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Chapter

PV PANEL M ODELING AND |IDENTIFICATION

Li Hong Idris Lim '*, Zhen Y& , Dazhi Yand
and Han Chong Shaun Tay
!School of Engineering, University of Glasgow, Glasgow, UK
2Renewable Energy Corporation (REC), Singapore
3Singapore Institute of Manufacturing Technology, Singapore
4Singapore Institute of Technology, Singapore

Abstract

In this chapter, the modelling techniques of PV panels ftbi characteristics
are discussed. At the beginning, a necessary review on the various methods are pre-
sented, where difficulties in mathematics, drawbacks in accuracy, and challenges in
implementation are highlighted. Next, a novel approach based on linear system iden-
tification is demonstrated in detail. Other than the prevailing methods of using ap-
proximation (analytical methods), iterative searching (classical optimization), or soft
computing (artificial intelligence), the proposed method regards the PV diode model
as the equivalent output of a dynamic system, so the diode model parameters can be
linked to the transfer function coefficients of the same dynamic system. In this way,
the problem of solving PV model parameters is equivalently converted to system iden-
tification in control theory, which can be perfectly solved by a simple integral-based
linear least square method. Graphical meanings of the proposed method are illustrated
to help readers understand the underlying principles. As compared to other meth-
ods, the proposed one has the following benefits: 1) unique solution; 2) no iterative or
global searching; 3) easy to implement (linear least square); 4) accuracy; 5) extendable
to multi-diode models. The effectiveness of the proposed method has been verified by
indoor and outdoor PV module testing results. In addition, possible applications of
the proposed method are discussed like online PV monitoring and diagnostics, non-
contact measurement of POA irradiance and cell temperature, fast model identification
for satellite PV panels, and etc.

*E-mail address: LiHonldris.Lim@glasgow.ac.uk
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Figure 1. Equivalent circuit of diode models.

1. Introduction

PV panels are made of PV cells assembled in series/parallel and encapsulated in modules.
The cell structure can be simplified ap-ajunction exposed to light, as depicted in Figure
1, which is a combination of two layers of differently doped semiconductor materials.

1.1. PV Modeling

Without the sunlight, the characteristics of v junction is governed by the well-known
Shockley diode equation [1]

Ip=1, (ea—1) (1)

where I is the diode current/, is the reverse saturation curreat,= nk7./q is the
modified ideality factor [2]y is the ideality factork is Boltzmann’s constant (380653 x
10723 J/K), T, is the cell temperature, ands the electron chargé (0217646 x 10~ C).
With the presence of sunlight, then junction absorbs the photon and generates electron-
hole pairs (or carriers) moving across the junction, which is known as the photovoltaic
effect. The inclusion of the resulted photocurrent into Shockley equation (1) forms an ideal
model of PV cells as

I:IL—ID:IL—IO(e%—Q, )

where photocurrent;, is dependent on the flux of incident irradiation as well as the absorp-
tion capacity of the semiconductor materials [3]. However, the ideal model by (2) usually
yields unacceptable errors in reality due to the lack of consideration on the current losses
from the contact resistance between the silicon and electrodes surfaces, the current flow
resistance in the silicon material and the resistance of the electrodes. By incorporating the
effects from all these resistances, a more realistic and accurate model [4] is derived as

V4+RsI SI
el 1> _ V4 RS (3)

I= IL—ZID sh—IL_ZIoZ( o Ry
S

whereR; and Ry, are resistances in series and parallel,respectively. The equivalent circuit
for (3) is shown in Figure 2, where diod@; accounts for carriers diffusing across e
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Figure 2. Equivalent circuit of diode models.

n junction and recombining in the bulk or at surfaces, did2leis sometimes attributed
to carrier recombination by traps within the depletion region [5], or recombination at an
unpassivated cell edge [6]. Theoretically, more diodes{ 2) can be added to the circuit
in Figure 2 to better account for distributed and localized effects in solar cells like Auger
recombination, but their contributions are negligible as comparde, tand D- [7].

Note that (3) is applicable not only to PV cells, but also to PV modules. For the latter,
a; = Ngn;kT./q, where N, is the number of cells connected in series. In the lumped-
circuit model by (3) or Figure 2, only andV are known variables from the data sheet or
real measurements. The model identification is then to determine the unknown parameters
I, I, a;, Rs and R, from the known data of andV'.

1.2. PV Model Identification

Even in the case of the one diode model & 1 in (3)), it is not straightforward to de-
termine the model parameters.( I,, a, Rs and R,,) from the I-V characteristics of PV
cells/modules due to the transcendental nature of (3). For such a one-diode PV model, the
existing identification methods in literature can be divided into the following two categories.

1.2.1. Deterministic Solution

The deterministic solution is an unique solution of the five unknown parameiers,( a,
R, andR,) from five independent equations. Usually, the four independent equations are
chosen from the open circuit, short circuit and maximum power points at STC (1008, W/m
T. = 25°C, AM = 1.5) as follows.

At short circuit (SC)V = 0:

RslIsc RSISC
Le=1Ip—1I,(e7 v —1) o (4)
At open circuit (OC),J = 0:
Yoc Voe .

IL—Io(ea _1)_Rsh_0' (5)

At maximum power point (MPPYP/dV = 0:
[mpp - (e Vmpp+fslmpp B 1) B Vmpp ;Rslmpp. (6)

sh
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LeT a  +

a

a Rgp,

As for the 5th independent equation, there are many options.

One way is to estimate one of the five parameters independently. For exalnple,
can be estimated from the influence of the structure parameters of a silicon solar cell on
photocurrent [8].1, is material independent and can be explicitly related to a solid state
parameter, the @ Debye temperature of the semiconductor [@fan be determined from
the use of properties of special trans function theory (STFT) [10]. The estimati& of
are well summarized in [11-15]R,;, can be approximated by the reciprocal of slope at
SC[16],i.e., -
Tl (8)

For example, with equation (4)-(8), one-diode model parameters can be identified as [17]

IL:136<1+ Rs>+10(e“(fs—1),

Rsh ~

Rsh

\% _ Voc

Iy = | Isc — = € a,
Rsh

a = Vmpp + ImppRSO - ‘/oc
B VIVL])Z) V I'IILPP ’
11’1 (Isc - Rsh - Impp) - 11’1 (Isc - RZ;L) + Isc_%

a _ Voc

Rs = Rgo — —¢ "o,
Iy

whereRy) = — dV/dI|,,. is the reciprocal of slope at OC.
The other way is to apply one of (4)-(7) to non-STC conditions. For example, applying
(B)toTr =T, + AT (AT # 0) gives

Voe Vo
I —I;(ear —1)—=2%=0. 9

In the case of no irradiance change, non-STC parameters are given by [2, 18]

Ii = I + arAT, (10)
*\ 3 Eg B
=1, (T> oFE T (11)
E} = E,(1 - 0.0002677AT), (12)
T*
a* = ?Cca, (13)
RZh = Rsh> (14)

Voe = Voc + BrAT, (15)



PV Panel Modeling and Identification 5

whereE, = 1.17 — 4.73 x 1074T2/(T. + 636) is the band gap energy; andj3r are the
temperature coefficient of SC current and OC voltage, respectively. Substituting (10)-(15)
into (9) yields the 5th independent equation as follows

T* 3 Eg _ Eg(1-0.0002677AT) Vnc-H*TATLi V. AT
1L+aTAT—Io(TC) eFTe”—  FTr |e e )| o Yee£B0AT

c Rsp

Different choices of non-STC equations yield different solutions for, (,, a, Rs and
Rgp), which can be found in [19-23].

No matter what the 5th equation is, a small variation in one parameter may lead to a
large error in the other four parameters, due to the high sensitivity of the transcendental
equation [24]. Even if there is no approximation in the 5th equation, there are no analytical
solutions available due to the inherent nonlinearity. Usually, partial linearization has to
be made to yield empirical formulas [25-29], which is a trade-off between simplicity and
accuracy. Note that the greatest difficulty in solving (3) lies in its implicit formdt, ok., 7
are both dependent and independent variable of the equation. Recent progress to overcome
such difficulty is to apply the Lambelt” function [30, 31] to (3), then the implicit format
of I is converted to its equivalent explicit format as [18, 32]

_ R, (V+Rs (I, +10))
Rep(Ip + 1,) =V a ( (IORSRSh ehL) . (16)
a

I — _ 7W a(Rs+RS L)
R. + Ry, R, Rs + Rap) '

The benefit of (16) over (3) is that the former is not transcendental anymore, which makes
it possible to find solutions to (4)-(7) by iterative algorithms.

1.2.2. Optimal Solution

Optimal solution employs nonlinear fitting procedures based on the minimization of devia-
tions between modelled and measurfeld curves, in accordance with some metric function
(usually least square) [33—-36], e.g.,

A 2
min (11, Ip, a, R, Ron) = Y |Ii = Li(Vi, I1, I, a, Ry, Ron)|
=1

whereN is the number of data samplésis the estimation of with the optimal solution

of I, I,, a, Rs and Ry, Iterative searching algorithms are usually used [37, 38], including
Newton-Raphson [39], Levenberg-Marquardt [40], Gauss Siedal [16], and singular value
decomposition [41], but their convergence and accuracy heavily depend on the initial values
and are easily trapped in the local optimums. From different initial value guesses, such
approaches can result in widely different parameter sets, all leading to satisfactory curve
fitting [42]. Although a good match between estimation and measured data can be obtained,
there is no guarantee that the estimatdd curve would pass the SC, OC and MPP points.

To achieve the global optimum, soft computing technigques have to be used, which in-
clude genetic algorithm (GA) [43—-46], particle swarm optimisation (PSO) [47-49], dif-
ferential evolution (DE) [50-52], simulated annealing (SA) [53, 54] and artificial neural
network (ANN) [55, 56]. But they are too complicated to be implemented and unsuitable
for online calculation due to the heavy burden of computing.
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Current trend of PV model identification is to combine the deterministic and optimal
solutions, i.e.,employing both methods of solving algebraic equations and iterative search-
ing [57-59]. With a single parameter fitting procedure, numerical solutions to (4)-(7) will
be obtained by the empirical formulas or iterative algorithms. The drawbacks of the above
two categories are mitigated in this way. With the help of LamBérfunction as shown in
(16), Laudankt al. further reduce the dimension of searching space fiaa2 by splitting
the model parameters into two independent unknowm(l R,;) and three dependent ones
(I, I, and Ryy,). In this way, the burden of iterative searching is greatly relieved and it
becomes easy to getand R, numerically or graphically. The review and comparison for
the aforementioned all kinds of methods are well summarised in [60, 61].

This chapter opens a new angle to view the diode model from the systems perspective.
Actually, one of the biggest application of Lambé#t function is to solve differential
equations, which is directly linked to the time-domain representation of a linear system.
For example, the first-order linear system can be described as [62]

D oy — ), 17)
dt
whereT is the time constant of the system. The unit ramf) = t) response of (17) is
given by,
y(t) =t+ T(e*% - 1),

which has the same format as (3). This motivates us thal{Wiecurve governed by (3)

can be viewed as the output of some linear system, and the model parameters can be linked
to the coefficients of a linear differential equation. Using system identification methods
available in the literature [63], PV model parameters can be easily identified by a simple
linear least squares method.

2. Dynamic System Formulation

Firstly, we show how to link one-diode model to an equivalent linear system. Next, the
same method is extended to the general case of multi-diode model.

2.1. One-Diode Model
Recall thel-V curve described by (3) witlm = 1. Lety = I andz = V + R,I, (3) then

becomes
xr

y=1Ip+1I,— Iea — —. (18)
sh

Taking differential once on both sides of (18) gives

dy IO z 1
4 0.5 _ 19
dx a ¢ Ry, (19)

Differentiating one more time for (19) gives
d? I, «

J_ :. (20)

— =_—"Ce
dz? a?
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Eliminatinge®/® from (19) and (20) gives
d?y dy 1

a@ — @ = RSh. (21)
Lett = x andu(t) = 1, (21) is equivalent to
2
Ay(t) dy(t) _ ult) @2

dt? dt R’

which is a standard differential equation representation of a second order linear syistem.
the “time”, u(t) andy(t) are the system “input” and “output”, respectively. Sinde) = 1,

y(t) is the unit step response of the system in “time” domain. Taking Laplace transform,
F(s) = LIf(t)] = [ e ! f(t)dt, on both sides of (22),

U(s
als?Y (5) = s(0) =y O] - 5 (5) —y(0)] = 7. 23)
Utilize sU(s) = 1, and (23) is equivalent to
1
@[V (s) = SUE)(0) = sU )y (0)] = 57 (s) = sUs)y(0)] = V()
It follows from (18) thaty(0) = I1, /'(0) = —1,/a — 1/ Rgp, so the transfer function from
Y(s)toU(s)is
o) e Y1) _ a0+ 10/(0) —y(Ols + 7
CU(s) as? —s
2 a 1
:aILS —(IO—FF—FIL)S"FEI (24)
as® — S
The corresponding time domain differential equation is
d?y(t) dy(t) d2u(t) a \ du(t) = u(t)
ez ar e <IL ot Rsh) i Ry %

It should be noted that (22) is different from (25) because of the non-zero initial condi-
tions. In other words, (25) is the description of the same system of (22) but with zero initial
conditions. This will facilitate the calculation of the integral-based identification proposed
in Section 3

2.2. Multi-Diode Model
Similarly by lettingy = I andx =V + R,I in (3), it yields

m m

@ x

y=1Ip+> I, —> Ie" — . (26)
i=1 i=1 Rsp

Taking differential once on both sides of (26) gives

& _ N loigw 27
dz Z T Ra, @7)
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Differentiating (27) fork times,k = 1,2,--- ,m, yields

kH) Z k+1 ea’

wherey(*) (z) = d¥y/dz*. Rewrite (28) in matrix format,

I, =
Yy () artoayt - ag! EETRN
3 -2 -2 -2 0y =
y@) | e e || imed
(m+1) -m  -m . o—m Lo -2
Y (x) a; Qg am —vémieam
B A
Sinceay, # 0, A is a Vandermonde matrix witet(A) # 0, soA~! exists and
I, = I, = I, =17
|:_01ea1 O2ea2 _ Omeam:| f— A_IB’
al ag A,

whereA™! = [¢; ;] € Ryxm With

i1 1 —1
Y. Ve ey

1<k1<<kn_;<n

€ = ki kn— j7i
©J ai—1 H (a,;l . az—1)
1<k<n
ki
Substituting (29) into (27) yields
Y = 3D &y @) =~

(28)

(29)

(30)

(31)

Lett = z andu(t) = 1, (31) becomes the differential equation representation ofitin

order “dynamic” system:

YO0 =33 6y () =~ (32)
j=1i=1 Rsn
Taking Laplace transform for both sides of (32) yields
m m Jj+1 U( )
1 k— 1-k
sY (s) —y(0) — ;;f (sj+ Y(s Zs LyU+1=k) (o ) R (33)
It follows from (26)-(28) thaty(0) = I,y (0) = — X", I, /a; — 1/Rgn, y*t1(0) =

— M, I, Ja" T for k =1,2,--- ,m. SincesU(s) = 1, (33) becomes

sY(s) — IsU(s iif

j=1i=1

! kN~ o, s j+1
ZS Z j+1—k_Rh+ILS
k=1 i=1@ s

Y (5) — U(s)x
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The transfer function i&/(s) = Y (s)/U(s) = N/D, where

D=3 6t -

j=14i=1

N =
R

Ips™h — o —zj: i
i,j | 1L Ry, — +1k :

The corresponding time domain differential equation with zero initial condition is

Jj=1li=1

1y ™) + -+ azy® (1) — y O (1)

u(t

™00 -+ ) + 5, (34
where forj =1,2,--- ,m,

ay = _17 (35)
jp1 = me, (36)

«a o Iol
Bj =gl — 4 Z Z ZE =3 (37)

k=ji=1 O

Bm+1 = amy1Ir. (38)

In general, by introducing a virtual “time” af= x, the static relationship between two
variablesy andx can be regarded as dynamics from the linear system governed by (34).
Oncec; andg; are determined from system identification, diode model paraméters,,

a; and Ry, can be solved linearly from (36)-(37).

3. Integral-Based Linear Identification

For an integern > 1, define the multiple integral as [63]

/ (T —/ / f 71)dmdry - - - dry,. (39)
T1,T2 T T

3.1. One-Diode Model
Applying (39) to (25) forTy = 0, T = t andn = 2 gives

a (1) 1 (2) (1)
ay(t) — alpu(t) + (IL + 1, + ) / u(r) — / u(r) = / y(7). (40)
Ren /) Jo4 Rgn Jog [0,£]

Let = [a,alp, I+ 1o + 7=, 717, 6(t) = [y(1), —u(t), ) u(r), - [T} u(r)]" and
~y(t) = f[o 1 y(7), (40) can be rewritten as the matrix formatgjﬂf (t)0 = ~(t). Note that
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the matrix format holds for ang; € [0,¢],7 = 1,2,--- , N, whereN is the the number of
data samples on the V' curve. This actually casts an equation grou@éf= I" with ¢ =

[6(t1), d(t2), -, d(tn)]" @ndl = [y(t1), ¥(t2), - -, y(tw)]". If T @ is nonsingular, the
linear least square solution féris given by

0 = (@Tcp)_l 37T, (41)

which will minimise the square error ¢f" — ®0)7(I" — ®§). Onced is determined from
(41), the parameters of one-diode model can be obtained by

azela
0
IL - 07?7
I, =03 — Z? — 0104,
1
Ran =g

3.2. Multi-Diode Model
Applying (39) to (34) forl; = 0,17, =t andn = m + 1,

(m—1) (m)
am+ly(t)+-~+a2/ 1 y(T)—/[ y(r)

[0,¢] 0,t]
(m) 1 (m—+1)
=Pmy1u(t) + -+ (1 / u(T) + / u(T).
[0,1] Rsn Jjo,4

Letd = [am+1a e 7a27/6m+17 T 7B17 %M]T! ¢(t):[y(t)a T ,f[(oi)z}il) y(T)a 7u(t)7 T

— S ()T, A() = [ u(r), 0 and$(t) € Rz izx1, We haves” (£)0 = ~(2).
Fort; € [0,t],7 =1,2,--- , N, the equation group can be describedigy—= T" with & =

[6(t1), d(t2),---, o(tn)]T andl = [y(t1),v(t2),--- ,v(tnx)]T. If @7 ® is nonsingular, the
least square solution ferwill be

0= (@Tcp)*l 37T, (42)

Onced is determined from (42)Rs;, = 1/62,+2 is immediately derived. It follows from
(38) thatl;, = Byt1/ms1 = Omy1/01.

a; (i = 1,2,--- ,m) will be derived in the following way. Rewriting (36) in matrix
format gives

[a27"’ ,Oém+1] = [17 71] Ail'
——

Right-multiplying A for both sides gives

a;l a

[O‘2)"'7am+1] :[1771]7
al_m a m
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which implies thatl /a; are the roots of the following characteristic equation
I AN + N A —1=0. (43)

Solving (43) for\;, anda; = 1/\;, I, (i = 1,2,--- ,m) will be derived as follows. (37)
can be rewritten as

iiq m m Qo1
— Jt+ Z +
Bj = Oé]IL — — IOZ.

E1—j°
LT N
Rewriting further as matrix format,
Yo Phomn
k;1 1 k;l 2 kil s 51+1L+]§7(2{
oy, @ ap, o1 A
= D OE = S s [ ] A
k=2 1 k=2 2 k=2 ™ . = — )
. o R Tom B — am Iy, + St
P =D DI == = I D = = v
L k=m 1 k=m 2 k=m " J -
R
Note from (43) thad 7", agy1/af = 1fori =1,2,--- ,m, ¥ can be simplified as
0 0
1 1 1 s as
al a2 am,
= : - : .
. . m—1 & m—1 %
a"™t et gt > ak_,.la;n*l* T appramt
k=1 k=1

W *

This implies that after elementary row operations, is similar to ¥*, which is a
Vandermonde matrix withlet(U*) # 0. Therefore,U~! exists ( is full rank) and
Toys Logs -+ s Lo, )T = UTLE.

3.3. Nonsingularity of 7 ®

The existence of the linear least square solution by (41) and (42) depends on the nonsingu-
larity of ®7'®, which is shown by the following lemma.

Lemma 3.1. ®7® is nonsingular ifa; # a; fori # j,i,j = 1,2,--- ,m, and the sampling
numberN > 2m + 2.

Proof. Consider the general case of multi-diode model with

® = [p(tr), p(ta), -+, p(tn)]" = [®1, Do),
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y(tr) f[ioi] y(r) - f[gfljiy(ﬂ
B, — y(fz) f[o,tz}:y(T) f[(],tz}: y(7) — 65,
y(tn)  Jorum) o fen Py
m+1
u(ty) f[g%ﬂ u(r) f@,tj ;um
1 m+1
R
' -  ma
utn) foru(m) e e u(r)
Recall from (26) that
y@) =1L+ I, — > Ipen — —,
i=1 i=1 Rsp
andu(t) = 1 by the definition. Fog = 1,2,--- | N,
(G—1) IL+iIoi ji—2 m
R A= =L -t ; k-1t 2N ;
%/[o,m v = g ;O;Iz Zlk

(1-1) 1
i = */ u(r) = ==t
) T
[0,t4]

wherej = 1,2,--- ;mandl = 1,2, --- ,m + 2. After elementary column operations for
D, 0 — Py := [¢i,j] with

qbw = Z ak eak

In matrix format,

t1 t1 L
e(l e(l .. eam' m—
. . 1o, 1 a1 ay )
—_ —_ m—

- el eo92 eam 1o, 1 as al

o, =

N N N I 1 a am~1!

ea ez eam om m m

A v
E

SinceA is diagonal and’* is a standard Vandermonde mattixnk(A) = rank(V*) =m

fto—t1 =t3—to=-- =ty —tm1 =Ts > 0,asN > 2m + 2, the firstm row of £/
1 1 1 onr
Is Is Ts ty
e €2 gam eaz
E,, =
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sorank(F) = rank(E,,) = m. Otherwise, it is always possible to find so\@" such

thatt; = n;AT, n; € Nfori =1,2,---,m. Construct matrix
1 1 . 1
AT AT AT
e %1 e a2 e eam
E* - . . . . S anxnv
n'n;,AT ’VL’H:LAT . 77.7’7;AT
e e a2 e e am

and E,, is sub-matrix ofE*. SinceE* is a Vandermonde matrix with full column rank,
rank(F) = rank(F,,) = rank(E*) = m. S0, is full column rank, i.e.rank(®;) = m.

-1

3 - t71"+2
to t% . t7n+2 .
e : -1
- (m+1)!
tn 13 - tﬁ+2 -1

N (m+2)!
As N > 2m + 2, the firstm + 2 row of V5 is a Vandermonde matrix, sank(®s) =
rank(V2) = m + 2, i.e., @, is full column rank. Sinc& = [®;, ®,] with the full column
rank of both®; and ®,, ® is also full column rank.N > 2m + 2 implies that the row
number of® is no less than the column number. Sapk(®) = 2m + 2 and®’ @ is full
rank, i.e.,(®7®)~! exists. O

3.4. Calculation of Multiple Integrals

In practice, the integral shown as (39) is numerically estimated by rectangular or trapezoidal
integration. For example, suppose there Arsamples atq,to, - -- ,tn, the rectangular
integration gives

) 4
/[t f(r)=[ f(n)dn = Zf (trr1 —tr) := f1(4),

1,ti] t1

(2) 1—1
/[ F) = S Filk) (s — 1) = fa(i),
t k=1

1,t:]

(n)
/[t Z fn—1(k) (k1 — tr) == fu(d).

1,ti]
fori =1,2,---, N. The more number of sample§, the more accurate the estimation to
the multiple integrals will be.
3.5. Determination of R,

To calculated from (41) or (42),® andI” must be known. As both of them are integrals to
t, t must be known as well. Singe= V + R,I, R, must be determined before applying
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integrals. It is clear to see thati; is bigger than its real value will increase so that the
whole -V curve will move to the right and the error between the real and estinfatéd
curves will be positive; IfR; decreases, the wholeV' curve will move to the left and the
error between the real and estimafedf’ curves will be negative. Thu®, can be used as
a tuning parameter such that the root mean square error (RMSE) is minimised.

It derives from (3) that

1 1
— =R+ — T > R,
dr L, Y
dVv oc Z Tie z + Rsh
i=1
which implies the upper bound dt,, i.e., RP? = —1/ % . The lower bound off;
oc

can be zero at first, i.eR” = 0. With such a band of?; € [R/", R“?], binary search
algorithm is applied to determing, in the following way:

Step 1.Arbitrarily chooseR, from [R" | R“P] and calculatéi;, I, I,, and R, from
the proposed linear least square (41) or (42);

Step 2.Calculate from (3) that

V+RsI

00 =1 =Y (e ~1)
=1

_V+RI
Rsh

Y

and RMSE = /S, [3(t:) — y(t)]* /N.

Step 3. CalculateERR = YN | [i(t;) — y(t:)]. If ERR > 0, adjustR, = (R, +
Rlew) /2. Otherwise, adjusR, = (R, + R%P)/2.

Step 4. UpdateR“"P and R%* according to the sign oE RR. If ERR > 0, R%P =
R, otherwise R = R,.

Step 5.1f RM SFE is less than some tolerance or the iterative cycle reaches some preset
number, stop the searching. Otherwise, updat&’ and R" according to the sign of
ERR and go back t&tep 2 The flowchart of the binary searching algorithm is shown in
Figure 3.

3.6. Robustness Enhancement

From the viewpoint of control theory, the transfer function (24) has a pate-ofi /a > 0,
which implies the system (25) is unstable. This is also true for the general case of multi-
diode model. Identification for unstable system is not preferred because the convergence
of the proposed algorithm might be sensitive to the accuracy of the integral calculation in
such a case. To improve the robustness of the proposed algotitisrintroduced to yield
a stable system.

In case of one-diode model, I8t =V,. — V,0 < V < V,., andz = V — R,I, thus
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Choose R, from
[ Rslow’ Rsupp]

Calculate y(z) [

Calculate RMSE

Calculate ERR

RMSE < Tol?

Y Y

Ry = (R, + RS2 Ry = (Ry + R/*")/2

low
qupp _ Rs Rx(m _ Rs

> Stop

Figure 3. Flowchart of the binary searching algorithm.

&=V + Ry =V, — (V—R) =V, — i. It follows from (18)-(20) that

‘/OC Voc _ z €T
=7 I — —J e a e a
Y Lo Rsh o¢ ¢ * Rsh,
dy I, vee _z
—_— = —@ a € a
dz a Ry’
d2y Io Voc _z

15
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Lett =  andu(t) = 1, by eliminatinge=%/ it gives

y(t) | dy(t) _ u(t

dt? dt Ry,

The corresponding transfer function is

s ay(0)s® + [ay’(0 0)]s + =—
o -t

wherey(0) = I, — I(e"/* — 1) — V,./Rap,, ¥/ (0) = I,e"°e/%/a + 1/Rg,. In this way,
the unstable pole = 1/a > 0 becomes stable as= —1/a < 0.
The remaining procedures are the same as aforementionedy(f)et — f[gz] y(T),

o(t) = [u(t). —u(t). — [ u(r). ~ [ u(r)] ", and

a
Voc
al; —aly(e e — 1) — S
9 = % Rsp,
Iy, +1,— = ha
Rsh

-1
the linear least square solutiorfis= ((I)T<I>) OTT with @ = [p(t1), d(t2), -, d(tn)]T
andT' = [y(t1),v(t2), - ,7(tn)]F. Onced is determined, the parameters of one-diode
model are obtained by

a = 01,
Voc
I; = 02 (03 _% 9194) (1 - 6_91> + Vo4,
0, 0,
L=bog o
e
1
Ry, = —.
h o,

In the case of a multi-diode model, with the same transform ¢t V,. — z, (26)

becomes
I m[ m]_m_i Voo , & 44
v= L+20i_20iele Z_Rsh—i_Rsh. ()
=1

Let &Z = —Gy, iL = IL +Z:?l]_ Iol(l _evoc/ai) - ‘/OC/Rsha INOl‘ = IoieVDC/aii Rsh = _RShl
and (44) is equivalent to

which has the same format as (26). This means that all the derivation aforementioned are
applicable to the parameter det;, I, Iol, Rsh} Once they are determined, the parameter
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set{a;, I, I,,, R} is derived immediately by

a; = —aj,
Rsh = _Rsha
- _ Voc
I, =Ipe @i,
- m Voc V
Iy, =15, — Ii<1—e“i)+ <.
i:zl ¢ Rsh

4. Validation

4.1. Indoor Flash Test

The I-V characteristics of full-sized commercial modules were measured indoor by a
pulsed solar simulator (PASAN 11I1B) with a constant illumination intensity plateau of about
12ms used. The data acquisition, which requires abidut.s, occurs during the plateau
period, whereby the light intensity varies by less thaif%o. The intensity of the solar
simulator is calibrated with a c-Si reference cell certified by Fraunhofer ISE. The overall
uncertainty of module power measurement is withi{%.

Consider thel-V characteristic of a crystalline PV module from the indoor flash test
under STC (000W/m?, 25°C, AM = 1.5) is shown in Figure 4. Both one-diode and
two-diode models are considered for this case study.

Current (A)
n
(6]
T
L

I I
0 5 10 15 20 25 30 35 40 45
Voltage (V)

Figure 4. Thel-V characteristic of a crystalline PV module.
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41.1. One-Diode Model

Firstly, use the last0 points at OC to derive a linear fittingf = £V + p, wherek =
—0.9131. RYP ~ —1/k = 1.0952. R!" = 0. Arbitrarily chooseR, € [Rl" K R"P],
e.g.,Rs = 1.0952, and follow the proposed integral-based linear identification presented
in Section 3.1,R, converges taR; = 0.655 after about30 steps with the proposed binary
searching, as shown in Figure 6. Multiple integrals from (39) are estimated by the numerical
integration presented in Section 3.4. It follows from (41) that= 1.9891, 3 = 9.8295,

03 = 4.9434, 04 = 8.9631 x 10~%. Thus,

a =06, = 1.9891 (V),

=2 _ yon6 ),
01

L= Zi — 010, = 4.1785 x 1070 (A),

Ry, = 1_ 1.1157 x 10% ().
04
The comparison between theV curves from the real measurement and the one-code
model is shown in Figure 5, where the average absolute &rer 1/N YN | |ERR| =
0.0085. The RM SFE is shown in Figure 6, which convergesi®7% at last afte35 steps
with Tol = 2%.

Current (A)

o == N W h~ O
T

Real
— Fitting
0 5 10 15 20 25 30

0.2
0.1

Fitting Error (A)

-0.11

_0.2 L L L L L
0 5 10 15 20 25 30 35 40 45

Voltage (V)

Figure 5. Accuracy of the proposed method for ¢-Si module.
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10 10 10° 10 10
Cycle Numbers

Figure 6. Convergence @t; and RM S E for c-Si module.

4.1.2. Two-Diode Model

Itis clear to see from Figure 5 that one-diode model is good enough to represent the whole
I-V curve accurately. This implies that if two-diode model is appligd, — 0, which

will cause a singular matrix in the identification of Section 3.2 To avoid such a potential
problem, robustness enhancement discussed in Section 3.6 will be appliedn \With,

(44) becomes

Voc—z& Voc—z& V —_ 7
y—IL—l—Iol(l—e ay )—1—[02(1—6 ag )- oc x7
Rsh

wherei =V — R,I,V = V,. — V. And its multiple differentials are

% . IOl Vo;l—i 102 Voc—=&

= @ 45
dz al + as em F R’ (45)
d2y I01 Voc—2 I02 Voc—2&
i A L )
d3y IOl Voc—% 102 Voc—%
dj?’ = 7?6 a1 4 ?36 @2 (47)
(46) and (47) in matrix format are
d2y _ o1 _@ Voc—2
di.Q — a% a% eVoa:fa"c .
a3y Iy I, ||e o

da3 a:{’ a
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Thus,
- —1
Voc—2 _h _@ (12724
e _ a? a3 d72
Voc—=& -
e @2 fo,  Iop d®y
| @ 4 da?
[ a} ajas d?y
_ | Ioaz—a1)  Ip (a2 —a1) dz?
B a3 _ aias d3y
L o, (a2 —a1) Io, (a2 — ay) dz3
Substitute it into (45), it yields
d*y(t) d?y(t) | dy(t) _ u(t)
— = 48

wheret = z andu(t) = 0. After Laplace transform, (48) becomes

araz [$°Y (s) = y"(0) — sy/(0) — s2(0)] + (a1 + az) [s*Y (s) — y/(0) — sy(0)]

U
Y () —y(0) = 2, (@9)
sh
where
Yoc Yoc Voc
y(O):IL—l—Iol<1—ea1)—|—102(1—ea2>—R , (50)
sh
yo) = et Lty L (51)
aq ag Rgp,
I, Yo [, Yoc
"0) = —kear — ez, 52
(0) = — g™ = e (52)
Utilize sU(s) = 1, and (49) is equivalent to
a1a28°Y () + (a1 + a2)s°Y (s) — a1a2y(0)s*U(s) — [alazy/(O) + (a1 + ag)y(O)] s2U(s)
=2 fanaay"(0) + (a1 + 0205/ (0) +4(0)] SU(s) = s (s).
Therefore, the differential equation representation with zero initial conditions are
3 2 3 2
anaa S I+ (a1 -+ ) T — 10y 0) 28D — faraay (0) + (a1 + az)y ()] S
t 1" / d
-%3 — [a1025"(0) + (a1 + a2)y/ (0) + y(0)] Zi) - di) (53)

Applying triple integral (39) (with. = 3) to (53), we have
) )
y(7) — a1asy(0)u(t) — [a1asy’ (0) + (a1 + a2)y(0)] / u(r)

0,]

ara2y(t) + (a1 + az)/

[0,]

L@ @ @)
- / u(r) — [arazy”(0) + (a1 + a2)y/ (0) + y(0)] / u(r) = - / y(m). (54)
[ [

Bsh Jio4) (0,1
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Leto(t) = [y(1), [ioy y(r), —u(t), — [y u(r), = [ u(r), = [ w7,
[0 | aaz 1
0 a1 + az
03 61y(0)
0:= = , 55
0 01/ (0) + 02y(0) °9)
0 01y"(0) + 621/(0) + y(0)
| 06 | 1/ R,
and~y(t) = —f[ézz] y(7), then (54) can be rewritten in matrix format ¢ft)”70 = ~(t).

The linear least solution @ is given by (42). Immediately;; » = (62 & /03 — 461)/2,
Ry, = 1/96, and

93 01 0 0 y(O)
94 = 92 91 0 y’(O)
05 L 0y 01 ]| ¥"(0)
Therefore,
y(0) g 0 0] "6
y’(O) = 32 (91 0 94
y"(0) 1 02 04 ] 05
It follows from (50)-(52) that
Voc Voc
y(O) +VOC/RSh 1 1;8 al 1;8 a2 [L
Y(O0)=1/Rsp | =] 0 em Jag e Jay I,,
/! Voc Voc
y"(0) 0 —e /a} —e<2 /a3 Lo,
Thus,
Yoc Yoc 71
I 1 lv—eal lv—eaz y(0)+%c/Rsh
Iy, =10 eT?/al eTi/GQ y’(O) - 1/Rsh
Voc Voc 1
Lo, 0 —eo fa? —ew Jal y"(0)

In this way, with the samé-V" characteristics data as shown in Figure5, wefjot
0.6849, 05 = 2.2356, 65 = 0.0247, 0, = 3.3348, 05 = 4.9034 andfg = 0.0010. The
two-diode model parameters are identified as

a; = 1.8691 (V),

az = 0.3664 (V),

I,, = 1.5168 x 10710 (A),
I,, = 7.9060 x 10~°% (A),
I1, = 4.9480 (A),
Rgn = 955.1229 (),

R, = 0.6845 ().

21
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The average absolute erréf = 0.0080 and RMSE = 1.35%, both of which are
slightly reduced as compared to the one-diode model result. As expégjed,indeed
extremely close to zero, whereas other parameters are comparable to their counter parts in
one-diode model result.

It should be highlighted that the diode model parameters derived from the indoor flash
test are not constant. Actually, they are varying with temperature and solar radiation. There-
fore, itis necessary to check the online computability of the proposed method for PV mod-
ules under non-constant environment, which is demonstrated by the outdoor module testing
as follows.

4.2. Outdoor Module Testing

Outdoor module testing (OMT) is usually carried out by many PV panel manufacturers and
solar research institutes for the module performance evaluation under the real operating en-
vironments. DC parameters including filV" curves,Vie, Lsc, Vinpp: Impps Pmpp together

with module temperature are measured and logged every minute. Environmental parame-
ters including in-plane solar irradian€g;, ambient temperaturg,,,.;,, module temperature

Tmod, Wind speed and wind direction are logged simultaneously with the DC parameters.
Between/-V measurements, electrical energy is maintained at the module maximum power
point (MPP). The uncertainty of all electrical measured parameters is withit{% for full

scale. With thesd-V data in time series, the diode model parameters can be identified
online by the proposed method and correlated to the environmental factors like irradiance,
temperature, etc.

900 T T T T T T T T T 55
Gsi
— Tmod
750 = = =Tamb [150
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o
o
.
I
(6]
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Figure 7. Environmental factors of a typical day in SERIS’ OMT testbed.

Figure 7 shows the time series Gf;, T,,.,» andT,,.q on a typical day from the OMT
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testbed of Solar Energy Research Institute of Singapore (SERIS). The plot is centred around
the solar noon, which was &8 : 10 on the5 August2010.

By applying the proposed method in Section 3, the time-varying one-diode model pa-
rameterdly, I, a, Rs and R, for the same day are identified, as shown in Figure 8. The
variation of the identified parameters reflects the dynamics of the PV module under different
environmental conditions, which cannot be seen from the stalticcurves.

0
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Figure 8. Identified one-diode model parameters.

The relationships between the identified parameters and the environmental operating
conditions are further illustrated in Figure 9-12. A proportional relationship betwgen
and irradiance intensity is observed in Figure 9. It is also apparent from Figure 10 that
generally shows an increasing trend with rising module temperature. This also agrees with
the theoretical temperature dependencé,pfis given byl, = BT3e~Fs/(*T) whereE,
is the band gap of silicon anB is a temperature independent constant [14]. Figure 11
illustrates that generally decreases with increasing irradiancedgr < 300 W/m? and
increases beyond that, which is as reported in [64]. When irradiance decreases in Figure
12, the series resistande, decreases and the shunt resistaRgg increases, which is
consistent with previous reported results [65]. The decreagg is due to the decreased



24 Li Hong Idris Lim, Zhen Ye, Dazhi Yang et al.

thermal loss [ R,) with decreasing irradiance.
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Figure 9. Proportional relationship betwegnandG,;.
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Figure 10. Relationship betwedpnandT;,,,4.

The RMSE of the proposed algorithm in OMT case is shown in Figurel3, where the
burden of the online calculation for convergence (iterative step#&fauntil Tol or maxi-
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Figure 12. Relationship betweéty, R;h andGy;.

mum cycle is achieved) is presented as well. Amé6ag@ plus /-V scans during the day,
there are only three cases with the RMSE exceeding the prés&ol when the maximum
number (100) of steps is reached. Even for these three cases, the RMSE is still 158w
The iterative steps are very stable, and they are usually less3thafihis indicates that
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the online calculation burden of the proposed algorithm is low and the identification can be
done by an industrial PC locally between two consecutilé scan { min in our case).
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Figure 13. RMSE and burden of online calculation.

5. Comparison with Other Methods

In this section, the comparison of the proposed method with the approaches of iterative
searching (based on Lambé&¥t function) and evolutionary algorithms (mainly DE and GA)
are discussed because they represent the most accurate estimation of PV model parameters.

5.1. Lambert W Function Based Method

In [32], two data sets of-V curves 26 points) are presented, which are initially proposed

in [39] and are commonly used to test the effectiveness of the extraction algorithms. One
refers to a solar module (Photowatt-PWP 201)%tC and the other refers to a solar cell
(c-Si) at33°C, as shown in Table 1. The one-diode model paramédters, and R, are

proved to be functions o?; anda. So the searching in the two-dimensional parameter
space ofR, anda with the constrained conditions of (4), (5) and (7) yields Solution A;
with the constrained conditions of (4), (5) and (6) yields Solution B. These two solutions
are then fine tuned as the initial values of some nonlinear least square for the experimental
data, which yields Solution C and D, respectively.

The comparison of the solutions of one-diode model by the propose and LaWibert
function based method are shown in Table 2, where “MAE” is the mean absolute error
and “Step” is the number of iterative searching cycle before convergence. It is clear to see
that the proposed method gives a very close results to Larfibdunction based method.
Although the error is slightly bigger, the number of iteration steps is less.
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Table 1. Experimental /-V data [32]

Module Cell

SN Voltage (V) Current (A) | Voltage (V) Current (A)

1 —1.9426 1.0345 —0.2057 0.7640

2 0.1248 1.0315 —0.1291 0.7620

3 1.8093 1.0300 —0.0588 0.7605

4 3.3511 1.0260 0.0057 0.7605

5 4.7622 1.0220 0.0646 0.7600

6 6.0538 1.0180 0.1185 0.7590

7 7.2364 1.0155 0.1678 0.7570

8 8.3189 1.0140 0.2132 0.7570

9 9.3097 1.0100 0.2545 0.7555

10 10.2163 1.0035 0.2924 0.7540

11 11.0449 0.9880 0.3269 0.7505

12 11.8018 0.9630 0.3585 0.7465

13 12.4929 0.9255 0.3873 0.7385

14 12.6490 0.9120 0.4137 0.7280

15 13.1231 0.8725 0.4373 0.7065

16 14.2221 0.7265 0.4590 0.6755

17 14.6995 0.6345 0.4784 0.6320

18 15.1346 0.5345 0.4960 0.5730

19 15.5311 0.4275 0.5119 0.4990

20 15.8929 0.3185 0.5265 0.4130

21 16.2229 0.2085 0.5398 0.3165

22 16.5241 0.1010 0.5521 0.2120

23 16.7987 —0.0080 0.5633 0.1035

24 17.0499 —0.1110 0.5736 —0.0100

25 17.2793 —0.2090 0.5833 —0.1230

26 17.4885 —0.3030 0.5900 —0.2100

Table 2. Solution comparison for solar module

Parameters Proposed LaudanilA LaudanilB Laudani 1C Laudani 1D
Ir (A) 1.0334262  1.032173 1.033537 1.0323759  1.0323759
I, (uA) 2.4424001  3.035367 2.825571 2.5188885  2.5188848
Rs () 1.2307473  1.218407 1.224053 1.2390187  1.2390187
Rsp (k) 0.6034037  0.783516 0.689321 0.7456443  0.7456431
a(NsnkT./q) 1.2975122  1.319345 1.312115 1.3002458  1.3002456
RMSE (107%)  2.4777 2.1176 2.1547 2.0465 2.0465
MAE (10™%) 1.8461 1.6425 1.6060 1.6917 1.6917
Steps 8 12 10 19 28

27
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The error mainly arises from the numerical integrations presented in Section 3.4 and
the fewI-V data samples availableq points only). If more data samples on thé” curve
are known, the error of the proposed method will be reduced. To illustrate this point, model
parameters from the solution of Laudani 1D was used to reproduce the Wioleurve
with the help of (16). The number of samples are selected &0 )0, 200. Based on such
samples on thé-V curve derived from Laudani 1D solution, the RMSE of the proposed
method to the wholé-V and the experimental data are shown in Table 3. As expected, the
more data samples, the smaller RMSE. When data samples incred9édttee RMSE for
the experimental data is already better than the solutions of Laudani 1A/B and all the other
results compared in [32].

Table 3. RMSE with different data samples (Module)

Source | Solutions RMSE! RMSE?  Steps
From 50 pts 3.308510~* 2.2290<1073 8
Module’| From 100 pts  8.558310°° 2.093%<10°3 13
From 200 pts 2.017710° 2.0874x107% 12
From 50 pts 3.609810~* 9.9881x10°* 8
Cel* | From 100 pts 8.840410° 8.6810<10* 9
From 200 pts  2.223410° 8.5153<10~* 10
Lfor the wholel-V curve ?for the experimental data in [32]

31-V curve is produced from Laudani 1D
4 -V curve is produced from Laudani 2D

The result comparison for the solar céll” data in [32] is shown in Table 4. The RMSE
of the proposed method is smaller than the results of Laudani 2A/C, and only slightly bigger
than Laudani 2B/D. When data samples increasetDfy the proposed method already
outperformed Laudani 2B, as shown in Table 3.

Table 4. Solution comparison for solar cell

Parameters Proposed Laudani2A Laudani2B Laudani2C Laudani 2D

. A 0.7609438  0.764114 0.761060  0.7706871  0.7607884
I, (uA) 0.3456572  0.003496 0.290125  0.003668522  0.3102482
R, (MQ) 36.14233 45.438 36.8 49.11298 36.55304

Rqn (£2) 49.482205  11.103851 49.973561 11.103904 52.859056
a(107%) 3.9256187  2.9929942 3.8784080 2.997888 3.8965248

RMSE (10~3) 1.0548 11.388 0.88437 8.9605 0.77301
MAE (1073) 0.85202 9.4014 0.69732 7.2064 0.67810
Steps 8 8 7 14 16

In general, LamberV function based method has many benefits in two aspects:

e It utilizes the Lambert W function to convert a non-concave optimal problem into a
concave optimal problem;

e It utilizes reduced forms to decrease the dimension of the parameter space from five
to two.
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This method can deal with the V' data from the data sheet (points at SC, OC, MPP) or
experiment (full7-V curve), and in most of cases, it yields the best results in terms of
RMSE and/or MAE.

The deficiencies of Lambelt function based method may be:

e No unigue solutions;

¢ Inapplicable to the multi-diode modet( > 1) parameter identification due to the
limitations of Lambert W function;

¢ Not easy to be implemented and unsuitable for online parameter identification.

The proposed method further reduces the dimension of the parameter space to one. It
uses linear square other than nonlinear optimal algorithms to derive diode model parame-
ters, so the drawbacks of nonlinear algorithms are avoided. It can also be used for multiple-
diode model and simple enough to be implemented as online calculation. The deficiencies
is that it requires the knowledge of the fullV curve data.

5.2. Evolution Algorithms

As mentioned in the Introduction, evolution algorithms are very suitable for the search of
a global optimal solution. Recently, two types of evolution algorithms using differential
evolution (DE) [50] and genetic algorithm (GA) [45] yield good results for diode model
parameter identification. Since no fulllV” curve data are provided in [45, 50], we do the
comparison in an indirect way as follows. Firstly, use the identified parameters,( a,

R, and Ry,) to reconstruct thd-V curve by (16); Secondly, use thatl” curve data to
identify diode-model parameters with the proposed method. Since DE and GA are applied
to derivea, Rs andR, only (I, andl, are derived by formulas in [2,58]), we only compare

the results ofi, R, and R,;,. Table 5 shows the results of R, and R, from the proposed
method and DE/GA. Itis clear to see that the differences in between are very minor.

Table 5. Solution comparison with evolution algorithms

Module Solutions a (NsnkT./q) Rs () Ry, ()
Shell SM55 | Proposed 1.2666 0.3001 2.31680°
(mono-cSi) DE 1.2665 0.3 2.3410°

Shell S75 | Proposed 1.2300 0.2000 1.783u0°
(multi-cSi) DE 1.2295 0.2 1.7910°
Sanyo 215 | Proposed 2.1778 0.7821 851.2464
(HIT) GA 2.1780 0.782 852.177
Kyocera 200| Proposed 1.5340 0.3310 882.7933
(multi-cSi) GA 1.5337 0.331 883.925

The result of the two-diode model for the aforementioned Kyocera module (Kyocera -
KC200GT) was also reported in [45]. It is interesting to comparing this result with ours.
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If looking carefully at the comparison shown in Table 6, the GA algorithm gives compa-
rablel,, andI,, (both in 10° A). a; anday are also near to each other. If ignoring the
differences between them, the two-diode can be combined as one. This implies that GA
algorithm actually gives a result of one-diode model but mathematically divides it into two
diodes format with no physical meaning. That’s a common issue for the global optimization
algorithm like DE and GA, whereas the proposed method has no such problems.

Table 6. Comparison of two-diode models

Parameters GA Proposed
ay (V) 1.5420 1.4936
as (V) 1.9095 0.4944
Rs (92) 0.29 0.4095
Ry, () 480.496 842.8287

I, (A) 4.23x107° 1.6044<10°°
Iy, (A) 9.1478<10° 2.655% 10~ %
MAE 0.02 0.0058

6. Graphical Meaning

In the previous sections, we showed the effectiveness of the proposed method to accurately
extract diode model parameters from th&” characteristics. This section illustrates the
underlying principle from the angle of control theory by an illustration of the graphical
meanings of the proposed method.

As control theory is usually studied for stable systems, coordinate transformation in
Section 3.6 is applied, i.e}} = V,. — V so thatI-V is corresponding to some stable
linear system. After transformatiofi;V curve in Figure 4 is changed foV (blue line) in
Figure 14. Draw a straight line (black) starting fran{0, 0) with the slope ofl /R, i.e.,

Y = X/R;, with the samd, the coordinates of the points on the black and blue lines will
beQ(R,I,I)andP(V,I), respectively. Therefore; = V — R,I actually represents the
distance betweef and@ (green arrow). IfY”” = X/R; is constructed as the né\iraxis,

then only inXOY” coordinate systend-V curve is equivalent to a response of some linear
system. In normalX OY coordinate system, this is not the case unless each point on the
I-V curve is shifted a variable distance BfI to theY -axis, which is shown by red dash
line in Figure 14.

Note that for the response of a stable linear system with zero initial conditionsgboth
andy values are monotonically increasing, which means distaR¢g is monotonically
increasing withl. If 1/Rs < dI/df/|‘~,:O = —dI/dV]y=y,., the black line will inter-
sect with the blue one so that the monotonically increasind’dj| is violated, see Figure
15. Thereforl/Rs; > —dI/dV|y~y,., which yields the upper bound @i, discussed in
Section 3.5

Figure 16 shows the impact of Rs on the RMSE of the proposed method, iiére
characteristic data are from the same indoor flash test module discussed in Section 4.1, and
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Figure 15. Impact ok, on the profile ofl-V'.

0 < Ry < —dV/dI|y-y,,. One sees clearly that the accuracy of the proposed method is
very sensitive taR,, which implies that only whetk, is properly selected, the result&d’

is the response of a linear system. Such high sensitivity results in the unique solullgn of
and the rest of PV model parameters, and the effectiveness of the binary search algorithm
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proposed in Section 3.5.

RMSE

10_ I I I I I
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Figure 16. Impact of?, on the RMSE of the proposed method.

7. Applications

7.1. Non-contact Measurement of POA Irradiance and Cell Temperature

Irradiance on plane of array (POA) and cell temperature are important to PV systems be-
cause system performance, evaluated by performance ratio (PR), is derived from them.
Usually, silicon sensors are applied in PV systems to measure the irradiance level on POA,
as shown in Figure 17. Their structure is composed of a high-quality mono-crystalline solar
cell connected to a high accuracy shunt, which is the same as Figure 2, fyhisréhe
photocurrent proportional to the POA irradiance, the diode represents the mono-crystalline
cell, andRyy, is the shunt. The low shunf; = 0.1Q2) causes the cell to operate close

to the short-circuit point, which makds;, — I, so that POA irradiance can be calibrated
from I, according to the proportionality.

Essentially, silicon sensors use an internal reference cell as a benchmark to sense the
POA irradiance of PV modules/systems. The measurement accuracy highly depends on the
differences between: 1) reference cell and PV modules; 2nd ;. However, mismatch
between reference cell and PV modules is inevitablelang I although compensation
measures for temperature are taken into account. All of them cause the mismatch error up
to +5%, and the sensor needs to be recalibrated every two years to avoid the measurement
shift caused by the degradation of reference cell.

A more accurate irradiance sensor is pyranometer, which covers the full spectrum of
solar radiation 300-2, 800 nm) from a field of view 0fl80 degrees. It is seldom deployed
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Figure 17. POA irradiance measurement by silicon sensor.

in PV systems due to: 1) much higher cost as compared to silicon sensor; 2) mismatch in
spectrum as crystalline is not a full spectrum absorber; 3) is not applicable to measure POA
irradiance.

Temperature measurement for PV systems is even worse than POA irradiance measure-
ment because what is measured is not the true cell temperature but the temperature of the
back sheet of modules. This is because cells are encapsulated between the layers of glass,
EVA, back sheet during the process of lamination. However, it is also impractical to incor-
porate a sensor within the module, in direct contact with an individual cell, to measure the
cell temperature. In addition, the non-uniformity of module temperature across the mod-
ule area, which was assumed to-b&°C in [66], is not accounted for with this approach.

The current compromise is to put a sensor attached to the back sheet, which causes the cell
temperature measurement to be roughly 3°C lower than the true value. At a standard
irradiance level OflO()OW/mZ, a mean cell-to-back temperature differenc 6f+ 1°C

was adopted in [67] for c-Si modules with plastic back encapsulation.

It is much desired to find a more accurate way to measure the POA irradiance and cell
temperature as more and more PV systems are installed all over the world, not only for
the academic research, but also for the commercial investment evaluation. Motivated by
the recent progress in the diode model parameter identification [68, 69], photoclfrent
and reverse saturatiofy can be linearly determined from thelV characteristics of PV
modules. Immediately, POA irradianeg; = \I;, where\ is a constant slope (to be
calibrated) and independent of irradiance or temperature [2]. Cell tempefatisrderived
from I, = BT3e Fa/(¥T) whereE, is the band gap of silicon anB is a temperature
independent constant [14]. No external sensors for irradiance or temperature is required
once thel-V curve is known.

7.1.1. Calibration of POA Irradiance

As mentioned before, the photocurrditis proportional to POA irradiancé's, i.e.,Gs =

M, and)\ is the slope. To calibratg, the I-V characteristics of a full-sized commercial
module were measured indoor by a PASAN 11IB with the constant illumination intensity of
200, 400, 600, 800, 1000, 1200W/m?. The temperature for such flash tests is fixe2bac.
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Figure 18. Indoor flash test at different illumination intensity.

Table 7. Identification results

Illumination Iy, 1, a R, Ry, RMSE
(W/m?) (A) (107°A) (V) () (k) | (x107%)
200 1.08 0.4782 1.9411 0.5293 1.83210.0849
400 2.18 0.4757 1.9407 0.6278 1.35120.1410
600 3.23 0.4745 1.9404 0.6339 1.34140.1809

800 433 0.4741 19401 0.6345 1.57100.2130
1000 541 0.4725 1.9399 0.6347 1.84080.2380
1200 6.48 04786 1.9397 0.6347 2.13800.2569

Figure 18 shows the family-V characteristic of a PV module (crystalline) from the
proposed indoor flash test, where estimation results by the identification method from Sec-
tion 3 are indicated by circles. The estimation results obtained from the identified diode
model parameters match closely to th& curves from the indoor flash test. The identified
diode model parameters and RMSE compared to thelr®akurves are listed in Table 7,
which illustrate the accuracy of the proposed identification.

Based on the results from Table 7, Figure 19 shows the correlation betWesmd ;.

As expected];, is proportional toGs. The non-zero intercept is caused by measurement
error, which brings the uncertainty of irradiance estimation up.696,/0.0054 = 1.11
W/m?2. The slope\ from G = A, is determined by\ = 1/0.0054 = 185.1852.
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Figure 19. Determination of from G, = A\Iy.

7.1.2. Calibration of Cell Temperature

Cell temperature is derived fromy, = BT3¢ Fs/(*1) whereE, is the band gap of sili-
con andB is a temperature independent constant [14]. BBtand E, are required to be
calibrated. To do the calibration, thleV characteristics of the same module in Section
7.1.1 were measured by the PASAN 1IB in a thermal chamber. The illumination intensity
is fixed at1000WW/m? and the chamber temperature are set5at, 25°C, 35°C, 45°C,
55°C, 65°C.

Figure 20 shows the results of the flash test at different temperature levels, where the
circles represent the estimatéd/ curves by the proposed identification. The identified
diode model parameters and RMSE compared to thelr&aturves are listed in Table 8.

Table 8. Identification results

Temperature | I, 1, a R Ry, RMSE
(°C) (A) (107°A) (V) () (k) | (x107%)

15 538 0.0326 1.7970 0.6326 1.84860.2676

25 541 04756 1.9399 0.6347 1.84090.2375

35 543 5.8101 2.0883 0.6367 1.838350.2089

45 545 61544 2.2420 0.6378 1.82830.1810

55 548 564.16 2.4012 0.6388 1.81800.1550

65 550 4546.3 2.5659 0.6399 1.80750.1305
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Figure 20. Indoor flash test at different temperatures.

With the identifiedl, from Table 8, taking logarithmic té, gives,

E
Inl,=InB+3nT,—- 2, =

kT,
Eg —1
Inl,—3InT, = —?Tc +In B. (56)
Lety =Inl, —3InT,,z =1/1T;,a = —E,/k and = In B, (56) becomeg = ax + (.

The relationship betweenandy are shown in Figure 21. With linear fitting, = —22122
andg = 35.637. Thus,E, = —ka = 3.0543 x 1071 and B = " = 2.9988 x 1015. After
E, and B are known, the cell temperatu#@é can be numerically determined by Newton-
Raphson method with the initidl. = 300 K.

7.1.3. Outdoor Verification

To validate the proposed non-contact measurement for POA irradiance and cell temperature,
the same module after the indoor calibration was put at outdoor module testing bed for
a whole day with the continuous recording b/ curves and meteorological data. By
applying the proposed method in Section 3, the time-varying one-diode model parameters
1y, 1,, a, Rs and Ry, for the same day are identified, which has been discussed in Section
4.2 and the results are shown in Figure 8. The variation of the identified parameters reflects
the dynamics of the PV module under different environmental conditions, which cannot
be seen from the staticV curves. With the identified diode model parameters, the POA
irradiance and cell temperature can then be derived.

Based on the calibration valuefrom Section 7.1.1, the POA irradiance can be deter-
mined fromI; by G, = AI;. Figure 22 illustrates the comparison to the results from a
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Figure 21. Calibration of), andB.

reference silicon sensor which has the same inclined angle as the PV module. As seen from
Figure 22, the non-contact measurement POA irradiance matches the irradiance measure-
ment from the silicon sensor well.

900
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700 - . . . . . B

600 b

500 b

400} ]
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GS from non-contact measurement

200 b

0 j j j j
0 100 200 300 400 500 600 700 800 900
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Figure 22. POA irradiance: non-contact measurement vs. reference cell.
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With the calibrated®, and B from Section 7.1.2, cell temperatuifgis numerically de-
termined by Newton-Raphson method. The comparison betgandT,,.q (backsheet
measurement) is shown in Figure 23. One can see that when irradiance increases in the
morning, 7. is usually higher thafd’,,,4, which is due to the positive temperature gradi-
ent (from cell to backsheet) during that time. Whereas after solar noon when irradiance
decreases, temperature gradient becomes negative due to the thermal dElay,leaer
thanT,,,,. But the difference in between is withih2°C.
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Figure 23. Cell temperature: non-contact measurement vs. backsheet-attached sensors.

7.2. PV Panel Characterisation for Satellites

When PV panels are used in satellites, it is usually not allowed to do the flash test sweeping
from OC to SC because the power supply must be stable to maintain the normal operation
of satellites. Hence, to do the PV panel characterisation for satellites in opefatibs¢an

is limited within a small range around MPP, i.é.£ [I1, 3] andV € [V;, V5]. With the
example of one-diode model, it follows from (3) that

Vi+RsI; _ Vi+ Rslh

Il :IL+IO_Ioe @ 5 (57)

Rsh

s oI
[ =141, — et VAR (58)

Rsh
LetAl =1 — I andAV =V — V4, (58) — (57) yields
s s A SAT
AT=TIe ot (1270 - AV + HAL (59)
Rsh
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Lety = Al andx = AV + R;AlI, (59) becomes
Vi+Rsly x €T
y=TLe o = (1—ei)— o (60)
Taking differential once for (60) gives
dy I, VitRsli o 1
= % o — . 61
dx a ¢ ¢ R, (61)
Differentiating twice gives
d2y I, vitRst;
@ = —?e a €a. (62)
Eliminatinge®/® from (61) and (62) gives

d?>y dy 1

dz?2 dx Ry,

which is just the same as (21). The remaining procedures are very similar to what we
did in Section 2.1 except for the initial conditions. From (60) and (g1)) = 0 and

Y (0) = —IL,eMWithsI)/ajq _1/R,,, respectively. According to (24), the transfer function

2 / 1 Vi+Rsly a 1
o ay(0)s” + [ay'(0) —y(0)ls + 7 —(loe™ = )s+ g
(S) - Cl82 _ s — a52 s .

The corresponding time domain differential equation is

dy(t) dy(t) VitRsly a \ du(t) wu(t)
— =t =—(Ie @ — ) —= + =, 63
@ dt? dt (I ¢ * Rsh) dt * Rsh ( )
wheret = 2 andu(t) = 1. With the help of double integral in (39), (63) is equivalent to
ay(t) + (Ioevﬁf s R‘;)

ﬁ}m>};/®Mﬂ=f%m»

[0,¢] [0,¢]

Vi+RsIy
Letd = [a,I,e” &  + 2, =

+ 7 7T, o) = [y(®), S5 u(r), — i) u(r)]T andy(t) =
f[gz} y(7), then the least square solution fbis given by

0 = (@%)*1 aTT,

where® = [p(t1), -, ¢(ty)] andl’ = [y(t1),--- ,y(tn)]T. Thus,

a = 017
_ Vi+RsIj
I, = (02— 6163)e 1 |
1
Rsh =

03

R, is determined by the same binary search algorithm in Section 3.5 as beforg, &nd
derived from (57) as follows oncg, a, R; and R, are all determined.

Vi+Rsly

Vi + R.I
Ip=I —I,+Ie a p At il
Rsh
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8. Conclusion

In this chapter, an approach on linear system identification is developed, which links the
diode model parameters to the transfer function coefficients of a dynamic system. This
approach solves the PV model parameters by an integral-based linear least square method,
which reduces the dimension of the search space frool, so the drawbacks of nonlin-

ear algorithms are avoided. Graphical meanings of the proposed method are illustrated to
help readers understand the underlying principles. Finally, a discussion of the possible ap-
plications of the proposed method like online PV monitoring and diagnostics, non-contact
measurement of POA irradiance and cell temperature, fast model identification for satellite
PV panels are presented.
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