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Several countries successfully use centralized matching schemes for school or higher 
education assignment, or for entry-level labour markets. In this paper we explore the 
computational aspects of a possible similar scheme for assigning teachers to schools. Our 
model is motivated by a particular characteristic of the education system in many countries 
where each teacher specializes in two subjects. We seek stable matchings, which ensure 
that no teacher and school have the incentive to deviate from their assignments. Indeed we 
propose two stability definitions depending on the precise format of schools’ preferences. 
If the schools’ ranking of applicants is independent of their subjects of specialism, we show 
that the problem of deciding whether a stable matching exists is NP-complete, even if there 
are only three subjects, unless there are master lists of applicants or of schools. By contrast, 
if the schools may order applicants differently in each of their specialization subjects, the 
problem of deciding whether a stable matching exists is NP-complete even in the presence 
of subject-specific master lists plus a master list of schools. Finally, we prove a strong 
inapproximability result for the problem of finding a matching with the minimum number 
of blocking pairs with respect to both stability definitions.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the organization of education, several countries or regions use various centralized schemes to allocate children to pub-
lic schools (e.g., in Boston and New York [1,2]), students to universities (e.g., in Hungary [6]), and intending junior doctors 
to training positions in hospitals (e.g., in the USA [21]), etc. These schemes are usually not dictatorial in the sense that they 
take into account the wishes of both sides of the market: students may express their preferences over the universities they 
wish to attend, and the universities may order their applicants based on some kind of evaluation. After analyzing several 
successful and unsuccessful schemes Roth [17,18] convincingly argued that a crucial property for success is so-called sta-
bility, introduced in the seminal paper by Gale and Shapley [10]. Stability means that no unmatched student–school pair 

✩ This work was supported by VEGA grants 1/0344/14, 1/0142/15 and APVV-15-0091 (Cechlárová), by OTKA grant K108383 and the ELTE-MTA Egerváry 
Research Group (Fleiner), by EPSRC grant EP/K010042/1 (Manlove) and by a SICSA Prize Studentship (McBride). The authors also gratefully acknowledge the 
support of COST Action IC1205 on Computational Social Choice.

* Corresponding author.
E-mail addresses: katarina.cechlarova@upjs.sk (K. Cechlárová), fleiner@cs.bme.hu (T. Fleiner), david.manlove@glasgow.ac.uk (D.F. Manlove), 

i.mcbride.1@research.gla.ac.uk (I. McBride).
http://dx.doi.org/10.1016/j.tcs.2016.09.014
0304-3975/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tcs.2016.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://creativecommons.org/licenses/by/4.0/
mailto:katarina.cechlarova@upjs.sk
mailto:fleiner@cs.bme.hu
mailto:david.manlove@glasgow.ac.uk
mailto:i.mcbride.1@research.gla.ac.uk
http://dx.doi.org/10.1016/j.tcs.2016.09.014
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.09.014&domain=pdf


16 K. Cechlárová et al. / Theoretical Computer Science 653 (2016) 15–25
should simultaneously prefer each other to their current assignee(s) (if any). In many real markets, each instance not only 
admits a stable matching, but it is also possible to find such a matching efficiently.

However, sometimes there are circumstances leading to additional structural requirements. For example, married couples 
may wish to be allocated to the same hospital or at least to hospitals that are geographically close [15,7], or schools may 
wish to have the right to close a study programme if the number of applicants does not meet a certain lower quota [6]. In 
such cases, a suitable notion of stability has to be defined that really mirrors the intentions of the participants and motivates 
them to obey the recommended assignment. Alas, a stable matching is not necessarily bound to exist; and even worse, it is 
often a computationally difficult problem to decide whether in the given situation one does exist [16].

The topic of this paper is motivated by the problems arising in the labour market for teachers. Traditionally, a teacher 
for the upper elementary or lower secondary level of education in Slovakia and the Czech republic (and in fact in many 
other countries and regions, such as Germany [4] and Flanders [9]) specializes in two curricular domains (from now on 
called subjects), e.g., Mathematics and Physics, Chemistry and Biology, or Slovak language and English etc. When a school 
is looking for new teachers, it may have a limited number of lessons to cover (or teaching hours to fill) in each subject. 
Thus we suppose that each school has different capacity for each subject and that it will be willing to employ a set of 
teachers in such a way that these capacities will not be exceeded. Cechlárová et al. [8] studied a variant of this problem 
where the trainee teachers could only express which schools are acceptable for them, and which are not, without ordering 
them according to their preferences, and the schools had no input. In these settings, the aim was to assign as many trainee 
teachers as possible (ideally all of them) by respecting the schools’ capacities.

The aim of this paper is to study algorithmic aspects of the problem of assigning teachers to schools within the frame-
work of two-sided preferences. We suppose that teachers rank in order of preference their acceptable schools according to 
their own criteria, and vice versa, schools rank-order their applicants similarly [14]. In this context we suggest two stability 
definitions and study the computational complexity of problems concerned with finding stable matchings (or reporting that 
none exist). These definitions and the associated complexity results depend on the nature of the schools’ preference lists.

The main results and the organization of the rest of the paper are as follows. In Section 2 we introduce relevant technical 
concepts and illustrate them by means of simple examples. In Section 3 we deal with the case when each school has a linear 
ordering on the set of teachers who apply for a position. We show that in this general case the problem of deciding whether 
a stable matching exists is NP-complete, even if there are only three subjects in total. This result is perhaps not unexpected, 
since the problem studied in this paper bears some resemblance to the Hospitals/Residents problem with Couples (hrc), 
and the problem of deciding whether a given instance of hrc admits a stable matching is NP-complete [16].

By contrast, we show in Section 4 that if either the preferences of schools are derived from a common master list of 
teachers, or vice versa if the preferences of teachers are derived from a common master list of schools, a unique stable 
matching exists and it can be found using straightforward extensions of the classical Serial Dictatorship mechanism [19]. 
Moreover, the problems with master lists are efficiently solvable without any restrictions on the number of subjects. In 
Section 5 we modify the stability definition to enable the schools to order the teachers differently according to their two 
specialization subjects. We show that in this case, the problem of deciding whether a stable matching exists is NP-complete 
even if there are only three subjects, there are master lists for each subject and there is also a master list of schools. Finally, 
problems involving finding matchings with the minimum number of blocking pairs are discussed in Section 6, where we 
show that, with respect to both stability definitions, the problem of finding a matching with the minimum number of 
blocking pairs is very difficult to approximate.

2. Preliminary definitions and observations

An instance of the Teachers Assignment Problem, tap for short, involves a set A of applicants (teachers), a set S of 
schools and a set P of subjects. For ease of exposition, elements of the set P will sometimes be referred to by letters like 
M , F or I to remind the reader of real subjects taught at schools, such as Mathematics, Physics, or Informatics, etc.

Each applicant a ∈ A is characterized by a pair of distinct subjects p(a) ⊆ P , where p(a) = {p1(a), p2(a)}, that define her 
type. Sometimes we shall also say that a particular applicant is of type F M , I M , or F I , etc. Corresponding to each applicant 
a ∈ A there is a set S(a) ⊆ S of schools that a finds acceptable. Moreover applicant a ranks S(a) in strict order of preference.

Each school s ∈ S has a certain capacity for each subject: the vector of capacities will be denoted by c(s) =
(c1(s), . . . , ck(s)) ∈ N

k , where k = |P |, and an entry of c(s) will be called the partial capacity of school s. Here, ci(s) is 
the maximum number of applicants, whose specialization involves subject pi , that school s is able to take. Further, each 
school ranks its applicants in strict order of preference.

Let S(A) = {(a, s) : a ∈ A ∧ s ∈ S(a)} denote the set of acceptable applicant–school pairs. An assignment M is a subset of 
S(A) such that each applicant a ∈ A is a member of at most one pair in M. We shall write M(a) = s if (a, s) ∈ M and 
say that applicant a is assigned to school s, and write M(a) = ∅ if there is no s ∈ S with (a, s) ∈ M. The set of applicants 
assigned to a school s will be denoted by M(s) = {a ∈ A : (a, s) ∈M}. We shall also denote by Mp(s) the set of applicants 
assigned to s whose specialization includes subject p and by Mp,r(s) the set of applicants assigned to s whose specialization 
is exactly the pair {p, r}. More precisely,

Mp(s) = {a ∈ A : (a, s) ∈ M ∧ p ∈ p(a)}
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applicant type preferences school capacities preferences
F I M

a1 F M s1, s3 s1 2 1 1 a3,a4,a1,a2

a2 F M s1, s3 s2 1 1 1 a4,a3

a3 I M s1, s2 s3 2 1 1 a4,a1,a2

a4 F I s3, s2, s1

Fig. 1. Instance J1 of tap.

applicant type preferences school capacities preferences
F I M

a1 F M s2, s1 s1 1 1 2 a1,a3,a2

a2 I M s1, s2 s2 1 1 1 a2,a1

a3 F I s1

Fig. 2. An instance J2 of tap with no stable matching.

and

Mp,r(s) = {a ∈ A : (a, s) ∈ M ∧ {p, r} = p(a)}.
An assignment M is a matching if |Mp(s)| ≤ cp(s) for each school s and each subject p. We say that an applicant a is 
assigned in M if M(a) �= ∅, otherwise she is unassigned. A school s is full in a matching M if it can admit no other 
applicant (irrespective of her specialization) and s is undersubscribed in subject p if |Mp(s)| < cp(s).

Definition 1. Let M be a matching. We say that a pair (a, s) with p(a) = {p1, p2} and s ∈ S(a) is blocking if either a is not 
assigned in M or a prefers s to M(a), and one of the following conditions holds:

(i) s is undersubscribed in both p1 and p2;
(ii) s is undersubscribed in pi and it prefers a to one applicant in Mp3−i (s) for some i ∈ {1, 2};
(iii) s prefers a to one applicant in Mp1,p2(s);
(iv) s prefers a to two different applicants a1, a2 such that a1 ∈Mp1 (s) and a2 ∈Mp2 (s).

A matching is stable if it admits no blocking pair.

Example 1. Let J1 be the instance of tap with the set of subjects P = {F , I, M} given in Fig. 1.
Consider the matching M = {(a1, s3), (a2, s1), (a3, s2), (a4, s1)}. It is easy to see that M is not stable. Each of the condi-

tions (i)–(iv) of Definition 1 is violated by the following blocking pairs, respectively:

(i) (a4, s3) is a blocking pair since a4 prefers school s3 to M(a4) = s1, and s3 is undersubscribed in both I and F ;
(ii) (a4, s2) is a blocking pair since a4 prefers s2 to M(a4) = s1, school s2 is undersubscribed in F and it prefers a4 to 

a3 ∈MI (s2);
(iii) (a1, s1) is a blocking pair since a1 prefers s1 to M(a1) = s3, and school s1 prefers a1 to a2 ∈M(s1) who is of the same 

type as a1;
(iv) (a3, s1) is a blocking pair since a3 prefers s1 to M(a3) = s2, and school s1 prefers a3 to both its assignees a2 and 

a4. �
Note that Definition 1 (iv), as also illustrated in Example 1, gives rise to the possibility that a school could drop two 

applicants and accept just one in order to satisfy a blocking pair. This is also a possibility in hrc that a single resident r can 
displace a couple c assigned to a hospital h if h prefers r to just one member of c [7].

We also remark that tap bears a superficial resemblance to the variant of the Hospitals/Residents problem that modelled 
the problem of assigning junior doctors to hospitals in Scotland in years 2000–2005, where intending junior doctors sought 
not one position at hospitals, but two, namely a medical post and a surgical post [12]. They also typically had preferences 
over the half-years in which they would carry out each type of post, so the stability definition was different to the one 
given in Definition 1.

We next present two examples to show that a tap instance need not admit a stable matching, and in such instances that 
do, stable matchings may have different sizes.

Example 2. Consider the instance J2 of tap given in Fig. 2. We show that J2 admits no stable matching.
If a1 is not assigned then (a1, s1) is a blocking pair as a1 is the most preferred applicant for school s1. If M(a1) = s2

then assigning a2 to s1 leads to the blocking pair (a3, s1) and assigning a3 to s1 produces blocking pair (a2, s2). By contrast, 
if M(a1) = s1 then a2 must also be assigned to s1 (this school is her first choice and it has enough room to accept her), 
which makes the pair (a1, s2) blocking. Hence no stable matching exists. �
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applicant type preferences school capacities preferences
F I M

a1 F M s2, s1 s1 1 1 2 a1,a2,a3

a2 F I s1, s2 s2 1 1 1 a2,a1

a3 I M s1

Fig. 3. An instance J3 of tap with stable matchings of different sizes.

applicant type preferences school capacities preferences
F I M

a1
i F I s1

i , s3
i s1

i 1 1 2 a4
i ,a1

i ,a3
i

a2
i F I s2

i , s4
i s2

i 1 1 2 a3
i ,a2

i ,a4
i

a3
i F M s1

i , s2
i s3

i 1 1 0 a1
i ,a5

i

a4
i I M s2

i , s1
i s4

i 1 1 0 a2
i ,a6

i

a5
i F I s3

i , sT
i sT

i 1 1 2 a5
i , x1

i , x2
i

a6
i F I s4

i , sF
i sF

i 1 1 2 a6
i , y1

i , y2
i

x1
i F M sT

i , c(x1
i ), w1

i,3 wk
i,1 1 1 2 qk

i,1,qk
i,3,qk

i,2

x2
i I M sT

i , c(x2
i ), w2

i,3 wk
i,2 1 1 2 qk

i,2,qk
i,1

y1
i F M sF

i , c(y1
i ), w3

i,3 wk
i,3 1 1 1 A(wk

i,3),qk
i,3

y2
i I M sF

i , c(y2
i ), w4

i,3 z j 2 2 2 v1
j , v2

j , v3
j

qk
i,1 F M wk

i,2, wk
i,1

qk
i,2 I M wk

i,1, wk
i,2

qk
i,3 F I wk

i,3, wk
i,1

Fig. 4. The tap instance constructed in the proof of Theorem 1.

Example 3. Consider the instance J3 of tap given in Fig. 3. It is straightforward to verify that M1 = {(a1, s2), (a2, s1)}, of 
size 2, and M2 = {(a1, s1), (a2, s2), (a3, s1)}, of size 3, are both stable in J3. Hence J3 admits stable matchings of different 
sizes. �
3. NP-hardness of TAP

In this section we show that it is hard to decide whether an instance of tap admits a stable matching, even in the 
presence of restrictions on the number of subjects, the partial capacities of the schools and the lengths of the applicants’ 
and schools’ preference lists.

Theorem 1. Given an instance of tap, the problem of deciding whether a stable matching exists, is NP-complete. This result holds even 
if there are only three subjects, each partial capacity of a school is at most 2, and the preference list of each applicant and school is of 
length at most 3.

Proof. It is easy to see that tap belongs to NP, since when given an assignment, it can be checked in polynomial time that 
it is a matching and that it is stable. To prove completeness, we reduce from a restricted version of sat. Let (2,2)-e3-sat

denote the problem of deciding, given a Boolean formula B in CNF in which each clause contains exactly 3 literals and, for 
each variable vi , each of literals vi and v̄ i appears exactly twice in B , whether B is satisfiable. Berman et al. [5] showed 
that (2,2)-e3-sat is NP-complete.

Hence let B be an instance of (2,2)-e3-sat. Let V = {v1, v2, . . . , vn} and C = {c1, c2, . . . , cm} is the set of variables and 
clauses in B , respectively. Let us construct an instance J of tap in the following way.

There are 3 subjects, namely F , I and M . For each variable vi there are 6 applicants a1
i , a

2
i , . . . , a

6
i , 4 applicants 

x1
i , x

2
i , y

1
i , y

2
i , 12 applicants qk

i,1, q
k
i,2, q

k
i,3 (1 ≤ k ≤ 4), 6 schools s1

i , s
2
i , s

3
i , s

4
i , s

T
i , sF

i and 12 schools wk
i,1, w

k
i,2, w

k
i,3 (1 ≤ k ≤ 4). 

In addition, for each clause c j there is one school z j . Applicants x1
i and x2

i correspond to the first and to the second occur-
rence of literal vi , and applicants y1

i and y2
i correspond to the first and to the second occurrence of literal v̄ i , respectively.

The characteristics of applicants and schools and their preferences are given in Fig. 4. Here, the subscripts and super-
scripts involving i, j and k range over the following intervals: 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ 4. In the preference list of 
school z j , the symbol vs

j means the x- or y-applicant that corresponds to the literal that appears in position s of clause 
c j . Conversely, in the preference list of x- or y-applicants the symbol c(.) denotes the z-school corresponding to the clause 
containing the corresponding literal. Also, in the preference list of wk

i,3, the symbol A(wk
i,3) denotes xk

i if 1 ≤ k ≤ 2 and 
denotes yk−2 if 3 ≤ k ≤ 4.
i
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For each i (1 ≤ i ≤ n) let us denote

Ti = {(x1
i , sT

i ), (x2
i , sT

i ), (a6
i , sF

i )}, Fi = {(y1
i , sF

i ), (y2
i , sF

i ), (a5
i , sT

i )}.
Now, let f be a satisfying truth assignment of B . Define a matching M in J as follows. For each variable vi ∈ V , if vi is 

true under f , put the pairs Ti into M and if vi is false under f put the pairs Fi into M. In the former case add the pairs

(y1
i , c(y1

i )), (y2
i , c(y2

i )), (a
1
i , s1

i ), (a
2
i , s4

i ), (a
3
i , s2

i ), (a
4
i , s2

i ), (a
5
i , s3

i ),

and in the latter case add the pairs

(x1
i , c(x1

i )), (x2
i , c(x2

i )), (a
1
i , s3

i ), (a
2
i , s2

i ), (a
3
i , s1

i ), (a
4
i , s1

i ), (a
6
i , s4

i ).

Notice that as each clause c j ∈ C contains at most two false literals, school z j has enough capacity for accepting all the 
allocated applicants. Finally, add the following pairs for each i (1 ≤ i ≤ n) and k (1 ≤ k ≤ 4):

(qk
i,1, wk

i,2), (q
k
i,2, wk

i,1), (q
k
i,3, wk

i,3).

It is obvious that the defined assignment is a matching; it remains to prove that it is stable. We show this by considering 
each type of applicants corresponding to variable vi in turn. Firstly we remark that applicants qk

i,1, q
k
i,2, q

k
i,3 each have their 

first choice school (1 ≤ k ≤ 4) so cannot be involved in a blocking pair. Now suppose that vi is true under f . Then:

• applicants x1
i , x2

i , a1
i , a4

i and a5
i have their most-preferred schools, so are not blocking;

• applicants y1
i and y2

i prefer school sF
i , but this school is assigned a6

i , whom it prefers;
• applicant a2

i prefers school s2
i , but this school is assigned a3

i , whom it prefers;
• applicant a3

i prefers school s1
i , but this school is assigned a1

i , whom it prefers;
• applicant a6

i prefers school s4
i , but this school is assigned a2

i , whom it prefers.

The case of a false variable can be proved similarly.
For the converse implication let us first prove two lemmata.

Lemma 1. Each stable matching M in J contains for each i either all the pairs in Ti or all the pairs in Fi .

Proof. Let M be a stable matching. Fix i ∈ {1, 2, . . . , n}. Notice first that both schools sT
i and sF

i must be full, otherwise 
either sT

i will form a blocking pair with at least one of x1
i and x2

i , or sF
i will form a blocking pair with at least one of y1

i
and y2

i . Further, let us distinguish the following cases.

• {(a5
i , s

T
i ), (a6

i , s
F
i )} ⊆ M. Then, as there are no blocking pairs, {(a1

i , s
3
i ), (a

2
i , s

4
i )} ⊆ M, which further implies

{(a3
i , s

2
i ), (a

4
i , s

1
i )} ⊆M. This, however means that (a3

i , s
1
i ) and (a4

i , s
2
i ) are blocking pairs for M, a contradiction.

• {(x1
i , s

T
i ), (x2

i , s
T
i ), (y1

i , s
F
i ), (y2

i , s
F
i )} ⊆ M. Now, to avoid blocking pairs, {(a5

i , s
3
i ), (a6

i , s
4
i )} ⊆ M, which further implies 

{(a1
i , s

1
i ), (a

2
i , s

2
i )} ⊆M. Then there are blocking pairs (a3

i , s
2
i ) and (a4

i , s
1
i ), again a contradiction.

The result follows. �
Lemma 2. In each stable matching M in J , every applicant in the set {x1

i , x
2
i , y

1
i , y

2
i : 1 ≤ i ≤ n} is assigned to her first- or second-

choice school.

Proof. For some i ∈ {1, 2, . . . , n}, consider applicant x1
i (the argument for x2

i , y1
i , y2

i is similar). Suppose firstly that x1
i

is unassigned in M. Then (x1
i , w

1
i,3) blocks M, a contradiction. Now suppose that (x1

i , w
1
i,3) ∈ M. If (q1

i,3, w
1
i,1) ∈ M then 

(q1
i,1, w

1
i,2) ∈M, for otherwise (q1

i,1, w
1
i,1) blocks M. But then (q1

i,2, w
1
i,2) blocks M, a contradiction. Thus q1

i,3 is unassigned 
in M. Then (q1

i,2, w
1
i,1) ∈M, for otherwise (q1

i,2, w
1
i,1) blocks M. Also (q1

i,1, w1
i,2) ∈M, for otherwise (q1

i,1, w
1
i,2) blocks M. 

Hence (q1
i,3, w

1
i,1) blocks M, a contradiction. �

So, suppose that M is a stable matching in J . We form a truth assignment f in B as follows. Let i ∈ {1, 2, . . . , n} be 
given. By Lemma 1, either Ti ⊆ M or Fi ⊆ M. In the former case set f (vi) = true, otherwise set f (vi) = false. Now let 
vi ∈ V and suppose that f (vi) = true. Then by Lemma 2, each of yi,1 and yi,2 is assigned to her second choice school. Now 
suppose that f (vi) = false. Then again by Lemma 2, each of xi,1 and xi,2 is assigned to her second choice school. Now let 
c j ∈ C and suppose that all literals in c j are false. By the preceding remarks about xi,1, xi,2, yi,1 and yi,2 we deduce that z j
is over-subscribed, a contradiction. Thus f is a satisfying truth assignment. �
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begin
M := ∅;
for i = 1,2, . . . ,n

if ai ’s list contains a school with enough free capacity for ai {
s:= first such school on ai ’s list ;
M := M∪ {(ai , s)};

}
end

Fig. 5. Algorithm Serial Dictatorship.

begin
M := ∅;
for j = 1,2, . . . ,m

/* let s j ’s list be ai1 , . . . ,ai� */
for r = 1,2, . . . , �

if air is unassigned and s j has enough capacity for air then
M := M∪ {(air , s j)};

end

Fig. 6. Algorithm Dual Serial Dictatorship.

4. Master lists

In some centralized matching schemes all the applicants are ordered in a common master list. Although the criteria 
used for creating such lists are often subject to some controversy (see [11] for the description of the matching scheme for 
allocating medical students to hospital posts in England in 2005–2006 and [20] for the situation in the central allocation 
scheme of teachers in Portugal that was used prior to 2005), computationally the situation with master lists may be easier. 
A detailed study of stable matching problems with master lists from a computational point of view can be found in [13].

In this section we shall consider the case of a master list of applicants and the (perhaps slightly less realistic) case of 
a master list of schools. The problems of deciding the existence of a stable matching in these cases will be denoted by
tap-am and tap-sm, respectively. The phrase ‘s has enough capacity for a’ used in the algorithms in this section means the 
following: if a is of type {p, r} then |Mp(s)| < cp(s) as well as |Mr(s)| < cr(s).

Theorem 2. Let J be an instance of tap-am with the master list a1, a2, . . . , an of applicants. Then J admits a unique stable matching 
that may be found by an application of Algorithm Serial Dictatorship as shown in Fig. 5.

Proof. It is easy to see that Serial Dictatorship outputs a matching. We have to prove that this matching is stable and that 
it is the unique stable matching.

M is stable. Suppose that (ai, s j) is a blocking pair and that i is the smallest index of an applicant involved in a blocking 
pair. Since ai has chosen the best available school from her list, s j did not have enough capacity to accept ai when it was 
ai ’s turn in the algorithm. However, all the applicants that were assigned to s j at that moment precede ai in the master 
list, hence (ai, s j) cannot be a blocking pair.

Uniqueness. Let M′ �= M be another stable matching and let ai be the first applicant in the master list with M′(ai) �=
M(ai). As Serial Dictatorship gave ai her best available school and all applicants who precede ai in the master list have 
the same assignments in M as in M′ , it must be the case that ai prefers s j = M(ai) to sk = M′(ai). But this implies 
that (ai, s j) is a blocking pair for M′ , as s j will be able to reject one or two applicants worse than ai in order to free up 
sufficient capacity for ai (for, s j had enough room for ai in M when it was ai ’s turn during Serial Dictatorship, and any 
applicant that precedes ai in the master list has the same assignment in M as she does in M′). �

The situation with a master list of schools, although less likely to occur in practice, is also efficiently solvable.

Theorem 3. Let J be an instance of tap-sm with the master list of schools s1, s2, . . . , sm. Then J admits a unique stable matching that 
may be found by an application of Algorithm Dual Serial Dictatorship as shown in Fig. 6.

Proof. Let us denote by J (s1) the subinstance of J containing just school s1 and applicants who apply to s1. J (s1) is an 
instance of tap-am, so it has a unique stable matching. This is obtained by Serial Dictatorship of applicants that is equivalent 
to the part of Dual Serial Dictatorship within one iteration of the for-loop for schools. Let us denote this matching by 
M1. Let us further observe that no applicant assigned to s1 could be a member of a blocking pair, as she received her 
most preferred school. If we now denote by J (−s1) the subinstance of J with pairs of M1 deleted, the result follows by 
induction. �
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applicant type preferences school capacities subject preferences
F I M

a1 F M s1 s1 1 1 1 F a1 a2 a3

a2 F I s1 I a2 a3 a1

a3 I M s1 M a3 a1 a2

Fig. 7. A small instance of tap-ss with no stable matching.

5. Subject-specific preference lists

In this section we consider the variant of tap in which a school can order applicants differently by subject. That is, each 
school has a preference list over the applicants for each subject. Let us denote this variant by tap-ss. The definition of a 
blocking pair should now be modified in order to take account of this scenario.

Definition 2. Let M be a matching. We say that a pair (a, s) with p(a) = {p1, p2} and s ∈ S(A) is blocking if a is not assigned 
in M or a prefers s to M(a), and one of the following conditions holds:

(i) s is undersubscribed in both p1 and p2;
(ii) s is undersubscribed in pi and it prefers a in subject p3−i to one applicant in Mp3−i (s) for some i ∈ {1, 2};
(iii) s prefers a in both subjects p1, p2 to one applicant in Mp1,p2(s);
(iv) s prefers a in subject p1 to applicant a1 ∈Mp1 (s) and in subject p2 to another applicant a2 ∈Mp2 (s).

We firstly observe that an instance of tap-ss need not admit a stable matching, since tap-ss is a generalization of tap. We 
now give a simple instance of tap-ss to illustrate this; the instance will be useful in the proof of Corollary 1 in Section 6.

Example 4. Consider the tap-ss instance given by Fig. 7. For this small instance it may be verified that any matching 
containing (ai, s1), where i ∈ {1, 2, 3}, is blocked by (ai−1, s1), where addition is taken modulo 3. �

Given that tap-ss is a generalization of tap, Theorem 1 implies that the problem of deciding whether a stable matching 
exists, given an instance of tap-ss, is NP-complete. In this section we will show that this result for tap-ss holds even if each 
school’s subject-specific preference list is derived from a subject-specific master list of the applicants. Define a matching M
in a tap-ss instance to be applicant-complete if every applicant is assigned in M. We begin by showing that the problem of 
deciding whether a tap-ss instance admits an applicant-complete stable matching is NP-complete.

Lemma 3. Given an instance of tap-ss, the problem of deciding whether an applicant-complete stable matching exists is NP-complete. 
This result holds even if there are only three subjects, each partial capacity of a school is at most 1, and the preference lists of the schools 
are derived from subject-specific master lists of the applicants.

Proof. Clearly, this problem is in NP; to show completeness we reduce from (2,2)-e3-sat (see the proof of Theorem 1). Let 
B be an instance of this problem, where V = {v0, v1, . . . , vn−1} and C = {c1, c2, . . . , cm} be the set of variables and clauses 
respectively in B . We construct an instance J of tap-ss in the following way.

There are 3 subjects, namely F , I and M . For each variable vi (0 ≤ i ≤ n − 1) there are 4 applicants x4i+r (0 ≤ r ≤ 3), each 
of type F I , and 4 schools y4i+r (0 ≤ r ≤ 3). For each clause c j (1 ≤ j ≤ m) there are 4 applicants q j and wt

j (1 ≤ t ≤ 3), each 
of type F M , and 4 schools st

j (1 ≤ t ≤ 4). Let X = {xi : 0 ≤ i ≤ 4n − 1}, Y = {yi : 0 ≤ i ≤ 4n − 1}, W = {wt
j : 1 ≤ j ≤ m ∧ 1 ≤

t ≤ 3}, Q = {q j : 1 ≤ j ≤ m}, S ′ = {st
j : 1 ≤ j ≤ m ∧ 1 ≤ t ≤ 3}, S ′′ = {s4

j : 1 ≤ j ≤ m} and S = S ′ ∪ S ′′ .
For each i (0 ≤ i ≤ n − 1), applicants x4i and x4i+1 correspond to the first and second occurrences of literal vi in B , and 

applicants x4i+2 and x4i+3 correspond to the first and second occurrences of literal v̄ i in B , respectively. For each r ∈ {0, 1}, 
let s(x4i+r) denote the school st

j such that the (r + 1)th occurrence of literal vi appears in position t of clause c j (1 ≤ j ≤ m, 
1 ≤ t ≤ 3). Similarly, for each r ∈ {2, 3}, let s(x4i+r) denote the school st

j such that the (r − 1)th occurrence of literal v̄ i

appears in position t of clause c j (1 ≤ j ≤ m, 1 ≤ t ≤ 3).
The applicants’ preferences, together with a summary of their types and a summary of the schools’ partial capacities, are 

given in Fig. 8. Here, the subscripts and superscripts involving i, j and t range over the following intervals: 0 ≤ i ≤ n − 1, 
1 ≤ j ≤ m and 1 ≤ t ≤ 3.

We now construct the subject-specific master lists of applicants. Let 〈X〉 denote the elements of X in increasing order of 
subscript, and let 〈 X̄〉 denote the reverse of this order. Similarly let 〈W 〉 denote the elements of W listed in increasing order 
of subscript, and within this ordering, those elements with equal subscript are listed in increasing order of superscript. Also 
let 〈W̄ 〉 denote the reverse of 〈W 〉. Finally let 〈Q 〉 denote the elements of Q listed in increasing order of subscript. The 
master lists of the applicants with respect to subjects are shown in Fig. 9.
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applicant type preferences school capacities
F I M

x4i F I y4i , s(x4i), y4i+1 y4i 1 1 0

x4i+1 F I y4i+1, s(x4i+1), y4i+2 y4i+1 1 1 0

x4i+2 F I y4i+3, s(x4i+2), y4i+2 y4i+2 1 1 0

x4i+3 F I y4i , s(x4i+3), y4i+3 y4i+3 1 1 0

q j F M s1
j , s2

j , s3
j st

j 1 1 1

wt
j F M st

j , s4
j s4

j 1 0 1

Fig. 8. The tap-ss instance constructed in the proof of Lemma 3.

F : 〈W 〉 〈X〉 〈Q 〉
I : 〈 X̄〉

M : 〈Q 〉 〈W̄ 〉

Fig. 9. The master lists for the tap-ss instance constructed in the proof of Lemma 3.

For each i (0 ≤ i ≤ n − 1), let us denote Ti = {(x4i+r, y4i+r) : 0 ≤ r ≤ 3} and Fi = {(x4i+r, y4i+r+1) : 0 ≤ r ≤ 2} ∪
{(x4i+3, y4i)}. We claim that B has a satisfying truth assignment if and only if J has an applicant-complete stable matching.

For, let f be a satisfying truth assignment of B . Define a matching M in J as follows. For each variable vi ∈ V , if 
f (vi) = true, add the pairs in Ti to M and if f (vi) = false, add the pairs in Fi to M. Each clause c j ∈ C contains some 
literal in c j that is true under f , let t be the position of c j containing this true literal (1 ≤ t ≤ 3). Add the following pairs 
to M:

{(wt′
j , st′

j ) : 1 ≤ t′ ≤ 3 ∧ t �= t′} ∪ {(q j, st
j), (wt

j, s4
j }.

It is obvious that the defined assignment is an applicant-complete matching; it remains to prove that it is stable. It is 
straightforward to verify that no applicant in Q can be involved in a blocking pair of M, and no pair in X × Y can block 
M. Now suppose that (wt

j, s
t
j) blocks M for some j (1 ≤ j ≤ m) and t (1 ≤ t ≤ 3). Then (wt

j, s
4
j ) ∈M and (q j, st

j) ∈M, and 
school st

j prefers q j over wt
j for subject M , so (wt

j, s
t
j) cannot block M after all. Finally suppose that (x4i+r , s(x4i+r)) blocks 

M for some i (0 ≤ i ≤ n −1) and r (0 ≤ r ≤ 1). Then f (vi) = false by construction of M. Let st
j = s(x4i+r). Then (q j, st

j) ∈M, 
since (x4i+r, s(x4i+r)) blocks M. But then by construction of M, the tth literal of c j is true under f , a contradiction. The 
argument is similar if r ∈ {2, 3}. Hence M is stable in J .

Conversely suppose that M is an applicant-complete stable matching in J . For any j (1 ≤ j ≤ m), it follows that (q j, st
j) ∈

M for some t (1 ≤ t ≤ 3) and thus (wt
j, s

4
j ) ∈ M, since q j and wt

j must be assigned. Moreover (wt′
j , s

t′
j ) ∈ M for each t′

(1 ≤ t′ ≤ 3, t �= t′). Thus M contains no pair of the form (x4i+r , s(x4i+r)) (0 ≤ i ≤ n − 1, 0 ≤ r ≤ 3). Moreover, since each 
member of X must be assigned in M, we have thus established that for each i (0 ≤ i ≤ n − 1), either Ti ⊆M or Fi ⊆M.

Now we construct a truth assignment f in B as follows. If Ti ⊆ M set f (vi) = true and if Fi ⊆ M set f (vi) = false. 
We claim that f is a satisfying truth assignment. For, suppose that some clause c j contains no true literal. As M is an 
applicant-complete matching, (q j, st

j) ∈ M for some t (1 ≤ t ≤ 3). Now let x4i+r be the applicant such that s(x4i+r) = st
j

(0 ≤ i ≤ n − 1, 0 ≤ r ≤ 3). If r ∈ {0, 1} then f (vi) = false, so Fi ⊆ M. Hence (x4i+r, s(x4i+r)) blocks M, a contradiction. 
Similarly if r ∈ {2, 3} then f (vi) = true, so Ti ⊆M. Hence (x4i+r, s(x4i+r)) blocks M, again a contradiction. �

We next show that the requirement of Lemma 3 for the stable matching to be applicant-complete can be dropped.

Lemma 4. Given an instance of tap-ss, the problem of deciding whether a stable matching exists is NP-complete. This result holds even 
if there are only three subjects, each partial capacity of a school is at most 1, and the preference lists of the schools are derived from 
subject-specific master lists of the applicants.

Proof. We show how to modify the reduction presented in the proof of Lemma 3 in order to ensure that any stable 
matching in J is applicant-complete. We create a new tap-ss instance J ′ from J as follows. For each applicant a in J , create 
two new applicants a′ and a′′ . If a is of type F I , then a′ and a′′ are of type F M and I M respectively. If a is of type F M , 
then a′ and a′′ are of type F I and I M respectively. Create a new school g(a) which has capacity 1 for each of subjects F , 
I and M . Append g(a) to applicant a’s preference list in J to obtain her preference list in J ′ . Each of applicants a′ and a′′
finds only g(a) acceptable.

Let X ′ and X ′′ denote the sets of newly-created applicants in J ′ with single and double primes respectively that corre-
spond to applicants in X . Define R ′ and R ′′ similarly for the newly-created applicants in J ′ that correspond to applicants in 
Q ∪ W . For A ∈ {R, X}, let 〈A′〉 and 〈A′′〉 denote arbitrary but fixed orderings of the applicants in A′ and A′′ respectively.
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F : 〈W 〉 〈X〉 〈Q 〉 〈X ′〉 〈R ′〉
I : 〈X ′′〉 〈R ′〉 〈R ′′〉 〈 X̄〉

M : 〈R ′′〉 〈Q 〉 〈W̄ 〉 〈X ′〉 〈X ′′〉

Fig. 10. The master lists of the subjects in the tap-ss instance constructed in the proof of Lemma 4.

The subject-specific master lists in J ′ are as shown in Fig. 10.
We show how to modify the proof of Lemma 3 to show that B has a satisfying truth assignment if and only if J ′ has a 

stable matching.
Firstly, if f is a satisfying truth assignment of B , construct the matching M in J as in the proof of Lemma 3. We 

then extend M to a matching M′ in J ′ as follows. For each applicant a in J , add the pair (a′, g(a)) to M. Since M is 
applicant-complete in J , it is straightforward to verify that M′ is stable in J ′ .

Conversely suppose that M′ is a stable matching in J ′ . We firstly claim that each applicant a in J is assigned in M′ to 
a school better than g(a). For, suppose (a, g(a)) ∈ M′ . Then (a′′, g(a)) blocks M′ , a contradiction. Now suppose that a is 
unassigned in M′ . Clearly some applicant is assigned to g(a) in M′ , for otherwise (a, g(a)) blocks M′ . If (a′, g(a)) ∈ M′
then (a, g(a)) blocks M′ , whilst if (a′′, g(a)) ∈ M′ then (a′, g(a)) blocks M′ . The claim is thus proved. It is then also 
straightforward to verify that (a′, g(a)) ∈M′ for each applicant a in J , for otherwise (a′, g(a)) blocks M′ .

Let M be the matching obtained from M′ by removing all pairs of the form (a′, g(a)), where a is an applicant in J . 
It follows by the previous paragraph that M is an applicant-complete stable matching in J . The remainder of the proof is 
then identical to the converse direction of the proof of Lemma 3. �

We finally present the main result of this section, which strengthens Lemma 4 to show that the result holds even if, 
additionally, the preference lists of applicants are derived from a master list of schools.

Theorem 4. Given an instance of tap-ss, the problem of deciding whether a stable matching exists is NP-complete. This result holds 
even if there are only three subjects, each partial capacity of a school is at most 1, the preference lists of the schools are derived from 
subject-specific master lists of the applicants, and the preference lists of the applicants are derived from a single master list of schools.

Proof. We consider the reduction given by Lemmata 3 and 4, and show that the applicants’ preference lists may be derived 
from a single master list of schools.

For each i (0 ≤ i ≤ n − 1), let 〈Si〉 denote the sequence

〈y4i, s(x4i), s(x4i+3), y4i+3, s(x4i+2), y4i+1, s(x4i+1), y4i+2〉.
Let S4 = {s4

j : 1 ≤ j ≤ m} and let 〈S4〉 denote an arbitrary order of the schools in S4. Let G denote the set of schools of the 
form g(a) as introduced in the proof of Lemma 4 for each applicant a in the original tap-ss instance as constructed in the 
proof of Lemma 3. Let 〈G〉 denote an arbitrary order of the schools in G . Define the following master list of schools:

〈S0〉 〈S1〉 . . . 〈Sn−1〉 〈S4〉 〈G〉
In the proof of Lemma 3, let the preference list of each q j (1 ≤ j ≤ m) be reordered such that the relative ordering of 

the three schools s1
j , s2

j and s3
j is derived from the above master list. This does not change the remainder of the proof of 

Lemma 3, nor the proof of Lemma 4. Moreover every other applicant’s preference list is derived from the above master list 
of schools. The theorem then follows. �
6. “Most stable” matchings

Given an instance of tap, we have already seen that a stable matching need not exist. In such cases it is natural to seek 
a matching that is “as stable as possible” in a precise sense. Here we regard such “most stable” matchings as those that 
admit the minimum number of blocking pairs. Note that this approach was also considered in [3].

Given a tap instance I , denote by opt(I) the minimum number of blocking pairs admitted by any matching in I . Let min 
bp tap denote the problem of finding a matching M with opt(I) blocking pairs in I . Clearly I admits a stable matching if and 
only if opt(I) = 0, hence min bp tap is NP-hard by Theorem 1. This naturally leads to the consideration of the approximability 
of this problem.

If I is solvable, i.e., I admits a stable matching, then the standard notion of an approximation algorithm is not particularly 
meaningful in this case, since opt(I) = 0. However the concept of approximation is much more relevant in the case that I
is unsolvable, i.e., opt(I) > 0.

In this section we prove that for unsolvable instances, min bp tap is not approximable within n1−ε , for any ε > 0, unless 
P=NP, where n is the number of agents (i.e., applicants plus schools). We show that similar observations hold for unsolvable 
instances of min bp tap-ss, the problem of finding a matching with the minimum number of blocking pairs in an instance 
of tap-ss.
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Theorem 5. min bp tap is not approximable within n1−ε , where n is the number of agents in a given instance, for any ε > 0 unless 
P=NP. The result holds even if the constructed instance I ′ is unsolvable, and in I ′ there are only three subjects, each partial capacity of 
a school is at most 2, and the preference list of each applicant is of length at most 3.

Proof. Let I be an instance of tap satisfying the restrictions given in the statement of the theorem. We know from Theo-
rem 1 that the problem of deciding whether I admits a stable matching is NP-complete. Let n0 be the number of agents 
in I . Choose c = 2/ε� and k = nc

0. Now, let I1, I2, . . . , Ik be k disjoint copies of the instance I . Let Ik+1 be the instance of
tap shown in Fig. 2 that admits no stable matching. (Note that Ik+1 also satisfies the restrictions indicated in the theorem 
statement.) Let I ′ be the instance of tap formed by taking the union of the sub-instances I1, I2, . . . , Ik+1. Let n = kn0 + 5
denote the number of agents in I ′ .

Clearly if I admits a stable matching then each Ir must admit a stable matching (1 ≤ r ≤ k), whilst Ik+1 admits no stable 
matching but does admit a matching M with one blocking pair (namely M = {(a1, s2), (a2, s1)}). Hence opt(I ′) = 1. However, 
if I admits no stable matching, then each Ir (1 ≤ r ≤ k + 1) admits only matchings with one or more blocking pair, and 
hence opt(I ′) ≥ k + 1. We now show that n1−ε ≤ k.

Firstly n = kn0 + 5 ≤ 2kn0 = 2nc+1
0 , since we lose no generality by assuming that n0 ≥ 5. Hence

n

2
≤ nc+1

0

which implies
(n

2

)1/(c+1) ≤ n0.

Since k = nc
0 it follows that

(n

2

)c/(c+1) ≤ k

and hence

2−c/(c+1)nc/(c+1) ≤ k. (1)

We know that n = kn0 + 5 ≥ k = nc
0, and by our earlier assumption, n0 ≥ 2. Hence n ≥ 2c and it follows that n−1 ≤ 2−c

and thus

n−1/(c+1) ≤ 2−c/(c+1). (2)

Inequality (2) implies that

n−1/(c+1)nc/c+1 ≤ 2−c/(c+1)nc/(c+1) (3)

and hence Inequalities (1) and (3) imply that

n(c−1)/(c+1) = nc/(c+1)n−1/(c+1) ≤ 2−c/(c+1)nc/(c+1) ≤ k. (4)

We now show that n1−ε ≤ n(c−1)/(c+1) . Observe that c ≥ 2/ε and thus c + 1 ≥ 2/ε. Hence

1 − ε ≤ 1 − 2

c + 1
≤ c − 1

c + 1

and hence it follows from Inequality (4) that n1−ε ≤ k.
Now, assume that X is an approximation algorithm for min bp tap with a performance guarantee of n1−ε . If I admits 

a stable matching, X must return a matching in I ′ with at most opt(I ′) · n1−ε = n1−ε ≤ k blocking pairs, since opt(I ′) = 1. 
Otherwise, I ′ does not admit a stable matching and, as shown above, X must return a matching with at least k + 1 blocking 
pairs. Thus algorithm X may be used to determine whether I admits a stable matching in polynomial time, a contradiction 
to Theorem 1 unless P=NP. Hence, no such polynomial approximation algorithm for min bp tap can exist unless P = NP. �
Corollary 1. min bp tap-ss is not approximable within n1−ε , where n is the number of agents in a given instance, for any ε > 0 unless 
P=NP. The result holds even if the constructed instance I ′ is unsolvable, and in I ′ there are only three subjects, each partial capacity of a 
school is at most 1, the preference lists of the schools are derived from subject-specific master lists of the applicants, and the preference 
lists of the applicants are derived from a single master list of schools.

Proof. This result follows using a similar proof to that Theorem 5, using the NP-completeness result of Theorem 4; in the 
modified proof of Theorem 5 we use as Ik+1 the unsolvable instance of tap-ss shown in Fig. 7 (for this small instance it may 
be verified that any matching containing (ai, s1), where i ∈ {1, 2, 3}, is blocked by (ai−1, s1) only, where addition is taken 
modulo 3). It is easy to see that Ik+1 satisfies the restrictions on the instance specified in the statement of the corollary. 
The modifications to the derivation of n1−ε ≤ k are straightforward, and thus omitted. �
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