time period of 20 min. All of the cells display a

persistent random walk behaviour with no apparent overall

directional bias. The rose plot and the resultant vector shown

in figure 9b indicate that there does not appear to be a pre-

ferred mean migration direction. The Rayleigh value p ¼ 0.91

suggests that there is no evidence to reject the null hypothesis

that the angular information is uniformly distributed.
5. Conclusion
We have presented simulations suggesting that single cells can

radically change their local chemoattractant levels, in initially

saturating environments. Given a correctly tuned degree of

breakdown, the ligand field at the membrane can be modu-

lated allowing cell receptors to accurately read off shallow

gradients leading to efficient chemotaxis. This has strong impli-

cations for the generality of self-generated chemotaxis, as well

as the dynamic range of chemotactic responses.
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In this work, we have assumed ligand breakdown takes

place via the activity of membrane-bound enzymes. Ligand

degradation can also be achieved using secreted enzymes.

Future work will look at the modelling of these additional

mechanisms to determine if there are significant differences

in migratory behaviour. In our current model, we have also

ignored the effect of receptor internalization and receptor

expression. These more realistic assumptions can be included

as considered in [36] and it remains to be seen under which cir-

cumstances these processes have an effect on self-generated

chemotaxis. We also plan to investigate the use of near-field

boundary conditions based on Green’s functions [37,38]

rather than the use of Dirichlet conditions corresponding to

an undisturbed field. These should ensure that the compu-

tational mesh is not needed to extend far from the evolving

cell when diffusion is fast.

The computational model used here has been applied to

single cell migration. There is great interest of course on how

populations of cells interact, especially when they individually

and collectively generate their own chemotactic gradients. We

plan to extend the computational framework presented here

to investigate the interaction of multiple cells. This will require

a procedure for dealing with overlapping computational

domains of each individual cell. One possibility is the use of

overlapping domain decomposition techniques where each

cell can be simulated in parallel thus reducing the overall com-

putational cost. We do believe, however, that the detailed

information gained through simulations of single cells or the

interaction of a few cells could be used to better inform

agent-based approaches and the use of macroscopic models
using partial differential equations to evolve cell density

fields [39,40]. Currently, such models usually presume that

individual cells perceive the concentration of chemoattractant

in the bulk medium, in a large-scale gradient. The work we

have described shows both presumptions are inaccurate.

Taking local breakdown into account, cells may perceive only

a small fraction of the bulk attractant concentration, which

depending on the level of receptor saturation may make the

attractant cause a greater or smaller change in the signal per-

ceived by the cell. Similarly, breakdown may reshape the

local steepness of gradients as well as their amplitude. The

effect of local attractant breakdown should therefore be con-

sidered even in larger-scale models.
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8. Donà E et al. 2013 Directional tissue migration
through a self-generated chemokine gradient.
Nature 503, 285 – 289.

9. Scherber C, Aranyosi AJ, Kulemann B, Thayer SP,
Toner M, Iliopoulos O, Irimia D. 2012 Epithelial cell
guidance by self-generated EGF gradients. Integr.
Biol. 4, 259 – 269. (doi:10.1039/c2ib00106c)

10. Muinonen-Martin AJ et al. 2014 Melanoma cells
break down LPA to establish local gradients that
drive chemotactic dispersal. PLoS Biol. 12,
e1001966. (doi:10.1371/journal.pbio.1001966)

11. Haugh JM. 2006 Deterministic model of dermal
wound invasion incorporating receptor-mediated
signal transduction and spatial gradient sensing.
Biophys. J. 90, 2297 – 2308. (doi:10.1529/biophysj.
105.077610)

12. Streichan SJ, Valentin G, Gilmour D, Hufnagel L.
2011 Collective cell migration guided by
dynamically maintained gradients. Phys.
Biol. 8, 04004. (doi:10.1088/1478-3975/8/
4/045004)

13. Neilson MP, Mackenzie JA, Webb SD, Insall RH. 2011
Modelling cell movement and chemotaxis using
pseudopod-based feedback. SIAM J. Sci. Comput. 33,
1035 – 1057. (doi:10.1137/100788938)
14. Neilson MP, Veltman DM, van Haastert PJM, Webb SD,
Mackenzie JA, Insall RH. 2011 Chemotaxis: a feedback-
based computational model robustly predicts multiple
aspects of real cell behaviour. PLoS Biol. 9, e1000618.
(doi:10.1371/journal.pbio.1000618)

15. Insall RH. 2010 Understanding eukaryotic
chemotaxis: a pseudopod-centred view. Nat. Rev.
Mol. Cell Biol. 11, 453 – 458. (doi:10.1038/nrm2905)

16. MacDonald G, Mackenzie JA, Nolan M, Insall RH.
2016 A computational method for the coupled
solution of reaction-diffusion equations on evolving
domains and manifolds: application to a model of
cell migration and chemotaxis. J. Comput. Phys.
309, 207 – 226. (doi:10.1016/j.jcp.2015.12.038)

17. Meinhardt H. 1999 Orientation of chemotactic cells
and growth cones: models and mechanisms. J. Cell
Sci. 112, 2867 – 2874.

18. Insall RH, Machesky LM. 2009 Actin dynamics at the
leading edge: from simple machinery to complex
networks. Dev. Cell. 17, 310 – 322. (doi:10.1016/j.
devcel.2009.08.012)

19. Elliott CM, Stinner B, Venkataraman C. 2012
Modelling cell motility and chemotaxis with
evolving surface finite elements. J. R. Soc. Interface
9, 3027 – 3044. (doi:10.1098/rsif.2012.0276)

20. Cornish-Bowden A. 2013 The origins of enzyme
kinetics. FEBS Lett. 587, 2725 – 2730. (doi:10.1016/
j.febslet.2013.06.009)

http://dx.doi.org/10.1016/j.ceb.2016.04.003
http://dx.doi.org/10.1016/j.ceb.2016.04.003
http://dx.doi.org/10.1016/j.ceb.2014.05.010
http://dx.doi.org/10.1016/j.ceb.2014.05.010
http://dx.doi.org/10.1042/BJ20061153
http://dx.doi.org/10.1006/dbio.1997.8720
http://dx.doi.org/10.1091/mbc.E09-03-0223
http://dx.doi.org/10.1371/journal.pbio.1002404
http://dx.doi.org/10.1371/journal.pbio.1002404
http://dx.doi.org/10.1039/c2ib00106c
http://dx.doi.org/10.1371/journal.pbio.1001966
http://dx.doi.org/10.1529/biophysj.105.077610
http://dx.doi.org/10.1529/biophysj.105.077610
http://dx.doi.org/10.1088/1478-3975/8/4/045004
http://dx.doi.org/10.1088/1478-3975/8/4/045004
http://dx.doi.org/10.1137/100788938
http://dx.doi.org/10.1371/journal.pbio.1000618
http://dx.doi.org/10.1038/nrm2905
http://dx.doi.org/10.1016/j.jcp.2015.12.038
http://dx.doi.org/10.1016/j.devcel.2009.08.012
http://dx.doi.org/10.1016/j.devcel.2009.08.012
http://dx.doi.org/10.1098/rsif.2012.0276
http://dx.doi.org/10.1016/j.febslet.2013.06.009
http://dx.doi.org/10.1016/j.febslet.2013.06.009
http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

Focus
6:20160036

10

 on November 1, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
21. Soll DR, Yarger J, Mirick M. 1976 Stationary phase and
the cell cycle of Dictyostelium discoidium in liquid
nutrient medium. J. Cell. Sci. 20, 513 – 523.

22. Elliott CM, Ranner T. 2013 Finite element analysis
for a coupled bulk-surface partial differential
equation. IMA J. Numer. Anal. 33, 377 – 402.
(doi:10.1093/imanum/drs022)

23. Madzvamuse A, Chung AHW, Venkataraman C. 2015
Stability analysis and simulations of coupled bulk-
surface reaction – diffusion systems. Proc. R. Soc. A
471, 20140546. (doi:10.1098/rspa.2014.0546)

24. Madzvamuse A, Chung AHW. 2016 The bulk-surface
finite element for reaction-diffusion systems for
stationary volumes. Finite Elements Anal. Des. 108,
9 – 21. (doi:10.1016/j.finel.2015.09.002)

25. Elliott CM, Styles V. 2012 An ALE ESFEM for solving
PDEs on evolving surfaces. Milan J. Math. 80,
469 – 501. (doi:10.1007/s00032-012-0195-6)

26. Huang W, Russell RD. 2010 Adaptive moving mesh
methods, volume 174. Berlin, Germany: Springer.

27. Dworkin M, Keller KH. 1977 Solubility and diffusion
coefficient of adenosine 30 :50-monophosphate.
J. Biol. Chem. 252, 864 – 865.

28. Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T.
2001 Single-molecule analysis of chemotactic
signaling in Dictyostelium cells. Science 294,
864 – 867. (doi:10.1126/science.1063951)

29. Van Haastert PJM, De Wit RJ. 1991 Demonstration
of receptor heterogeneity and affinity modulation
by nonequilibrium binding experiments. The cell
surface cAMP receptor of Dictyostelium discoideum.
J. Biol. Chem. 259, 13 321 – 13 328.

30. Johnson RL, Vaughan RA, Caterina MJ, Van Haastert
PJ, Devreotes PN. 1991 Overexpression of the cAMP
receptor in growing Dictyostelium cells. Biochemistry
30, 6982 – 6986. (doi:10.1021/bi00242a025)
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