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Chapter

PV PANEL M ODELING AND I DENTIFICATION

Li Hong Idris Lim 1,∗, Zhen Ye2 , Dazhi Yang3

and Han Chong Shaun Tay4
1School of Engineering, University of Glasgow, Glasgow, UK

2Renewable Energy Corporation (REC), Singapore
3Singapore Institute of Manufacturing Technology, Singapore

4Singapore Institute of Technology, Singapore

Abstract

In this chapter, the modelling techniques of PV panels fromI-V characteristics
are discussed. At the beginning, a necessary review on the various methods are pre-
sented, where difficulties in mathematics, drawbacks in accuracy, and challenges in
implementation are highlighted. Next, a novel approach based on linear system iden-
tification is demonstrated in detail. Other than the prevailing methods of using ap-
proximation (analytical methods), iterative searching (classical optimization), or soft
computing (artificial intelligence), the proposed method regards the PV diode model
as the equivalent output of a dynamic system, so the diode model parameters can be
linked to the transfer function coefficients of the same dynamic system. In this way,
the problem of solving PV model parameters is equivalently converted to system iden-
tification in control theory, which can be perfectly solved by a simple integral-based
linear least square method. Graphical meanings of the proposed method are illustrated
to help readers understand the underlying principles. As compared to other meth-
ods, the proposed one has the following benefits: 1) unique solution; 2) no iterative or
global searching; 3) easy to implement (linear least square); 4) accuracy; 5) extendable
to multi-diode models. The effectiveness of the proposed method has been verified by
indoor and outdoor PV module testing results. In addition, possible applications of
the proposed method are discussed like online PV monitoring and diagnostics, non-
contact measurement of POA irradiance and cell temperature, fast model identification
for satellite PV panels, and etc.

∗E-mail address: LiHonIdris.Lim@glasgow.ac.uk
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The number of scholarly publications related to PV modelling

and parameters estimation is very large and are dispersed in

numerous journals, conference proceedings, standards and other

classified/non-classified documents. So far, there is no systematic

effort to gather all these information in a comprehensive man-

ner, such that it may become a one-stop reference point for

researchers. Hence this work is carried out to review approxi-

mately seventy important papers in this topic—particularly the

ones published within the last decade or so. It provides the

broad concepts, features, governing equations, as well as high-

lights their respective advantages and drawbacks. The focus will

be on the three main cell models, namely the single diode RS, RP

and the two-diode model. The paper also covers important soft

computing methods for PV modelling, most notably the parame-

ter extraction works.

To maintain consistency and coherence in throughout this

paper, the equations in the previous work are rewritten based on

a common set of variables and nomenclatures. A critical evaluation

is also carried out to summarize the performance of the models

based on several logical criteria. At the end of the paper, a sum-

mary of the future trend and direction of research that is relevant

to this topic is given. It is envisaged that the main benefactors of

this work will be the researchers, PV simulator designers and prac-

titioner, while new entrants may find the material contained in

this paper useful to understand the bigger picture related to PV

simulation.

2. Electrical circuit models of PV cells

2.1. Fundamental

The equivalent (electrical) circuit-based models are most

widely used to simulate PV cells. The main advantage of using

the electrical circuit model is the availability of the standard elec-

trical software such as MATLAB and PSpice, where the PV model

can be seamlessly integrated into a larger PV systems comprising

of power converter, grid connectivity, etc. There are other mod-

elling techniques that do not utilise the equivalent circuit [9,10],

but they are not adopted by PV simulators.

It is crucial to understand the basic of a PV cell construction and

its relationship with the incidence of light. Recall that the cell is

fundamentally constructed using two layers of differently doped

semiconductor material, with its p–n junction exposed to light

[11]. A simplified structure of a typical silicon PV cell is depicted

in Fig. 1. W ith the purpose to reduce the obstruction of incident

irradiation, the electrode on the upper side is made with thin

and discontinuous structure with finger-like metal elements

embedded into the silicon [12]. Its size and shape is designed to

maximise the absorbing surface and to reduce the contact

resistances.

In the absence of solar irradiation, the cell behaves as a simple

p–n junction diode. Its characteristics is governed by the

well-known Shockley diode equation, which expresses diode cur-

rent as [14]

ID ¼ I0 exp
qV

akT

� �

ÿ 1

� �

ð1Þ

In (1), I0 represents the saturation current and a is the ideality

(or quality) factor of the diode. Constant q is the absolute value

of electron’ s charge (ÿ1.60217646 � 10ÿ19 C), k is the

Fig. 1 . The structure of PV cell [13].

Fig. 2. The ideal model of PV cell.

Fig. 3 . Superposition of IPV and ID [11].

Fig. 4 . The single diode RS-model of PV cell.

Fig. 5 . The single diode RP-model of PV cell.

502 V.J. Chin et al. / A pplied E ner g y 15 4 ( 20 15 ) 5 0 0 – 5 19

Figure 1. Equivalent circuit of diode models.

1. Introduction

PV panels are made of PV cells assembled in series/parallel and encapsulated in modules.
The cell structure can be simplified as ap-n junction exposed to light, as depicted in Figure
1, which is a combination of two layers of differently doped semiconductor materials.

1.1. PV Modeling

Without the sunlight, the characteristics of thep-n junction is governed by the well-known
Shockley diode equation [1]

ID = Io

(
e

V
a − 1

)
, (1)

whereID is the diode current,Io is the reverse saturation current,a = nkTc/q is the
modified ideality factor [2],n is the ideality factor,k is Boltzmann’s constant (1.380653×
10−23 J/K),Tc is the cell temperature, andq is the electron charge (1.60217646×10−19 C).
With the presence of sunlight, thep-n junction absorbs the photon and generates electron-
hole pairs (or carriers) moving across the junction, which is known as the photovoltaic
effect. The inclusion of the resulted photocurrent into Shockley equation (1) forms an ideal
model of PV cells as

I = IL − ID = IL − Io

(
e

V
a − 1

)
, (2)

where photocurrentIL is dependent on the flux of incident irradiation as well as the absorp-
tion capacity of the semiconductor materials [3]. However, the ideal model by (2) usually
yields unacceptable errors in reality due to the lack of consideration on the current losses
from the contact resistance between the silicon and electrodes surfaces, the current flow
resistance in the silicon material and the resistance of the electrodes. By incorporating the
effects from all these resistances, a more realistic and accurate model [4] is derived as

I = IL −
m∑

i=1

IDi − Ish = IL −
m∑

i=1

Ioi

(
e

V +RsI
ai − 1

)
− V + RsI

Rsh
, (3)

whereRs andRsh are resistances in series and parallel,respectively. The equivalent circuit
for (3) is shown in Figure 2, where diodeD1 accounts for carriers diffusing across thep-
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Figure 2. Equivalent circuit of diode models.

n junction and recombining in the bulk or at surfaces, diodeD2 is sometimes attributed
to carrier recombination by traps within the depletion region [5], or recombination at an
unpassivated cell edge [6]. Theoretically, more diodes (m > 2) can be added to the circuit
in Figure 2 to better account for distributed and localized effects in solar cells like Auger
recombination, but their contributions are negligible as compared toD1 andD2 [7].

Note that (3) is applicable not only to PV cells, but also to PV modules. For the latter,
ai = NsnikTc/q, whereNs is the number of cells connected in series. In the lumped-
circuit model by (3) or Figure 2, onlyI andV are known variables from the data sheet or
real measurements. The model identification is then to determine the unknown parameters
IL, Ioi , ai, Rs andRsh from the known data ofI andV .

1.2. PV Model Identification

Even in the case of the one diode model (m = 1 in (3)), it is not straightforward to de-
termine the model parameters (IL, Io, a, Rs andRsh) from theI-V characteristics of PV
cells/modules due to the transcendental nature of (3). For such a one-diode PV model, the
existing identification methods in literature can be divided into the following two categories.

1.2.1. Deterministic Solution

The deterministic solution is an unique solution of the five unknown parameters (IL, Io, a,
Rs andRsh) from five independent equations. Usually, the four independent equations are
chosen from the open circuit, short circuit and maximum power points at STC (1000 W/m2,
Tc = 25◦C, AM = 1.5) as follows.

At short circuit (SC),V = 0:

Isc = IL − Io

(
e

RsIsc
a − 1

)
− RsIsc

Rsh
. (4)

At open circuit (OC),I = 0:

IL − Io

(
e

Voc
a − 1

)
− Voc

Rsh
= 0. (5)

At maximum power point (MPP),dP/dV = 0:

Impp = IL − Io

(
e

Vmpp+RsImpp

a − 1
)
− Vmpp + RsImpp

Rsh
. (6)



4 Li Hong Idris Lim, Zhen Ye, Dazhi Yang et al.

dIV

dV

∣∣∣∣
mpp

= − Vmpp

Rs + 1

Io
a

e
Vmpp+ImppRs

a + 1
Rsh

+ Impp = 0. (7)

As for the 5th independent equation, there are many options.
One way is to estimate one of the five parameters independently. For example,IL

can be estimated from the influence of the structure parameters of a silicon solar cell on
photocurrent [8].Io is material independent and can be explicitly related to a solid state
parameter, the 0K Debye temperature of the semiconductor [9].a can be determined from
the use of properties of special trans function theory (STFT) [10]. The estimation ofRs

are well summarized in [11–15].Rsh can be approximated by the reciprocal of slope at
SC [16], i.e.,

Rsh ≈ − dV

dI

∣∣∣∣
sc

. (8)

For example, with equation (4)-(8), one-diode model parameters can be identified as [17]

IL = Isc

(
1 +

Rs

Rsh

)
+ Io

(
e

IscRs
a − 1

)
,

Io =
(

Isc − Voc

Rsh

)
e−

Voc
a ,

a =
Vmpp + ImppRs0 − Voc

ln
(
Isc − Vmpp

Rsh
− Impp

)
− ln

(
Isc − Voc

Rsh

)
+ Impp

Isc− Voc
Rsh

,

Rs = Rs0 − a

I0
e−

Voc
a ,

whereRs0 = − dV/dI|oc is the reciprocal of slope at OC.
The other way is to apply one of (4)-(7) to non-STC conditions. For example, applying

(5) toT ∗c = Tc + ∆T (∆T 6= 0) gives

I∗L − I∗o

(
e

V ∗oc
a∗ − 1

)
− V ∗

oc

R∗
sh

= 0. (9)

In the case of no irradiance change, non-STC parameters are given by [2,18]

I∗L = IL + αT ∆T, (10)

I∗o = Io

(
T ∗c
Tc

)3

e
Eg

kTc
− E∗g

kT∗ , (11)

E∗
g = Eg(1− 0.0002677∆T ), (12)

a∗ =
T ∗c
Tc

a, (13)

R∗
sh = Rsh, (14)

V ∗
oc = Voc + βT ∆T, (15)
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whereEg = 1.17− 4.73× 10−4T 2
c /(Tc + 636) is the band gap energy,αT andβT are the

temperature coefficient of SC current and OC voltage, respectively. Substituting (10)-(15)
into (9) yields the 5th independent equation as follows

IL + αT ∆T − Io

(
T ∗c
Tc

)3

e
Eg

kTc
−Eg(1−0.0002677∆T )

kT∗
(

e
Voc+βT ∆T

a
Tc
T∗c − 1

)
− Voc + βT ∆T

Rsh
= 0.

Different choices of non-STC equations yield different solutions for (IL, Io, a, Rs and
Rsh), which can be found in [19–23].

No matter what the 5th equation is, a small variation in one parameter may lead to a
large error in the other four parameters, due to the high sensitivity of the transcendental
equation [24]. Even if there is no approximation in the 5th equation, there are no analytical
solutions available due to the inherent nonlinearity. Usually, partial linearization has to
be made to yield empirical formulas [25–29], which is a trade-off between simplicity and
accuracy. Note that the greatest difficulty in solving (3) lies in its implicit format ofI, i.e.,I
are both dependent and independent variable of the equation. Recent progress to overcome
such difficulty is to apply the LambertW function [30, 31] to (3), then the implicit format
of I is converted to its equivalent explicit format as [18,32]

I =
Rsh(IL + Io)− V

Rs + Rsh
− a

Rs
W

(
IoRsRsh

a(Rs + Rsh)
e

Rsh(V +Rs(IL+Io))

a(Rs+Rsh)

)
. (16)

The benefit of (16) over (3) is that the former is not transcendental anymore, which makes
it possible to find solutions to (4)-(7) by iterative algorithms.

1.2.2. Optimal Solution

Optimal solution employs nonlinear fitting procedures based on the minimization of devia-
tions between modelled and measuredI-V curves, in accordance with some metric function
(usually least square) [33–36], e.g.,

min f(IL, Io, a, Rs, Rsh) =
N∑

i=1

[
Ii − Îi(Vi, IL, Io, a, Rs, Rsh)

]2
,

whereN is the number of data samples,Î is the estimation ofI with the optimal solution
of IL, Io, a, Rs andRsh. Iterative searching algorithms are usually used [37,38], including
Newton-Raphson [39], Levenberg-Marquardt [40], Gauss Siedal [16], and singular value
decomposition [41], but their convergence and accuracy heavily depend on the initial values
and are easily trapped in the local optimums. From different initial value guesses, such
approaches can result in widely different parameter sets, all leading to satisfactory curve
fitting [42]. Although a good match between estimation and measured data can be obtained,
there is no guarantee that the estimatedI-V curve would pass the SC, OC and MPP points.

To achieve the global optimum, soft computing techniques have to be used, which in-
clude genetic algorithm (GA) [43–46], particle swarm optimisation (PSO) [47–49], dif-
ferential evolution (DE) [50–52], simulated annealing (SA) [53, 54] and artificial neural
network (ANN) [55, 56]. But they are too complicated to be implemented and unsuitable
for online calculation due to the heavy burden of computing.
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Current trend of PV model identification is to combine the deterministic and optimal
solutions, i.e.,employing both methods of solving algebraic equations and iterative search-
ing [57–59]. With a single parameter fitting procedure, numerical solutions to (4)-(7) will
be obtained by the empirical formulas or iterative algorithms. The drawbacks of the above
two categories are mitigated in this way. With the help of LambertW function as shown in
(16), Laudaniet al. further reduce the dimension of searching space from5 to 2 by splitting
the model parameters into two independent unknowns (a andRs) and three dependent ones
(IL, Io andRsh). In this way, the burden of iterative searching is greatly relieved and it
becomes easy to geta andRs numerically or graphically. The review and comparison for
the aforementioned all kinds of methods are well summarised in [60,61].

This chapter opens a new angle to view the diode model from the systems perspective.
Actually, one of the biggest application of LambertW function is to solve differential
equations, which is directly linked to the time-domain representation of a linear system.
For example, the first-order linear system can be described as [62]

T
dy(t)
dt

+ y(t) = u(t), (17)

whereT is the time constant of the system. The unit ramp (u(t) = t) response of (17) is
given by,

y(t) = t + T (e−
t
T − 1),

which has the same format as (3). This motivates us that theI-V curve governed by (3)
can be viewed as the output of some linear system, and the model parameters can be linked
to the coefficients of a linear differential equation. Using system identification methods
available in the literature [63], PV model parameters can be easily identified by a simple
linear least squares method.

2. Dynamic System Formulation

Firstly, we show how to link one-diode model to an equivalent linear system. Next, the
same method is extended to the general case of multi-diode model.

2.1. One-Diode Model

Recall theI-V curve described by (3) withm = 1. Let y = I andx = V + RsI, (3) then
becomes

y = IL + Io − Ioe
x
a − x

Rsh
. (18)

Taking differential once on both sides of (18) gives

dy

dx
= −Io

a
e

x
a − 1

Rsh
. (19)

Differentiating one more time for (19) gives

d2y

dx2
= − Io

a2
e

x
a . (20)
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Eliminatingex/a from (19) and (20) gives

a
d2y

dx2
− dy

dx
=

1
Rsh

. (21)

Let t = x andu(t) ≡ 1, (21) is equivalent to

a
d2y(t)
dt2

− dy(t)
dt

=
u(t)
Rsh

, (22)

which is a standard differential equation representation of a second order linear system.t is
the “time”,u(t) andy(t) are the system “input” and “output”, respectively. Sinceu(t) ≡ 1,
y(t) is the unit step response of the system in “time” domain. Taking Laplace transform,
F (s) = L[f(t)] =

∫∞
0 e−stf(t)dt, on both sides of (22),

a[s2Y (s)− sy(0)− y′(0)]− [sY (s)− y(0)] =
U(s)
Rsh

. (23)

Utilize sU(s) = 1, and (23) is equivalent to

a
[
s2Y (s)− s2U(s)y(0)− sU(s)y′(0)

]
− [sY (s)− sU(s)y(0)] =

1
Rsh

U(s).

It follows from (18) thaty(0) = IL, y′(0) = −Io/a− 1/Rsh, so the transfer function from
Y (s) to U(s) is

G(s) :=
Y (s)
U(s)

=
ay(0)s2 + [ay′(0)− y(0)]s + 1

Rsh

as2 − s

=
aILs2 − (Io + a

Rsh
+ IL)s + 1

Rsh

as2 − s
. (24)

The corresponding time domain differential equation is

a
d2y(t)
dt2

− dy(t)
dt

= aIL
d2u(t)

dt2
−

(
IL + Io +

a

Rsh

)
du(t)

dt
+

u(t)
Rsh

. (25)

It should be noted that (22) is different from (25) because of the non-zero initial condi-
tions. In other words, (25) is the description of the same system of (22) but with zero initial
conditions. This will facilitate the calculation of the integral-based identification proposed
in Section 3

2.2. Multi-Diode Model

Similarly by lettingy = I andx = V + RsI in (3), it yields

y = IL +
m∑

i=1

Ioi −
m∑

i=1

Ioie
x
ai − x

Rsh
. (26)

Taking differential once on both sides of (26) gives

dy

dx
= −

m∑

i=1

Ioi

ai
e

x
ai − 1

Rsh
. (27)
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Differentiating (27) fork times,k = 1, 2, · · · ,m, yields

y(k+1)(x) = −
m∑

i=1

Ioi

ak+1
i

e
x
ai , (28)

wherey(k)(x) = dky/dxk. Rewrite (28) in matrix format,



y(2)(x)
y(3)(x)

...
y(m+1)(x)




︸ ︷︷ ︸
B

=




a−1
1 a−1

2 · · · a−1
m

a−2
1 a−2

2 · · · a−2
m

...
...

...
...

a−m
1 a−m

2 · · · a−m
m




︸ ︷︷ ︸
A




− Io1
a1

e
x

a1

− Io2
a2

e
x

a2

...
− Iom

am
e

x
am




.

Sinceak 6= 0, A is a Vandermonde matrix withdet(A) 6= 0, soA−1 exists and
[
−Io1

a1
e

x
a1 ,−Io2

a2
e

x
a2 , . . .− Iom

am
e

x
am

]T

= A−1B, (29)

whereA−1 = [ξi,j ] ∈ Rm×m with

ξi,j =

∑

1≤k1<···<kn−j≤n
k1,··· ,kn−j 6=i

(−1)j−1a−1
k1
· · · a−1

kn−j

a−1
i

∏

1≤k≤n
k 6=i

(
a−1

k − a−1
i

) . (30)

Substituting (29) into (27) yields

y(1)(x)−
m∑

j=1

m∑

i=1

ξi,jy
(j+1)(x) = − 1

Rsh
. (31)

Let t = x andu(t) ≡ 1, (31) becomes the differential equation representation of anmth-
order “dynamic” system:

y(1)(t)−
m∑

j=1

m∑

i=1

ξi,jy
(j+1)(t) = −u(t)

Rsh
. (32)

Taking Laplace transform for both sides of (32) yields

sY (s)− y(0)−
m∑

j=1

m∑

i=1

ξi,j

(
sj+1Y (s)−

j+1∑

k=1

sk−1y(j+1−k)(0)

)
= −U(s)

Rsh
. (33)

It follows from (26)-(28) thaty(0) = IL, y(1)(0) = −∑m
i=1 Ioi/ai − 1/Rsh, y(k+1)(0) =

−∑m
i=1 Ioi/ak+1

i for k = 1, 2, · · · ,m. SincesU(s) = 1, (33) becomes

sY (s)− ILsU(s)−
m∑

j=1

m∑

i=1

ξi,j


 sj+1Y (s)− U(s)×




j∑

k=1

sk
m∑

i=1

−Ioi

aj+1−k
i

− sj

Rsh
+ ILsj+1





 = −U(s)

Rsh
.
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The transfer function isG(s) = Y (s)/U(s) = N/D, where

D =
m∑

j=1

m∑

i=1

ξi,js
j+1 − s,

N =
1

Rsh
− ILs +

m∑

j=1

m∑

i=1

ξi,j


ILsj+1 − sj

Rsh
−

j∑

k=1

sk
m∑

i=1

Ioi

aj+1−k
i


 .

The corresponding time domain differential equation with zero initial condition is

αm+1y
(m+1)(t) + · · ·+ α2y

(2)(t)− y(1)(t)

=βm+1u
(m+1)(t) + · · ·+ β1u

(1)(t) +
u(t)
Rsh

, (34)

where forj = 1, 2, · · · ,m,

α1 = −1, (35)

αj+1 =
m∑

i=1

ξi,j , (36)

βj = αjIL − αj+1

Rsh
−

m∑

k=j

m∑

i=1

αk+1Ioi

ak+1−j
i

, (37)

βm+1 = αm+1IL. (38)

In general, by introducing a virtual “time” oft = x, the static relationship between two
variablesy andx can be regarded as dynamics from the linear system governed by (34).
Onceαi andβi are determined from system identification, diode model parametersIL, Ioi ,
ai andRsh can be solved linearly from (36)-(37).

3. Integral-Based Linear Identification

For an integern ≥ 1, define the multiple integral as [63]

∫ (n)

[T1,T2]
f(τ) =

∫ T2

T1

∫ τn

T1

· · ·
∫ τ2

T1︸ ︷︷ ︸
n

f(τ1)dτ1dτ2 · · ·dτn. (39)

3.1. One-Diode Model

Applying (39) to (25) forT1 = 0, T2 = t andn = 2 gives

ay(t)− aILu(t) +
(

IL + Io +
a

Rsh

) ∫ (1)

[0,t]
u(τ)− 1

Rsh

∫ (2)

[0,t]
u(τ) =

∫ (1)

[0,t]
y(τ). (40)

Let θ = [a, aIL, IL + Io + a
Rsh

, 1
Rsh

]T , φ(t) = [y(t),−u(t),
∫ (1)
[0,t] u(τ),− ∫ (2)

[0,t] u(τ)]T and

γ(t) =
∫ (1)
[0,t] y(τ), (40) can be rewritten as the matrix format ofφT (t)θ = γ(t). Note that
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the matrix format holds for anyti ∈ [0, t], i = 1, 2, · · · , N , whereN is the the number of
data samples on theI-V curve. This actually casts an equation group ofΦθ = Γ with Φ =
[φ(t1), φ(t2), · · · , φ(tN )]T andΓ = [γ(t1), γ(t2), · · · , γ(tN )]T . If ΦT Φ is nonsingular, the
linear least square solution forθ is given by

θ =
(
ΦT Φ

)−1
ΦT Γ, (41)

which will minimise the square error of(Γ − Φθ)T (Γ − Φθ). Onceθ is determined from
(41), the parameters of one-diode model can be obtained by

a = θ1,

IL =
θ2

θ1
,

Io = θ3 − θ2

θ1
− θ1θ4,

Rsh =
1
θ4

.

3.2. Multi-Diode Model

Applying (39) to (34) forT1 = 0, T2 = t andn = m + 1,

αm+1y(t) + · · ·+ α2

∫ (m−1)

[0,t]
y(τ)−

∫ (m)

[0,t]
y(τ)

=βm+1u(t) + · · ·+ β1

∫ (m)

[0,t]
u(τ) +

1
Rsh

∫ (m+1)

[0,t]
u(τ).

Let θ = [αm+1, · · · , α2, βm+1, · · · , β1,
1

Rsh
]T , φ(t)=[y(t), · · · ,

∫ (m−1)
[o,t] y(τ),−u(t), · · · ,

− ∫ (m+1)
[0,t] u(τ)]T , γ(t) =

∫ (m)
[0,t] y(τ), θ andφ(t) ∈ R(2m+2)×1, we haveφT (t)θ = γ(t).

For ti ∈ [0, t], i = 1, 2, · · · , N , the equation group can be described byΦθ = Γ with Φ =
[φ(t1), φ(t2), · · · , φ(tN )]T andΓ = [γ(t1), γ(t2), · · · , γ(tN )]T . If ΦT Φ is nonsingular, the
least square solution forθ will be

θ =
(
ΦT Φ

)−1
ΦT Γ. (42)

Onceθ is determined from (42),Rsh = 1/θ2m+2 is immediately derived. It follows from
(38) thatIL = βm+1/αm+1 = θm+1/θ1.

ai (i = 1, 2, · · · ,m) will be derived in the following way. Rewriting (36) in matrix
format gives

[α2, · · · , αm+1] = [1, · · · , 1]︸ ︷︷ ︸
m

A−1.

Right-multiplyingA for both sides gives

[α2, · · · , αm+1]




a−1
1 · · · a−1

m
...

...
...

a−m
1 · · · a−m

m


 = [1, · · · , 1]︸ ︷︷ ︸

m

,
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which implies that1/ai are the roots of the following characteristic equation

αm+1λ
m + αmλm−1 + · · ·+ α2λ− 1 = 0. (43)

Solving (43) forλi, andai = 1/λi, Ioi (i = 1, 2, · · · ,m) will be derived as follows. (37)
can be rewritten as

βj = αjIL − αj+1

Rsh
−

m∑

i=1

Ioi

m∑

k=j

αk+1

ak+1−j
i

.

Rewriting further as matrix format,



m∑
k=1

αk+1
ak
1

m∑
k=1

αk+1
ak
2

· · ·
m∑

k=1

αk+1
ak

m

m∑
k=2

αk+1

a
k−1
1

m∑
k=2

αk+1

a
k−1
2

· · ·
m∑

k=2

αk+1

a
k−1
m

.

.

.
.
.
.

. . .
.
.
.

m∑
k=m

αk+1

a
k+1−m
1

m∑
k=m

αk+1

a
k+1−m
2

· · ·
m∑

k=m

αk+1

a
k+1−m
m




︸ ︷︷ ︸
Ψ




Io1
Io2

.

.

.
Iom


 = −




β1 + IL +
α2

Rsh
β2 − α2IL +

α3
Rsh

.

.

.

βm − αmIL +
αm+1
Rsh




︸ ︷︷ ︸
Ξ

Note from (43) that
∑m

k=1 αk+1/ak
i = 1 for i = 1, 2, · · · ,m, Ψ can be simplified as

Ψ =




1 1 · · · 1
a1 a2 · · · am

...
...

. . .
...

am−1
1 am−1

2 · · · am−1
m




︸ ︷︷ ︸
Ψ∗

−




0 · · · 0
α2 · · · α2

...
. . .

...
m−1∑
k=1

αk+1am−1−k
1 · · ·

m−1∑
k=1

αk+1am−1−k
m




.

This implies that after elementary row operations,Ψ is similar to Ψ∗, which is a
Vandermonde matrix withdet(Ψ∗) 6= 0. Therefore,Ψ−1 exists (Ψ is full rank) and
[Io1 , Io2 , · · · , Iom ]T = Ψ−1Ξ.

3.3. Nonsingularity ofΦT Φ

The existence of the linear least square solution by (41) and (42) depends on the nonsingu-
larity of ΦT Φ, which is shown by the following lemma.

Lemma 3.1. ΦT Φ is nonsingular ifai 6= aj for i 6= j, i, j = 1, 2, · · · ,m, and the sampling
numberN ≥ 2m + 2.

Proof. Consider the general case of multi-diode model with

Φ = [φ(t1), φ(t2), · · · , φ(tN )]T := [Φ1,Φ2],
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Φ1 =




y(t1)
∫ (1)
[0,t1] y(τ) · · · ∫ (m−1)

[0,t1] y(τ)

y(t2)
∫ (1)
[0,t2] y(τ) · · · ∫ (m−1)

[0,t2] y(τ)
...

...
...

...

y(tN )
∫ (1)
[0,tN ] y(τ) · · · ∫ (m−1)

[0,tN ] y(τ)




:= [φi,j ],

Φ2 = −




u(t1)
∫ (1)
[0,t1] u(τ) · · · ∫ (m+1)

[0,t1] u(τ)

u(t2)
∫ (1)
[0,t2] u(τ) · · · ∫ (m+1)

[0,t2] u(τ)
...

...
...

...

u(tN )
∫ (1)
[0,tN ] u(τ) · · · ∫ (m+1)

[0,tN ] u(τ)




=: [ϕi,l].

Recall from (26) that

y(t) = IL +
m∑

i=1

Ioi −
m∑

i=1

Ioie
t

ai − t

Rsh
,

andu(t) ≡ 1 by the definition. Fori = 1, 2, · · · , N ,

φi,j =

∫ (j−1)

[0,ti]

y(τ) =

IL +
m∑

i=1

Ioi

(j − 1)!
tj−1
i − tji

j!Rsh
+

j−2∑
k=0

m∑
l=1

Iola
j−k−1
l

tki
k!
−

j∑
k=1

Iokaj−1
k

e
ti
ak ,

ϕi,l = −
∫ (l−1)

[0,ti]

u(τ) = − 1

j!
tli,

wherej = 1, 2, · · · ,m andl = 1, 2, · · · ,m + 2. After elementary column operations for
Φ, Φ1 → Φ̃1 := [φ̃i,j ] with

φ̃i,j =
j∑

k=1

Iok
aj−1

k e
ti
ak .

In matrix format,

Φ̃1 =




e
t1
a1 e

t1
a2 · · · e

t1
am

e
t2
a1 e

t2
a2 · · · e

t2
am

...
...

. . .
...

e
tN
a1 e

tN
a2 · · · e

tN
am




︸ ︷︷ ︸
E




Io1

Io2

. . .
Iom




︸ ︷︷ ︸
Λ




1 a1 · · · am−1
1

1 a2 · · · am−1
2

...
...

. . .
...

1 am · · · am−1
m




︸ ︷︷ ︸
V ∗

.

SinceΛ is diagonal andV ∗ is a standard Vandermonde matrix,rank(Λ) = rank(V ∗) = m.
If t2 − t1 = t3 − t2 = · · · = tm − tm−1 = Ts > 0, asN ≥ 2m + 2, the firstm row of E

Em =




1 1 · · · 1

e
Ts
a1 e

Ts
a2 · · · e

Ts
am

...
...

...
...

(e
Ts
a1 )n−1 (e

Ts
a2 )n−1 · · · (e

Ts
am )m−1







e
t1
a1

e
t1
a2

...

e
t1

am




,
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so rank(E) = rank(Em) = m. Otherwise, it is always possible to find some∆T such
thatti = ni∆T , ni ∈ N for i = 1, 2, · · · ,m. Construct matrix

E∗ =




1 1 · · · 1

e
∆T
a1 e

∆T
a2 · · · e

∆T
am

...
...

...
...

e
nm∆T

a1 e
nm∆T

a2 · · · e
nm∆T

am



∈ Rnm×n,

andEm is sub-matrix ofE∗. SinceE∗ is a Vandermonde matrix with full column rank,
rank(E) = rank(Em) = rank(E∗) = m. So,Φ1 is full column rank, i.e.,rank(Φ1) = m.

Φ2 =




t1 t21 · · · tm+2
1

t2 t22 · · · tm+2
2

...
...

...
...

tN t2N · · · tm+2
N




︸ ︷︷ ︸
V2




−1
...

−1
(m + 1)!

−1
(m + 2)!




As N ≥ 2m + 2, the firstm + 2 row of V2 is a Vandermonde matrix, sorank(Φ2) =
rank(V2) = m + 2, i.e.,Φ2 is full column rank. SinceΦ = [Φ1,Φ2] with the full column
rank of bothΦ1 andΦ2, Φ is also full column rank.N ≥ 2m + 2 implies that the row
number ofΦ is no less than the column number. So,rank(Φ) = 2m + 2 andΦT Φ is full
rank, i.e.,(ΦT Φ)−1 exists.

3.4. Calculation of Multiple Integrals

In practice, the integral shown as (39) is numerically estimated by rectangular or trapezoidal
integration. For example, suppose there areN samples att1, t2, · · · , tN , the rectangular
integration gives

∫ (1)

[t1,ti]
f(τ) =

∫ ti

t1
f(τ1)dτ1 ≈

i−1∑

k=1

f(k)(tk+1 − tk) := f1(i),

∫ (2)

[t1,ti]
f(τ) ≈

i−1∑

k=1

f1(k)(tk+1 − tk) := f2(i),

...
∫ (n)

[t1,ti]
f(τ) ≈

i−1∑

k=1

fn−1(k)(tk+1 − tk) := fn(i).

for i = 1, 2, · · · , N . The more number of samples,fi, the more accurate the estimation to
the multiple integrals will be.

3.5. Determination ofRs

To calculateθ from (41) or (42),Φ andΓ must be known. As both of them are integrals to
t, t must be known as well. Sincet = V + RsI, Rs must be determined before applying
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integrals. It is clear to see that ifRs is bigger than its real value,t will increase so that the
wholeI-V curve will move to the right and the error between the real and estimatedI-V
curves will be positive; IfRs decreases, the wholeI-V curve will move to the left and the
error between the real and estimatedI-V curves will be negative. Thus,Rs can be used as
a tuning parameter such that the root mean square error (RMSE) is minimised.

It derives from (3) that

− 1
dI
dV

∣∣∣
oc

= Rs +
1

m∑
i=1

Ioi
ai

e
Voc
ai + 1

Rsh

> Rs,

which implies the upper bound ofRs, i.e., Rupp
s = −1/ dI

dV

∣∣∣
oc

. The lower bound ofRs

can be zero at first, i.e.,Rlow
s = 0. With such a band ofRs ∈ [Rlow

s , Rupp
s ], binary search

algorithm is applied to determineRs in the following way:
Step 1.Arbitrarily chooseRs from [Rlow

s , Rupp
s ] and calculatêai, ÎL, Îoi andR̂sh from

the proposed linear least square (41) or (42);
Step 2.Calculate from (3) that

ŷ(t) = ÎL −
m∑

i=1

Îoi

(
e

V +RsI
âi − 1

)
− V + RsI

R̂sh

,

andRMSE =
√∑N

i=1 [ŷ(ti)− y(ti)]
2 /N .

Step 3. CalculateERR =
∑N

i=1[ŷ(ti) − y(ti)]. If ERR > 0, adjustRs = (Rs +
Rlow

s )/2. Otherwise, adjustRs = (Rs + Rupp
s )/2.

Step 4. UpdateRupp
s andRlow

s according to the sign ofERR. If ERR > 0, Rupp
s =

Rs, otherwise,Rlow
s = Rs.

Step 5.If RMSE is less than some tolerance or the iterative cycle reaches some preset
number, stop the searching. Otherwise, updateRupp

s andRlow
s according to the sign of

ERR and go back toStep 2. The flowchart of the binary searching algorithm is shown in
Figure 3.

3.6. Robustness Enhancement

From the viewpoint of control theory, the transfer function (24) has a pole ofs = 1/a > 0,
which implies the system (25) is unstable. This is also true for the general case of multi-
diode model. Identification for unstable system is not preferred because the convergence
of the proposed algorithm might be sensitive to the accuracy of the integral calculation in
such a case. To improve the robustness of the proposed algorithm,Ṽ is introduced to yield
a stable system.

In case of one-diode model, letV = Voc − Ṽ , 0 ≤ Ṽ ≤ Voc, andx̃ = Ṽ − RsI, thus
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Figure 3. Flowchart of the binary searching algorithm.

x = V + RsI = Voc − (Ṽ −RsI) = Voc − x̃. It follows from (18)-(20) that

y = IL + Io − Voc

Rsh
− Ioe

Voc
a e−

x̃
a +

x̃

Rsh
,

dy

dx̃
=

Io

a
e

Voc
a e−

x̃
a +

1
Rsh

,

d2y

dx̃2
= − Io

a2
e

Voc
a e−

x̃
a .
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Let t = x̃ andu(t) ≡ 1, by eliminatinge−x̃/a it gives

a
d2y(t)
dt2

+
dy(t)
dt

=
u(t)
Rsh

.

The corresponding transfer function is

G(s) =
Y (s)
U(s)

=
ay(0)s2 + [ay′(0) + y(0)]s + 1

Rsh

as2 + s
,

wherey(0) = IL − Io(eVoc/a − 1) − Voc/Rsh, y′(0) = IoeVoc/a/a + 1/Rsh. In this way,
the unstable poles = 1/a > 0 becomes stable ass = −1/a < 0.

The remaining procedures are the same as aforementioned. Letγ(t) = − ∫ (1)
[0,t] y(τ),

φ(t) =
[
y(t),−u(t),− ∫ (1)

[0,t] u(τ),− ∫ (2)
[0,t] u(τ)

]T
, and

θ =




a

aIL − aIo(e
Voc
a − 1)− aVoc

Rsh

IL + Io − Voc−a
Rsh

1
Rsh




,

the linear least square solution isθ =
(
ΦT Φ

)−1
ΦT Γ with Φ = [φ(t1), φ(t2), · · · , φ(tN )]T

andΓ = [γ(t1), γ(t2), · · · , γ(tN )]T . Onceθ is determined, the parameters of one-diode
model are obtained by

a = θ1,

IL =
θ2

θ1
+

(
θ3 − θ2

θ1
− θ1θ4

) (
1− e−

Voc
θ1

)
+ Vocθ4,

Io =
θ3 − θ2

θ1
− θ1θ4

e
Voc
θ1

,

Rsh =
1
θ4

.

In the case of a multi-diode model, with the same transform ofx = Voc − x̃, (26)
becomes

y = IL +
m∑

i=1

Ioi −
m∑

i=1

Ioie
Voc
ai e−

x̃
ai − Voc

Rsh
+

x̃

Rsh
. (44)

Let ãi = −ai, ĨL = IL +
∑m

i=1 Ioi(1− eVoc/ai)−Voc/Rsh, Ĩoi = Ioie
Voc/ai , R̃sh = −Rsh,

and (44) is equivalent to

y = ĨL +
m∑

i=1

Ĩoi −
m∑

i=1

Ĩoie
x̃
ãi − x̃

R̃sh

,

which has the same format as (26). This means that all the derivation aforementioned are
applicable to the parameter set{ãi, ĨL, Ĩoi , R̃sh}. Once they are determined, the parameter
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set{ai, IL, Ioi , Rsh} is derived immediately by

ai = −ãi,

Rsh = −R̃sh,

Ioi = Ĩoie
−Voc

ai ,

IL = ĨL −
m∑

i=1

Ioi

(
1− e

Voc
ai

)
+

Voc

Rsh
.

4. Validation

4.1. Indoor Flash Test

The I-V characteristics of full-sized commercial modules were measured indoor by a
pulsed solar simulator (PASAN IIIB) with a constant illumination intensity plateau of about
12ms used. The data acquisition, which requires about10ms, occurs during the plateau
period, whereby the light intensity varies by less than±1%. The intensity of the solar
simulator is calibrated with a c-Si reference cell certified by Fraunhofer ISE. The overall
uncertainty of module power measurement is within±2%.

Consider theI-V characteristic of a crystalline PV module from the indoor flash test
under STC (1000W/m2, 25◦C, AM = 1.5) is shown in Figure 4. Both one-diode and
two-diode models are considered for this case study.
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Figure 4. TheI-V characteristic of a crystalline PV module.
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4.1.1. One-Diode Model

Firstly, use the last10 points at OC to derive a linear fitting:I = kV + p, wherek =
−0.9131. Rupp

s ≈ −1/k = 1.0952. Rlow
s = 0. Arbitrarily chooseRs ∈ [Rlow

s , Rupp
s ],

e.g.,Rs = 1.0952, and follow the proposed integral-based linear identification presented
in Section 3.1,Rs converges toRs = 0.655 after about30 steps with the proposed binary
searching, as shown in Figure 6. Multiple integrals from (39) are estimated by the numerical
integration presented in Section 3.4. It follows from (41) thatθ1 = 1.9891, θ2 = 9.8295,
θ3 = 4.9434, θ4 = 8.9631× 10−4. Thus,

a = θ1 = 1.9891 (V),

IL =
θ2

θ1
= 4.9416 (A),

Io = θ3 − θ2

θ1
− θ1θ4 = 4.1785× 10−9 (A),

Rsh =
1
θ4

= 1.1157× 103 (Ω).

The comparison between theI-V curves from the real measurement and the one-code
model is shown in Figure 5, where the average absolute errorĒ = 1/N

∑N
i=1 |ERR| =

0.0085. TheRMSE is shown in Figure 6, which converges to1.67% at last after35 steps
with Tol = 2%.
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Figure 5. Accuracy of the proposed method for c-Si module.
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Figure 6. Convergence ofRs andRMSE for c-Si module.

4.1.2. Two-Diode Model

It is clear to see from Figure 5 that one-diode model is good enough to represent the whole
I-V curve accurately. This implies that if two-diode model is applied,Io2 → 0, which
will cause a singular matrix in the identification of Section 3.2 To avoid such a potential
problem, robustness enhancement discussed in Section 3.6 will be applied. Withm = 2,
(44) becomes

y = IL + Io1

(
1− e

Voc−x̃
a1

)
+ Io2

(
1− e

Voc−x̃
a2

)
− Voc − x̃

Rsh
,

wherex̃ = Ṽ −RsI, Ṽ = Voc − V . And its multiple differentials are

dy

dx̃
=

Io1

a1
e

Voc−x̃
a1 +

Io2

a2
e

Voc−x̃
a2 +

1
Rsh

, (45)

d2y

dx̃2
= −Io1

a2
1

e
Voc−x̃

a1 − Io2

a2
2

e
Voc−x̃

a2 , (46)

d3y

dx̃3
=

Io1

a3
1

e
Voc−x̃

a1 +
Io2

a3
2

e
Voc−x̃

a2 . (47)

(46) and (47) in matrix format are



d2y

dx̃2

d3y

dx̃3




=




−Io1

a2
1

−Io2

a2
2

Io1

a3
1

Io2

a3
2





 e

Voc−x̃
a1

e
Voc−x̃

a2


 .
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Thus,


 e

Voc−x̃
a1

e
Voc−x̃

a2


 =




−Io1

a2
1

−Io2

a2
2

Io1

a3
1

Io2

a3
2




−1 


d2y

dx̃2

d3y

dx̃3




=




a3
1

Io1(a2 − a1)
a3

1a2

Io1(a2 − a1)

− a3
2

Io2(a2 − a1)
− a1a

3
2

Io2(a2 − a1)







d2y

dx̃2

d3y

dx̃3




.

Substitute it into (45), it yields

a1a2
d3y(t)
dt3

+ (a1 + a2)
d2y(t)
dt2

+
dy(t)
dt

=
u(t)
Rsh

, (48)

wheret = x̃ andu(t) ≡ 0. After Laplace transform, (48) becomes

a1a2

[
s3Y (s)− y′′(0)− sy′(0)− s2y(0)

]
+ (a1 + a2)

[
s2Y (s)− y′(0)− sy(0)

]

+ [sY (s)− y(0)] =
U(s)
Rsh

, (49)

where

y(0) = IL + Io1

(
1− e

Voc
a1

)
+ Io2

(
1− e

Voc
a2

)
− Voc

Rsh
, (50)

y′(0) =
Io1

a1
e

Voc
a1 +

Io2

a2
e

Voc
a2 +

1
Rsh

, (51)

y′′(0) = −Io1

a2
1

e
Voc
a1 − Io2

a2
2

e
Voc
a2 . (52)

Utilize sU(s) = 1, and (49) is equivalent to

a1a2s
3Y (s) + (a1 + a2)s

2Y (s)− a1a2y(0)s3U(s)−
[
a1a2y

′(0) + (a1 + a2)y(0)
]
s2U(s)

−U(s)

Rsh
−

[
a1a2y

′′(0) + (a1 + a2)y
′(0) + y(0)

]
sU(s) = −sY (s).

Therefore, the differential equation representation with zero initial conditions are

a1a2
d3y(t)

dt3
+ (a1 + a2)

d2y(t)

dt2
− a1a2y(0)

d3u(t)

dt3
−

[
a1a2y

′(0) + (a1 + a2)y(0)
] d2u(t)

dt2

−u(t)

Rsh
−

[
a1a2y

′′(0) + (a1 + a2)y
′(0) + y(0)

] du(t)

dt
= −dy(t)

dt
. (53)

Applying triple integral (39) (withn = 3) to (53), we have

a1a2y(t) + (a1 + a2)

∫ (1)

[0,t]

y(τ)− a1a2y(0)u(t)−
[
a1a2y′(0) + (a1 + a2)y(0)

]∫ (1)

[0,t]

u(τ)

− 1

Rsh

∫ (3)

[0,t]

u(τ)−
[
a1a2y′′(0) + (a1 + a2)y′(0) + y(0)

]∫ (2)

[0,t]

u(τ) = −
∫ (2)

[0,t]

y(τ). (54)
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Let φ(t) = [y(t),
∫ (1)
[0,t] y(τ),−u(t),− ∫ (1)

[0,t] u(τ),− ∫ (2)
[0,t] u(τ),− ∫ (3)

[0,t] u(τ)]T ,

θ :=




θ1

θ2

θ3

θ4

θ5

θ6




=




a1a2

a1 + a2

θ1y(0)
θ1y

′(0) + θ2y(0)
θ1y

′′(0) + θ2y
′(0) + y(0)

1/Rsh




, (55)

andγ(t) = − ∫ (2)
[0,t] y(τ), then (54) can be rewritten in matrix format ofφ(t)T θ = γ(t).

The linear least solution toθ is given by (42). Immediately,a1,2 = (θ2 ±
√

θ2
2 − 4θ1)/2,

Rsh = 1/θ6, and 


θ3

θ4

θ5


 =




θ1 0 0
θ2 θ1 0
1 θ2 θ1



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y(0)
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y′′(0)


 .
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y(0)
y′(0)
y′′(0)


 =


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θ1 0 0
θ2 θ1 0
1 θ2 θ1



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
 .

It follows from (50)-(52) that


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−1 


y(0) + Voc/Rsh

y′(0)− 1/Rsh
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
 .

In this way, with the sameI-V characteristics data as shown in Figure5, we gotθ1 =
0.6849, θ2 = 2.2356, θ3 = 0.0247, θ4 = 3.3348, θ5 = 4.9034 andθ6 = 0.0010. The
two-diode model parameters are identified as

a1 = 1.8691 (V),

a2 = 0.3664 (V),

Io1 = 1.5168× 10−10 (A),

Io2 = 7.9060× 10−54 (A),

IL = 4.9480 (A),

Rsh = 955.1229 (Ω),

Rs = 0.6845 (Ω).
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The average absolute error̄E = 0.0080 andRMSE = 1.35%, both of which are
slightly reduced as compared to the one-diode model result. As expected,Io2 is indeed
extremely close to zero, whereas other parameters are comparable to their counter parts in
one-diode model result.

It should be highlighted that the diode model parameters derived from the indoor flash
test are not constant. Actually, they are varying with temperature and solar radiation. There-
fore, it is necessary to check the online computability of the proposed method for PV mod-
ules under non-constant environment, which is demonstrated by the outdoor module testing
as follows.

4.2. Outdoor Module Testing

Outdoor module testing (OMT) is usually carried out by many PV panel manufacturers and
solar research institutes for the module performance evaluation under the real operating en-
vironments. DC parameters including fullI-V curves,Voc, Isc, Vmpp, Impp, Pmpp together
with module temperature are measured and logged every minute. Environmental parame-
ters including in-plane solar irradianceGsi, ambient temperatureTamb, module temperature
Tmod, wind speed and wind direction are logged simultaneously with the DC parameters.
BetweenI-V measurements, electrical energy is maintained at the module maximum power
point (MPP). The uncertainty of all electrical measured parameters is within±0.1% for full
scale. With theseI-V data in time series, the diode model parameters can be identified
online by the proposed method and correlated to the environmental factors like irradiance,
temperature, etc.
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Figure 7. Environmental factors of a typical day in SERIS’ OMT testbed.

Figure 7 shows the time series ofGsi, Tamb andTmod on a typical day from the OMT
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testbed of Solar Energy Research Institute of Singapore (SERIS). The plot is centred around
the solar noon, which was at13 : 10 on the5 August2010.

By applying the proposed method in Section 3, the time-varying one-diode model pa-
rametersIL, Io, a, Rs andRsh for the same day are identified, as shown in Figure 8. The
variation of the identified parameters reflects the dynamics of the PV module under different
environmental conditions, which cannot be seen from the staticI-V curves.
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Figure 8. Identified one-diode model parameters.

The relationships between the identified parameters and the environmental operating
conditions are further illustrated in Figure 9-12. A proportional relationship betweenIL

and irradiance intensity is observed in Figure 9. It is also apparent from Figure 10 thatIo

generally shows an increasing trend with rising module temperature. This also agrees with
the theoretical temperature dependence ofIo, as given byIo = BT 3e−Eg/(kT ), whereEg

is the band gap of silicon andB is a temperature independent constant [14]. Figure 11
illustrates thata generally decreases with increasing irradiance forGsi < 300 W/m2 and
increases beyond that, which is as reported in [64]. When irradiance decreases in Figure
12, the series resistanceRs decreases and the shunt resistanceRsh increases, which is
consistent with previous reported results [65]. The decrease inRs is due to the decreased
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thermal loss (I2Rs) with decreasing irradiance.
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The RMSE of the proposed algorithm in OMT case is shown in Figure13, where the
burden of the online calculation for convergence (iterative steps forRs until Tol or maxi-
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Figure 12. Relationship betweenRs, Rsh andGsi.

mum cycle is achieved) is presented as well. Among600 plus I-V scans during the day,
there are only three cases with the RMSE exceeding the preset1% Tol when the maximum
number (100) of steps is reached. Even for these three cases, the RMSE is still below1.5%.
The iterative steps are very stable, and they are usually less than30. This indicates that
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the online calculation burden of the proposed algorithm is low and the identification can be
done by an industrial PC locally between two consecutiveI-V scan (1 min in our case).
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Figure 13. RMSE and burden of online calculation.

5. Comparison with Other Methods

In this section, the comparison of the proposed method with the approaches of iterative
searching (based on LambertW function) and evolutionary algorithms (mainly DE and GA)
are discussed because they represent the most accurate estimation of PV model parameters.

5.1. Lambert W Function Based Method

In [32], two data sets ofI-V curves (26 points) are presented, which are initially proposed
in [39] and are commonly used to test the effectiveness of the extraction algorithms. One
refers to a solar module (Photowatt-PWP 201) at45◦C and the other refers to a solar cell
(c-Si) at33◦C, as shown in Table 1. The one-diode model parametersIL, Io andRsh are
proved to be functions ofRs anda. So the searching in the two-dimensional parameter
space ofRs anda with the constrained conditions of (4), (5) and (7) yields Solution A;
with the constrained conditions of (4), (5) and (6) yields Solution B. These two solutions
are then fine tuned as the initial values of some nonlinear least square for the experimental
data, which yields Solution C and D, respectively.

The comparison of the solutions of one-diode model by the propose and LambertW
function based method are shown in Table 2, where “MAE” is the mean absolute error
and “Step” is the number of iterative searching cycle before convergence. It is clear to see
that the proposed method gives a very close results to LambertW function based method.
Although the error is slightly bigger, the number of iteration steps is less.
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Table 1. ExperimentalI-V data [32]

Module Cell
SN Voltage (V) Current (A) Voltage (V) Current (A)
1 −1.9426 1.0345 −0.2057 0.7640
2 0.1248 1.0315 −0.1291 0.7620
3 1.8093 1.0300 −0.0588 0.7605
4 3.3511 1.0260 0.0057 0.7605
5 4.7622 1.0220 0.0646 0.7600
6 6.0538 1.0180 0.1185 0.7590
7 7.2364 1.0155 0.1678 0.7570
8 8.3189 1.0140 0.2132 0.7570
9 9.3097 1.0100 0.2545 0.7555
10 10.2163 1.0035 0.2924 0.7540
11 11.0449 0.9880 0.3269 0.7505
12 11.8018 0.9630 0.3585 0.7465
13 12.4929 0.9255 0.3873 0.7385
14 12.6490 0.9120 0.4137 0.7280
15 13.1231 0.8725 0.4373 0.7065
16 14.2221 0.7265 0.4590 0.6755
17 14.6995 0.6345 0.4784 0.6320
18 15.1346 0.5345 0.4960 0.5730
19 15.5311 0.4275 0.5119 0.4990
20 15.8929 0.3185 0.5265 0.4130
21 16.2229 0.2085 0.5398 0.3165
22 16.5241 0.1010 0.5521 0.2120
23 16.7987 −0.0080 0.5633 0.1035
24 17.0499 −0.1110 0.5736 −0.0100
25 17.2793 −0.2090 0.5833 −0.1230
26 17.4885 −0.3030 0.5900 −0.2100

Table 2. Solution comparison for solar module

Parameters Proposed Laudani 1A Laudani 1B Laudani 1C Laudani 1D
IL (A) 1.0334262 1.032173 1.033537 1.0323759 1.0323759
Io (µA) 2.4424001 3.035367 2.825571 2.5188885 2.5188848
Rs (Ω) 1.2307473 1.218407 1.224053 1.2390187 1.2390187

Rsh (kΩ) 0.6034037 0.783516 0.689321 0.7456443 0.7456431
a (NsnkTc/q) 1.2975122 1.319345 1.312115 1.3002458 1.3002456
RMSE (10−3) 2.4777 2.1176 2.1547 2.0465 2.0465
MAE (10−3) 1.8461 1.6425 1.6060 1.6917 1.6917

Steps 8 12 10 19 28
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The error mainly arises from the numerical integrations presented in Section 3.4 and
the fewI-V data samples available (26 points only). If more data samples on theI-V curve
are known, the error of the proposed method will be reduced. To illustrate this point, model
parameters from the solution of Laudani 1D was used to reproduce the wholeI-V curve
with the help of (16). The number of samples are selected to be50, 100, 200. Based on such
samples on theI-V curve derived from Laudani 1D solution, the RMSE of the proposed
method to the wholeI-V and the experimental data are shown in Table 3. As expected, the
more data samples, the smaller RMSE. When data samples increased to100, the RMSE for
the experimental data is already better than the solutions of Laudani 1A/B and all the other
results compared in [32].

Table 3. RMSE with different data samples (Module)

Source Solutions RMSE1 RMSE2 Steps

From 50 pts 3.3085×10−4 2.2290×10−3 8

Module3 From 100 pts 8.5583×10−5 2.0939×10−3 13

From 200 pts 2.0177×10−5 2.0874×10−3 12

From 50 pts 3.6098×10−4 9.9881×10−4 8

Cell4 From 100 pts 8.8401×10−5 8.6810×10−4 9

From 200 pts 2.2234×10−5 8.5153×10−4 10
1 for the wholeI-V curve 2 for the experimental data in [32]
3 I-V curve is produced from Laudani 1D
4 I-V curve is produced from Laudani 2D

The result comparison for the solar cellI-V data in [32] is shown in Table 4. The RMSE
of the proposed method is smaller than the results of Laudani 2A/C, and only slightly bigger
than Laudani 2B/D. When data samples increased to100, the proposed method already
outperformed Laudani 2B, as shown in Table 3.

Table 4. Solution comparison for solar cell

Parameters Proposed Laudani 2A Laudani 2B Laudani 2C Laudani 2D
IL (A) 0.7609438 0.764114 0.761060 0.7706871 0.7607884
Io (µA) 0.3456572 0.003496 0.290125 0.003668522 0.3102482
Rs (mΩ) 36.14233 45.438 36.8 49.11298 36.55304
Rsh (Ω) 49.482205 11.103851 49.973561 11.103904 52.859056
a (10−2) 3.9256187 2.9929942 3.8784080 2.997888 3.8965248

RMSE (10−3) 1.0548 11.388 0.88437 8.9605 0.77301
MAE (10−3) 0.85202 9.4014 0.69732 7.2064 0.67810

Steps 8 8 7 14 16

In general, LambertW function based method has many benefits in two aspects:

• It utilizes the Lambert W function to convert a non-concave optimal problem into a
concave optimal problem;

• It utilizes reduced forms to decrease the dimension of the parameter space from five
to two.
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This method can deal with theI-V data from the data sheet (points at SC, OC, MPP) or
experiment (fullI-V curve), and in most of cases, it yields the best results in terms of
RMSE and/or MAE.

The deficiencies of LambertW function based method may be:

• No unique solutions;

• Inapplicable to the multi-diode model (m > 1) parameter identification due to the
limitations of Lambert W function;

• Not easy to be implemented and unsuitable for online parameter identification.

The proposed method further reduces the dimension of the parameter space to one. It
uses linear square other than nonlinear optimal algorithms to derive diode model parame-
ters, so the drawbacks of nonlinear algorithms are avoided. It can also be used for multiple-
diode model and simple enough to be implemented as online calculation. The deficiencies
is that it requires the knowledge of the fullI-V curve data.

5.2. Evolution Algorithms

As mentioned in the Introduction, evolution algorithms are very suitable for the search of
a global optimal solution. Recently, two types of evolution algorithms using differential
evolution (DE) [50] and genetic algorithm (GA) [45] yield good results for diode model
parameter identification. Since no fullI-V curve data are provided in [45, 50], we do the
comparison in an indirect way as follows. Firstly, use the identified parameters (IL, Io, a,
Rs andRsh) to reconstruct theI-V curve by (16); Secondly, use thatI-V curve data to
identify diode-model parameters with the proposed method. Since DE and GA are applied
to derivea, Rs andRsh only (IL andIo are derived by formulas in [2,58]), we only compare
the results ofa, Rs andRsh. Table 5 shows the results ofa, Rs andRsh from the proposed
method and DE/GA. It is clear to see that the differences in between are very minor.

Table 5. Solution comparison with evolution algorithms

Module Solutions a (NsnkTc/q) Rs (Ω) Rsh (Ω)

Shell SM55 Proposed 1.2666 0.3001 2.3165×103

(mono-cSi) DE 1.2665 0.3 2.34×103

Shell S75 Proposed 1.2300 0.2000 1.7834×103

(multi-cSi) DE 1.2295 0.2 1.79×103

Sanyo 215 Proposed 2.1778 0.7821 851.2464

(HIT) GA 2.1780 0.782 852.177

Kyocera 200 Proposed 1.5340 0.3310 882.7933

(multi-cSi) GA 1.5337 0.331 883.925

The result of the two-diode model for the aforementioned Kyocera module (Kyocera -
KC200GT) was also reported in [45]. It is interesting to comparing this result with ours.
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If looking carefully at the comparison shown in Table 6, the GA algorithm gives compa-
rableIo1 andIo2 (both in 10−9 A). a1 anda2 are also near to each other. If ignoring the
differences between them, the two-diode can be combined as one. This implies that GA
algorithm actually gives a result of one-diode model but mathematically divides it into two
diodes format with no physical meaning. That’s a common issue for the global optimization
algorithm like DE and GA, whereas the proposed method has no such problems.

Table 6. Comparison of two-diode models

Parameters GA Proposed

a1 (V) 1.5420 1.4936

a2 (V) 1.9095 0.4944

Rs (Ω) 0.29 0.4095

Rsh (Ω) 480.496 842.8287

Io1 (A) 4.23×10−9 1.6044×10−9

Io2 (A) 9.1478×10−9 2.6559×10−29

MAE 0.02 0.0058

6. Graphical Meaning

In the previous sections, we showed the effectiveness of the proposed method to accurately
extract diode model parameters from theI-V characteristics. This section illustrates the
underlying principle from the angle of control theory by an illustration of the graphical
meanings of the proposed method.

As control theory is usually studied for stable systems, coordinate transformation in
Section 3.6 is applied, i.e.,̃V = Voc − V so thatI-Ṽ is corresponding to some stable
linear system. After transformation,I-V curve in Figure 4 is changed toI-Ṽ (blue line) in
Figure 14. Draw a straight line (black) starting fromO(0, 0) with the slope of1/Rs, i.e.,
Y = X/Rs, with the sameI, the coordinates of the points on the black and blue lines will
beQ(RsI, I) andP (Ṽ , I), respectively. Therefore,̃x = Ṽ − RsI actually represents the
distance betweenP andQ (green arrow). IfY ′ = X/Rs is constructed as the newY -axis,
then only inXOY ′ coordinate system,I-Ṽ curve is equivalent to a response of some linear
system. In normalXOY coordinate system, this is not the case unless each point on the
I-Ṽ curve is shifted a variable distance ofRsI to theY -axis, which is shown by red dash
line in Figure 14.

Note that for the response of a stable linear system with zero initial conditions, bothx
andy values are monotonically increasing, which means distance|PQ| is monotonically
increasing withI. If 1/Rs < dI/dṼ |Ṽ =0 = −dI/dV |V =Voc , the black line will inter-
sect with the blue one so that the monotonically increasing of|PQ| is violated, see Figure
15. Therefor,1/Rs ≥ −dI/dV |V =Voc , which yields the upper bound ofRs discussed in
Section 3.5

Figure 16 shows the impact of Rs on the RMSE of the proposed method, whereI-V
characteristic data are from the same indoor flash test module discussed in Section 4.1, and
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Figure 14. TheI-Ṽ characteristic fromI-V .
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Figure 15. Impact ofRs on the profile ofI-Ṽ .

0 ≤ Rs ≤ −dV/dI|V =Voc . One sees clearly that the accuracy of the proposed method is
very sensitive toRs, which implies that only whenRs is properly selected, the resultedI-Ṽ
is the response of a linear system. Such high sensitivity results in the unique solution ofRs

and the rest of PV model parameters, and the effectiveness of the binary search algorithm
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proposed in Section 3.5.
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Figure 16. Impact ofRs on the RMSE of the proposed method.

7. Applications

7.1. Non-contact Measurement of POA Irradiance and Cell Temperature

Irradiance on plane of array (POA) and cell temperature are important to PV systems be-
cause system performance, evaluated by performance ratio (PR), is derived from them.
Usually, silicon sensors are applied in PV systems to measure the irradiance level on POA,
as shown in Figure 17. Their structure is composed of a high-quality mono-crystalline solar
cell connected to a high accuracy shunt, which is the same as Figure 2, whereIL is the
photocurrent proportional to the POA irradiance, the diode represents the mono-crystalline
cell, andRsh is the shunt. The low shunt (Rsh = 0.1Ω) causes the cell to operate close
to the short-circuit point, which makesIsh → IL so that POA irradiance can be calibrated
from Ish according to the proportionality.

Essentially, silicon sensors use an internal reference cell as a benchmark to sense the
POA irradiance of PV modules/systems. The measurement accuracy highly depends on the
differences between: 1) reference cell and PV modules; 2)IL andIsh. However, mismatch
between reference cell and PV modules is inevitable andIL 6= Ish although compensation
measures for temperature are taken into account. All of them cause the mismatch error up
to±5%, and the sensor needs to be recalibrated every two years to avoid the measurement
shift caused by the degradation of reference cell.

A more accurate irradiance sensor is pyranometer, which covers the full spectrum of
solar radiation (300-2, 800 nm) from a field of view of180 degrees. It is seldom deployed
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Figure 17. POA irradiance measurement by silicon sensor.

in PV systems due to: 1) much higher cost as compared to silicon sensor; 2) mismatch in
spectrum as crystalline is not a full spectrum absorber; 3) is not applicable to measure POA
irradiance.

Temperature measurement for PV systems is even worse than POA irradiance measure-
ment because what is measured is not the true cell temperature but the temperature of the
back sheet of modules. This is because cells are encapsulated between the layers of glass,
EVA, back sheet during the process of lamination. However, it is also impractical to incor-
porate a sensor within the module, in direct contact with an individual cell, to measure the
cell temperature. In addition, the non-uniformity of module temperature across the mod-
ule area, which was assumed to be±1 ◦C in [66], is not accounted for with this approach.
The current compromise is to put a sensor attached to the back sheet, which causes the cell
temperature measurement to be roughly2 − 3◦C lower than the true value. At a standard
irradiance level of1000W/m2, a mean cell-to-back temperature difference of2.5 ± 1 ◦C
was adopted in [67] for c-Si modules with plastic back encapsulation.

It is much desired to find a more accurate way to measure the POA irradiance and cell
temperature as more and more PV systems are installed all over the world, not only for
the academic research, but also for the commercial investment evaluation. Motivated by
the recent progress in the diode model parameter identification [68, 69], photocurrentIL

and reverse saturationIo can be linearly determined from theI-V characteristics of PV
modules. Immediately, POA irradianceGs = λIL, whereλ is a constant slope (to be
calibrated) and independent of irradiance or temperature [2]. Cell temperatureTc is derived
from Io = BT 3

c e−Eg/(kTc), whereEg is the band gap of silicon andB is a temperature
independent constant [14]. No external sensors for irradiance or temperature is required
once theI-V curve is known.

7.1.1. Calibration of POA Irradiance

As mentioned before, the photocurrentIL is proportional to POA irradianceGs, i.e.,Gs =
λIL, andλ is the slope. To calibrateλ, theI-V characteristics of a full-sized commercial
module were measured indoor by a PASAN IIIB with the constant illumination intensity of
200, 400, 600, 800, 1000, 1200W/m2. The temperature for such flash tests is fixed at25◦C.
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Figure 18. Indoor flash test at different illumination intensity.

Table 7. Identification results

Illumination IL Io a Rs Rsh RMSE
(W/m2) (A) (10−9A) (V) (Ω) (kΩ) (×10−3)

200 1.08 0.4782 1.9411 0.5293 1.83210.0849
400 2.18 0.4757 1.9407 0.6278 1.35120.1410
600 3.23 0.4745 1.9404 0.6339 1.34140.1809
800 4.33 0.4741 1.9401 0.6345 1.57100.2130
1000 5.41 0.4725 1.9399 0.6347 1.84080.2380
1200 6.48 0.4786 1.9397 0.6347 2.13300.2569

Figure 18 shows the familyI-V characteristic of a PV module (crystalline) from the
proposed indoor flash test, where estimation results by the identification method from Sec-
tion 3 are indicated by circles. The estimation results obtained from the identified diode
model parameters match closely to theI-V curves from the indoor flash test. The identified
diode model parameters and RMSE compared to the realI-V curves are listed in Table 7,
which illustrate the accuracy of the proposed identification.

Based on the results from Table 7, Figure 19 shows the correlation betweenGs andIL.
As expected,IL is proportional toGs. The non-zero intercept is caused by measurement
error, which brings the uncertainty of irradiance estimation up to0.006/0.0054 = 1.11
W/m2. The slopeλ from Gs = λIL is determined byλ = 1/0.0054 = 185.1852.
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Figure 19. Determination ofλ from Gs = λIL.

7.1.2. Calibration of Cell Temperature

Cell temperature is derived fromIo = BT 3
c e−Eg/(kTc), whereEg is the band gap of sili-

con andB is a temperature independent constant [14]. BothB andEg are required to be
calibrated. To do the calibration, theI-V characteristics of the same module in Section
7.1.1 were measured by the PASAN IIIB in a thermal chamber. The illumination intensity
is fixed at1000W/m2 and the chamber temperature are set at15◦C, 25◦C, 35◦C, 45◦C,
55◦C, 65◦C.

Figure 20 shows the results of the flash test at different temperature levels, where the
circles represent the estimatedI-V curves by the proposed identification. The identified
diode model parameters and RMSE compared to the realI-V curves are listed in Table 8.

Table 8. Identification results

Temperature IL Io a Rs Rsh RMSE
(◦C) (A) (10−9A) (V) (Ω) (kΩ) (×10−3)
15 5.38 0.0326 1.7970 0.6326 1.84860.2676
25 5.41 0.4756 1.9399 0.6347 1.84090.2375
35 5.43 5.8101 2.0883 0.6367 1.83350.2089
45 5.45 61.544 2.2420 0.6378 1.82830.1810
55 5.48 564.16 2.4012 0.6388 1.81800.1550
65 5.50 4546.3 2.5659 0.6399 1.80750.1305
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Figure 20. Indoor flash test at different temperatures.

With the identifiedIo from Table 8, taking logarithmic toIo gives,

ln Io = ln B + 3 ln Tc − Eg

kTc
, ⇒

ln Io − 3 ln Tc = −Eg

k
T−1

c + lnB. (56)

Let y = ln Io − 3 ln Tc, x = 1/Tc, α = −Eg/k andβ = lnB, (56) becomesy = αx + β.
The relationship betweenx andy are shown in Figure 21. With linear fitting,α = −22122
andβ = 35.637. Thus,Eg = −kα = 3.0543× 10−19 andB = eβ = 2.9988× 1015. After
Eg andB are known, the cell temperatureTc can be numerically determined by Newton-
Raphson method with the initialTc = 300 K.

7.1.3. Outdoor Verification

To validate the proposed non-contact measurement for POA irradiance and cell temperature,
the same module after the indoor calibration was put at outdoor module testing bed for
a whole day with the continuous recording ofI-V curves and meteorological data. By
applying the proposed method in Section 3, the time-varying one-diode model parameters
IL, Io, a, Rs andRsh for the same day are identified, which has been discussed in Section
4.2 and the results are shown in Figure 8. The variation of the identified parameters reflects
the dynamics of the PV module under different environmental conditions, which cannot
be seen from the staticI-V curves. With the identified diode model parameters, the POA
irradiance and cell temperature can then be derived.

Based on the calibration valueλ from Section 7.1.1, the POA irradiance can be deter-
mined fromIL by Gs = λIL. Figure 22 illustrates the comparison to the results from a
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reference silicon sensor which has the same inclined angle as the PV module. As seen from
Figure 22, the non-contact measurement POA irradiance matches the irradiance measure-
ment from the silicon sensor well.

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

G
s
 from silicon sensor

G
s fr

om
 n

on
−c

on
ta

ct
 m

ea
su

re
m

en
t

Figure 22. POA irradiance: non-contact measurement vs. reference cell.
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With the calibratedEg andB from Section 7.1.2, cell temperatureTc is numerically de-
termined by Newton-Raphson method. The comparison betweenTc andTmod (backsheet
measurement) is shown in Figure 23. One can see that when irradiance increases in the
morning,Tc is usually higher thanTmod, which is due to the positive temperature gradi-
ent (from cell to backsheet) during that time. Whereas after solar noon when irradiance
decreases, temperature gradient becomes negative due to the thermal delay, soTc is lower
thanTmod. But the difference in between is within±2◦C.

34 36 38 40 42 44 46 48 50 52 54
34

36

38

40

42

44

46

48

50

52

54

T
mod

 (°C)

T c (° C
)

Figure 23. Cell temperature: non-contact measurement vs. backsheet-attached sensors.

7.2. PV Panel Characterisation for Satellites

When PV panels are used in satellites, it is usually not allowed to do the flash test sweeping
from OC to SC because the power supply must be stable to maintain the normal operation
of satellites. Hence, to do the PV panel characterisation for satellites in operation,I-V scan
is limited within a small range around MPP, i.e.,I ∈ [I1, I2] andV ∈ [V1, V2]. With the
example of one-diode model, it follows from (3) that

I1 = IL + Io − Ioe
V1+RsI1

a − V1 + RsI1

Rsh
, (57)

I = IL + Io − Ioe
V +RsI

a − V + RsI

Rsh
. (58)

Let ∆I = I − I1 and∆V = V − V1, (58)− (57) yields

∆I = Ioe
V1+RsI1

a

(
1− e

∆V +Rs∆I
a

)
− ∆V + Rs∆I

Rsh
. (59)
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Let y = ∆I andx = ∆V + Rs∆I, (59) becomes

y = Ioe
V1+RsI1

a

(
1− e

x
a

)
− x

Rsh
. (60)

Taking differential once for (60) gives

dy

dx
= −Io

a
e

V1+RsI1
a e

x
a − 1

Rsh
. (61)

Differentiating twice gives
d2y

dx2
= − Io

a2
e

V1+RsI1
a e

x
a . (62)

Eliminatingex/a from (61) and (62) gives

a
d2y

dx2
− dy

dx
=

1
Rsh

,

which is just the same as (21). The remaining procedures are very similar to what we
did in Section 2.1 except for the initial conditions. From (60) and (61),y(0) = 0 and
y′(0) = −Ioe(V1+RsI1)/a/a− 1/Rsh, respectively. According to (24), the transfer function

G(s) =
ay(0)s2 + [ay′(0)− y(0)]s + 1

Rsh

as2 − s
=
−(Ioe

V1+RsI1
a + a

Rsh
)s + 1

Rsh

as2 − s
.

The corresponding time domain differential equation is

a
d2y(t)
dt2

− dy(t)
dt

= −
(

Ioe
V1+RsI1

a +
a

Rsh

)
du(t)

dt
+

u(t)
Rsh

, (63)

wheret = x andu(t) ≡ 1. With the help of double integral in (39), (63) is equivalent to

ay(t) +
(

Ioe
V1+RsI1

a +
a

Rsh

) ∫ (1)

[0,t]
u(τ)− 1

Rsh

∫ (2)

[0,t]
u(τ) =

∫ (1)

[0,t]
y(τ).

Let θ = [a, Ioe
V1+RsI1

a + a
Rsh

, 1
Rsh

]T , φ(t) = [y(t),
∫ (1)
[0,t] u(τ),− ∫ (2)

[0,t] u(τ)]T andγ(t) =
∫ (1)
[0,t] y(τ), then the least square solution forθ is given by

θ =
(
ΦT Φ

)−1
ΦT Γ,

whereΦ = [φ(t1), · · · , φ(tN )]T andΓ = [γ(t1), · · · , γ(tN )]T . Thus,

a = θ1,

Io = (θ2 − θ1θ3)e
−V1+RsI1

θ1 ,

Rsh =
1
θ3

.

Rs is determined by the same binary search algorithm in Section 3.5 as before, andIL is
derived from (57) as follows onceIo, a, Rs andRsh are all determined.

IL = I1 − Io + Ioe
V1+RsI1

a +
V1 + RsI1

Rsh
.
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8. Conclusion

In this chapter, an approach on linear system identification is developed, which links the
diode model parameters to the transfer function coefficients of a dynamic system. This
approach solves the PV model parameters by an integral-based linear least square method,
which reduces the dimension of the search space from5 to 1, so the drawbacks of nonlin-
ear algorithms are avoided. Graphical meanings of the proposed method are illustrated to
help readers understand the underlying principles. Finally, a discussion of the possible ap-
plications of the proposed method like online PV monitoring and diagnostics, non-contact
measurement of POA irradiance and cell temperature, fast model identification for satellite
PV panels are presented.
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