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Abstract 

 

This study focuses on the morning commute problem with explicit consideration of cruising-for-

parking, and its adverse impacts on traffic congestion. The cruising-for-parking is modeled 

through a dynamic aggregated traffic model for networks: the Macroscopic Fundamental 

Diagram (MFD). Firstly, we formulate the commuting equilibrium in a congested downtown 

network where travelers have to cruise for curbside parking spaces. The cruising-for-parking 

would yield longer trip distance and smaller network outflow, and thus can induce severe 

congestion and lengthen the morning peak. We then develop a dynamic model of pricing for the 

network to reduce total social cost, which includes cruising time cost, moving time cost (moving 

or in-transit time, which is the duration during which vehicles move close to the destination but 

do not cruise for parking yet), and schedule delay cost. We show that under specific assumptions, 

at the system optimum, the downtown network should be operating at the maximum production 

of its MFD. However, the cruising effect is not fully eliminated. We also show that the time-

dependent toll to support the system optimum has a different shape than the classical fine toll in 

Vickrey’s bottleneck model. In the end, analytical results are illustrated and verified with 

numerical experiments. 

 

Keyword: morning commute; cruising-for-parking; MFD; pricing 

 

 

1. Introduction 

 

Parking is not only a headache for travelers heading for the city center, but also a challenging 

issue for the transport system planners, operators and regulators. In some cities, the time spent on 

searching for a vacant parking space can be up to 40% of the total travel time (Axhausen et al. 
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1994), due to the limitation of parking supply. Shoup (2006) summarized the findings of several 

studies done between 1927 and 2001, which show between 8 and 74 percent of the traffic was 

cruising for parking, and the average time to find a curb space can be up to 14 minutes. However, 

those studies summarized in Shoup (2006) generally will report locations where cruising for 

parking cannot be neglected. Cruising might be less significant, especially for those areas with 

sufficient parking and low demand. More empirical evidence for cruising is needed for a more 

comprehensive understanding. Cruising-for-parking can also influence drivers not involved in 

cruising and create severe congestion even under medium demand conditions (“medium travel 

demand” will lead to no or very light congestion if travelers can find parking very easily when 

they are close to final destinations, and do not cruise for parking). This is because the outflow of 

the transport network (arrivals to the parking spaces) can reach very low values when finding a 

vacant parking space is extremely difficult (Geroliminis, 2015). Due to its inefficiency, cruising-

for-parking is one of the most studied topics in the economics of parking. Understanding the 

effect of cruising-for-parking for congested networks can help improve efficiency in the flow of 

vehicles and facilitate the development of more equitable management strategies as trips with 

cruising might contribute to congestion more than trips without that, e.g. trips with destinations 

outside the limited parking zones. 

 

Glazer and Niskanen (1992) has modeled the congestion caused by through-traffic and by traffic 

destined for the area where consumers park. To evaluate different parking policies, Bifulco 

(1993) introduced the parking search times in a static stochastic traffic assignment model. 

Anderson and de Palma (2004) studied the parking problem under a private parking operator in a 

monopolistically competitive market, with an emphasis on the commuter’s time spent on 

searching for a vacant parking space. There is a branch of literature looking into the interaction 

between cruising-for-parking and traffic congestion (e.g., Arnott and Rowse, 1999, 2009; Arnott 

and Inci, 2006, 2010). For example, Arnott and Rowse (1999) developed a structural model of 

parking for a ring-road on which travelers’ choice of parking lot is uniformly distributed; the 

expected parking time, driving time and cruising distance for finding available parking spaces 

are derived. These studies focusing on cruising-for-parking have provided insightful ideas of the 

complex interaction among cruising, traffic congestion and network performance. However, they 

often overlook the rush hour traffic dynamics and time-varying traffic conditions. For a recent 

review of the economic studies of cruising-for-parking, one may refer to Inci (2015). 

 

Another branch of literature has focused on integrating the parking problem into the well-known 

morning commute model (Vickrey 1969). In this context, Arnott et al. (1991) showed that a 

parking fee alone can effectively increase social welfare, and that a combination of dynamic road 

toll and dynamic parking fee can yield the system optimum. Zhang et al. (2008) further extended 
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Arnott et al. (1991) by deriving the daily commuting pattern that combines both the morning and 

evening commutes. More recently, attentions have been paid to how parking capacity allocations, 

parking fees, parking permits and parking reservations can be designed to improve traffic 

efficiency in a dynamic network with one roadway bottleneck (Zhang et al. 2011; Qian et al. 

2011, 2012; Fosgerau and de Palma, 2013; Yang et al. 2013; Liu et al. 2014a,b). However, in 

most of these studies, the cruising for parking is not modeled. Very recently, Qian and Rajagopal 

(2014, 2015) modeled how travelers make parking location choices and departure time choices to 

minimize their generalized travel cost. More importantly, they incorporated cruising-for-parking 

by using a cruising time function dependent on parking occupancy. However, their study treated 

cruising time as a cost at the end of trip, but ignored the impacts of cruising-for-parking on the 

roadway traffic congestion, as well as the interaction between cruising and moving traffic. By 

“moving traffic”, we mean that the vehicles are moving towards their destinations, but have not 

started to search for a parking space yet. 

 

To the best of our knowledge, this study is the first to incorporate not only the cruising-for-

parking, but also its adverse impacts on traffic congestion in the context of dynamic commuting 

equilibrium. Alternatively, this study explores how interactions between cruising and traffic 

congestion will re-shape the morning commute. Following a recent macroscopic simulation 

study of parking (Geroliminis, 2015), the impact of cruising-for-parking is modeled through an 

aggregated network-level traffic model: the Macroscopic Fundamental Diagram (MFD), see 

Daganzo and Geroliminis (2008) for empirical evidence. Different from Geroliminis (2015), this 

study considers travelers’ scheduling cost and time of departure choices rather than assuming 

given demand profile over time, which bring much more complexities. By adopting the MFD 

approach, one of the advantages is that the downward-sloping part of the curve between traffic 

flow and density, known as hypercongestion in economic terms (e.g., Small and Chu, 2003), can 

be modeled. The MFD approach has already been used to study the recurrent morning commute 

problem without consideration of cruising-for-parking (e.g., Geroliminis and Levinson, 2009; 

Arnott, 2013; Fosgerau, 2015). 

 

As mentioned in Arnott (2013), the dynamic user equilibrium problem with hypercongestion is 

analytically intractable (which is to solve a delay differential equation with an endogenous delay). 

To deal with this intractability, Arnott (2013) assumes that the outflow from the downtown area 

depends on the contemporaneous traffic density, which is termed as the “bathtub” model. In an 

earlier time, to solve the no-toll commuting equilibrium, Small and Chu (2003) assumed that a 

commuter’s travel time depends on traffic density at his or her arrival time. This assumption is 

also adopted in some other studies, e.g., Mahmassani and Herman (1984), Yang and Huang 

(1997). Later, Geroliminis and Levinson (2009) extended Small and Chu (2003) by considering 
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user heterogeneity in desired arrival time, and incorporating various pricing strategies to 

eliminate congestion. An interesting finding of this study is that the duration of pricing period is 

smaller than the congested period in the no-toll case, and the total savings (in travel delay and 

scheduling penalties) are higher than the total toll paid (note that in a classical bottleneck, these 

two quantities are equal). A simplified tractable version of the MFD model considering capacity 

drop facing queueing is adopted in some recent studies on the morning commute problem (e.g., 

Fosgerau and Small, 2013; Liu et al., 2015b). Unfortunately, extension of their models would 

lead to a tedious proliferation of cases. Very recently, Fosgerau (2015) proposed a similar 

“bathtub” model as Arnott (2013), given the heterogeneity in trip length of the population. Some 

of the analysis in Fosgerau (2015) relies on that, for all travelers, the speed does not drop too 

quickly at times of departure or rise too quickly at times of arrival. The paper identified that 

under some conditions, a regular sorting property arises, where shorter trips take place within the 

durations of longer trips. In the current study, to tackle the intractability, we approximate 

travelers’ travel time with instantaneous speed (depends on traffic density) and trip length 

(depends on parking availability). With this “instantaneous travel time” approximation, the 

problem is significantly simplified and still analytically tractable. Later our numerical analysis 

can compare the difference between the analytical travel time (calculated with instantaneous 

conditions) and the estimated travel time (calculated with the estimated departure/arrival traffic 

pattern). While a number of assumptions have been made to keep some level of analytical 

tractability in the model, the analysis of this work contains interesting findings both from a 

mathematical and policy point of view and could help policy makers in dealing with congestion 

and parking issues. 

 

Under the MFD framework, the traffic arrival rate at destinations or the outflow of the network 

depends on the traffic accumulation in the network and the trip length of the traffic. The existing 

MFD models often assume that the trip length is constant over time and independent of 

destination, and ignore phenomena which may change trip length, e.g., when vehicles are 

cruising for parking (increase in trip length due to route choice is analyzed in Yildirimoglu and 

Geroliminis, 2014). In reality, parking capacity in the downtown is often limited. Moreover, due 

to travelers’ arrival, the available parking capacity will decrease over time in the morning peak. 

It is then more difficult for a later traveler to find a vacant parking space. In an average sense, 

cruising distance to find a vacant parking space will increase over time, which leads to a 

decrease in network outflow (arrival rate at parking spaces). Macroscopic models that ignore this 

phenomenon will underestimate trip length of travelers and overestimate the outflow of the 

network. Furthermore, the increased travel distance due to cruising will lead to more severe 

congestion in the network. If we look at the network traffic dynamics, given the future traffic 

inflow, the decreased outflow due to cruising-for-parking would in return intensify the network 
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accumulation in the future, and then decrease the traveling speed of traffic and create more 

severe congestion. 

 

This study models the above interactions in the context of dynamic user equilibrium in the 

morning commute. Firstly, we formulate the commuting equilibrium in a congested downtown 

network where travelers have to search for vacant curbside parking spaces around their 

destinations. Since the cruising-for-parking would yield smaller network outflow, more traffic 

congestion, and more travel delays, we develop a dynamic model of pricing for the network to 

improve efficiency, and reduce total social cost including cruising time cost, moving time cost 

(where moving time is the duration during which vehicles move to the destination but do not 

cruise for parking yet), and schedule delay cost. Our analysis shows that, due to the consideration 

of cruising-for-parking, the dynamic toll to support the system optimum has a different shape 

(over time) than the classical triangular toll in Vickrey’s bottleneck model. 

 

The rest of the paper is organized as follows. Section 2 describes the problem and presents the 

model formulation and major assumptions adopted. In Section 3, the morning commute 

equilibrium with cruising-for-parking is discussed. Section 4 introduces the optimal time-varying 

toll to reduce total social cost and improve traffic efficiency. Numerical studies are presented in 

Section 5 to illustrate and verify the essential ideas in the paper. Finally, Section 6 concludes the 

paper and provides some discussions. 

 

 

2. Model Formulation 

 

We start with a thumbnail sketch of the problem, and follow it with more detailed formulations.  

Specifically, we list the main model assumptions of this work A1-A7 in subsection 2.2, while 

some initial or boundary traffic conditions are summarized as A8-A10 in subsection 3.1. 

 

2.1. Thumbnail description 

 

We consider a downtown area, which exhibits an MFD with low scatter (a lower scatter requires 

that the congestion is more homogeneously distributed over the network). Basically, the MFD of 

a network describes the relationships among network vehicle density, network average speed of 

traveling traffic, and network space-mean flow (or network travel production). A formal 

definition of the variables is provided right afterwards. The MFD of a network or region can be 
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estimated with various real data (from loop detectors, GPS etc. see Geroliminis and Daganzo, 

2008 and Leclercq et al., 2014).1 In this paper, the network MFD function is assumed to be given. 

 

In the morning commute, a number of travelers have to travel through the downtown network to 

reach their downtown destinations. In this work, all of them have identical desired arrival time. 

All travel is by car and all parking is on street. Before arrival, travelers need to find vacant 

parking spaces to park their cars. Since all parking is on street, travelers will cruise for parking 

on the street, which depends on parking availability. Indeed, there will be two types of traffic: 

moving traffic (or in-transit traffic, which means that vehicles are moving towards their 

destinations, but have not started to find a parking space yet), and cruising traffic (vehicles are 

searching around their final destinations to find vacant parking spaces). The traffic dynamics 

after taking into account cruising-for-parking are modeled through the Macroscopic Fundamental 

Diagram (MFD), see Geroliminis and Daganzo (2008). By utilizing the MFD framework, we can 

model the downward-sloping part of the curve between network traffic flow and density.2 

 

A commuter will choose his or her departure time to minimize the travel cost, which includes 

travel delay cost and schedule delay cost. The travel delay includes both moving time and 

cruising time. We look at the long-term dynamic user equilibrium such that we assume travelers 

to be aware of traffic conditions and parking vacancies after their long-term experience. 

Equilibrium is achieved when no one can reduce his or her travel cost by unilaterally changing 

departure time. 

 

We end the subsection with listing the notations we employ in the paper. Those listed as 

exogenous variables or parameters are considered as input to the model and can be estimated 

with field experiments or surveys. 

 

MFD variables: 

n  Accumulation (total number of vehicles in the network) 

cn  Critical level of accumulation (exogenous) 

jamn   Jam accumulation (exogenous) 

v  Velocity;  v v n  (exogenous relation between speed and accumulation) 

fv  Free-flow speed (exogenous) 

                                                           
1 The MFD of a network can be affected by, e.g., systematic changes of signal control plans, expanded roads (see for 

example Leclercq and Geroliminis, 2013 or Geroliminis and Boyaci, 2012). 
2 While this study focuses on a single-region downtown network, the dynamic relations for traffic in a multi-region 

system with a known time-of-departure for all travelers and no cruising are described in detail by Ramezani et al. 

(2015). 
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P   Network production; P v n   

L  Trip length 

o  Network outflow; where o P L  

 

Exogenous parameters: 

N  Number of commuters 

pN  Number of parking spaces 

ml  Moving or in-transit distance (identical for all travelers) 

d  Distance or spacing between parking spaces 

0p  Parking occupancy rate at the start of the peak 

*t   Desired arrival time (identical for all travelers) 

 

Endogenous variables: 

t  Clock time 

 I t  Cumulative departure from home at time t   

 I t   Departure rate at time t ;    I t dI t dt   

 A t  Cumulative arrival at destination at time t  

 A t  Arrival rate at time t ;    A t dA t dt   

 p t   Parking vacancy rate experienced by travelers departing at time t  

  Parking vacancy rate at time t  

 n t  Accumulation at time t      I t A t   

 v̂ t   Velocity at time t ; and     v̂ t v n t   

 ô t   Network outflow at time t  

 sl t   Cruising-for-parking distance for travelers departing at time t  

 L̂ t  Trip length for travelers departing at time t ;    ˆ
m sL t l l t   

 m t  In-transit travel time or moving time for travelers departing at time t   

 s t   Cruising-for-parking time for travelers departing at time t   

 ˆ t   Total travel time for travelers departing at time t   m s     

 T t  Time-varying toll at (departure) time t  
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Note that the time-varying accumulation  n t  follows the notation n  from the MFD variables. 

However, the notations v̂ , ô , L̂  and ̂  (all are time-varying endogenous variables) are adopted 

to distinguish them from relevant functions. Other parameters and variables if not mentioned in 

the above will be specified in the text. 

 

2.2. Dynamic traffic model with cruising-for-parking 

 

Regarding the MFD of the downtown network, we employ the following assumptions A1-A2. 

The speed-accumulation ( v n ) relationship defined in assumptions A1 is also illustrated in 

Figure 1. 

 

A1. Velocity is a continuous function of accumulation in the network: 

 v v n . 

In particular, we assume that 

   fv n v  for cn n ; 

  0v n   and   0v n   for cn n  and jamn n ; 

  0v n   for jamn n ; 

where cn  is the critical accumulation, and jamn  is the jam accumulation. 

 

The above assumption A1 means that traffic flows at free-flow velocity up to a critical level cn , 

above which the velocity declines monotonically as accumulation increases (before jam 

accumulation), reflecting (hyper)congestion.3 Note that the speed might not be differentiable 

while continuous at cn n  and at jamn n . This assumption (A1) is adopted in many traffic 

simulation studies, and empirical observations from Yokohama (Geroliminis and Daganzo, 2008 

and Geroliminis and Levinson, 2009) suggest this to be a reasonable approximation. For later use, 

we here define  1v   as the inverse function of  v v n  for [ , )c jamn n n . Since we are focusing 

on the dynamic user equilibrium with cruising for parking, the accumulation n  will never reach 

                                                           
3 The assumption (A1) also indicates that we do not differentiate the direct impacts of cruising and moving vehicles 

on traffic congestion. This is often not the case in reality. Vehicles cruising on the street might be slower, and might 

affect surrounding traffic when they try to park at vacant spaces they find. Future research might model the specific 

impacts of cruising traffic. To achieve this, we should identify cars that are cruising, which can be difficult as we 

need to track the state of every vehicle. However, from a system perspective, we might approximate the proportions 

of moving and cruising vehicles (among the total accumulation) by assuming that they are proportional to moving 

distance and cruising distance (as briefly discussed in Geroliminis (2015), this is reasonable only if the system 

traffic conditions change slowly over time). Detailed GPS data (to identify if a vehicle follows a straight or 

circuitous trajectory) combined with parking occupancy measures that identify how often each parking spot changes 

its state from busy to available, would be two important aspects of a future analysis. 
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the jam accumulation jamn  (otherwise, travelers will have an unbounded travel cost). If at time t , 

accumulation is  n t , velocity is then     v̂ t v n t . 

cn

 v n

fv

n

jamn
 

Figure 1. The speed-accumulation relationship for the downtown network 

 

A2. Production    P n n v n  , i) increases with n  for cn n ; and ii) decreases with n  for 

cn n  and jamn n . 

 

Part (i) of assumption A2 holds as long as assumption A1 holds. Part (ii) of Assumption A2 

implies that, for cn n  and jamn n , we have   0dP n dn  . This requires that 
   dv n v n

dn n
  . The 

production P  reaches its maximum when cn n . 

 

The network outflow o P L  would have the same shape (over accumulation n ) as the 

production P  if trip length L  is constant. Note that o P L  is a reasonable approximation (see, 

e.g., Geroliminis and Daganzo, 2008), which is used in the flow conservation equation for 

representing the network dynamics. In this paper, trip distance L  depends on parking availability, 

which is changing over time. Therefore, network outflow can be different even if the production 

is identical and the o n  plot (we do not show it here) might experience hysteresis phenomena 

due to variable L . Moreover, even if the production is at its maximum, the network outflow can 

be smaller when trip length is longer due to cruising. 

 

The purpose of this study is to examine the integrated problem of morning commute and 

downtown parking (on-street parking) in the context of dynamic user equilibrium. This means 

that accumulation, traffic velocity, and parking vacancy rate would all be time-dependent. Thus, 
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during the journey of a traveler (both the moving part and cruising part), both the velocity and 

parking vacancy rate are changing, which make the model analytically intractable (if without any 

approximations). The problem is that the exact model gives rise to delay differential equations 

with an endogenous delay (as described by Arnott (2013) even for the case of no cruising). To 

circumvent sources of analytical intractability, we make the following assumptions (A3-A7). 

 

A3. The moving time (in-transit travel time) for a traveler who departs from home at time t  

depends on the traffic accumulation at the beginning of his trip (at time t ): 

  
  

m
m

l
t

v n t
  . (1) 

 

Assumption A3 simply means that, given the moving distance, the moving time of a trip depends 

on instantaneous speed (at departure time), instead of velocity during the moving duration of the 

trip. As will be discussed later, assumptions A3-A7 together lead to an “instantaneous model”. In 

this model, we work with departure-time-dependent accumulation and speed (rather than arrival-

time-dependent) to estimate travel time as we consider that capturing the evolution of congestion 

during onset is critical. 

 

A4. The parking vacancy rate for a traveler who departs from home at time t  depends on 

cumulative departures at time t : 

  
 

01
p

I t
p t p

N
   . (2) 

 

Eq.(2) implies that a traveler departing earlier will experience a higher parking vacancy rate as 

 I t  will be smaller. This means that first-in-first-out (FIFO) is implicitly assumed. It follows 

that the cumulative departure at the departure time of a traveler will be equal to the cumulative 

arrival at the arrival time of this traveler. Also note that 0 pp N  parking spaces are occupied at 

the start of the rush hour. If 0p  is larger, the initial parking vacancy rate is lower, and the 

cruising effect will be more significant.  

 

A5. The cruising for parking distance for a traveler who departs from home at time t  equals the 

distance between parking spaces divided by parking vacancy rate defined in Eq.(2): 

  
 

s

d
l t

p t
 . (3) 
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The above assumption A5 is inherently coupled with A4. We use parking vacancy rate in Eq.(2) 

(depending on cumulative departure at departure time t ) to estimate the cruising distance of a 

traveler departing at time t  (rather than parking vacancy rate depending on cumulative arrivals at 

time t ), i.e.,  sl t  depends on  p t . We consider this as a more realistic assumption. The 

searching for parking occurs at the end of the trip, which means that the parking vacancy rate 

experienced by the traveler departing at time t  would be closer to the one when the traveler 

arrives.4 If FIFO is assumed, when the traveler departing at time t  arrives, the cumulative arrival 

would be equal to the cumulative departure at time t , which means the exact parking vacancy 

rate when a traveler departing at time t  arrives at the parking would be as in Eq.(2). 

 

Note also that Eq.(3) denotes an average searching distance for a given d  and p , i.e., sl d p . 

We indeed follow Anderson and de Palma (2004), where readers can find a detailed derivation. It 

regards searching for parking spaces as a stochastic process with replacement, which means a 

traveler who is cruising for parking “forgets” whether he or she has previously checked on a 

space. It is worth mentioning that alternative formulations of searching distance can be readily 

accommodated in our model as long as the searching distance sl  decreases with parking vacancy 

rate p , and is convex over p . 

 

A6. Cruising-for-parking time for a traveler who departs from home at time t  equals the 

cruising distance for a traveler who departs at time t  divided by the velocity at time t : 

  
 

  
s

s

l t
t

v n t
  . (4) 

 

Assumption A6 means that, similar to assumption A3, we use departure-time-based speed to 

estimate cruising time of travelers. One may argue that cruising is closer to the end of the trip 

thus it might be more appropriate to use speed at arrival time. However, analytical intractability 

would arise if we adopt different speeds for moving time and cruising time.5 

 

                                                           
4 We can expect that the exact parking vacancy rate at the departure time of a traveler (depending on cumulative 

arrivals at the departure time, as given in Eq.(7)) can be far from (much smaller than) that at the arrival time of this 

traveler. 
5 If we adopt for both moving time and cruising time the arrival-time-dependent speed, one may also argue that it 

might be better to use departure-time-based speed to estimate moving time. It can be said that, since the departure 

time and arrival time are fully dependent on each other, formulating the problem based on either departure time or 

arrival time will make this “instantaneous travel time” assumption equally strong. We work with departure-time-

based accumulation and speed as we consider that capturing the evolution of congestion during onset is more 

important and errors will accumulate less. 

 



Revised paper submitted to Transportation Research Part B 

- 12 - 

 

The trip distance of a traveler departing at time t  can be given as 

    
 

  ˆ
m s m

d
L t l l t l L p t

p t
     , (5) 

It can be seen in Eq.(5) that  L p  is decreasing in p . From assumptions A3 and A6, we further 

have 

  
 

 

  
  

    
ˆ

ˆ ,
ˆ

L p tL t
t n t p t

v t v n t
     . (6) 

From Eq.(1), Eq.(4), Eq.(5) and Eq.(6), it is obvious that      ˆ
m st t t     . And  ,n p  is 

decreasing in p , and is increasing in n  when cn n  and jamn n  (since  v n  is decreasing with 

n ). 

 

At time t , total arrival at destination (as well as parking) is  A t , the parking vacancy rate at 

time t  is then  

 . (7) 

At time t , the traveler departing at time t  have not arrived yet, i.e.,    I t A t . Therefore, this 

parking vacancy rate in Eq.(7) is smaller than the one encountered by the traveler departing at 

time t , which is given in Eq.(2). The traveler departing at time t  is still far from starting to 

cruise for parking, and this is why we do not use the parking vacancy rate in Eq.(7) to estimate 

the cruising distance (as well as the total trip distance) for the traveler departing at time t . 

 

A7. The network outflow at time t  equals the production at time t  divided by trip length for 

travelers arriving at time t , i.e., 

  
    

  
    ˆ ,

n t v n t
o t o n t p t

L p t


  . (8) 

 

Based on assumptions A4 and A5, the parking vacancy rate at time t  given in Eq.(7) is the one 

encountered and experienced by travelers departing at time  where , and we 

have . At time t , the travelers departing at time  arrive. Therefore, the outflow or 

arrival rate at time t  given in Eq.(8) is for the arrival of travelers departing at time . The trip 

distance assumed to calculate outflow is equal to . 
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Assumptions A3-A7 together might be termed as an “instantaneous model”. 6 The most critical 

component is that we assume “instantaneous travel time” (departure-time-based).7 We would like 

to highlight that trip length formulation is also departure-time-based. We use cumulative 

departure at the departure time of the traveler to estimate parking vacancy rate and trip length 

experienced by the traveler (When FIFO is assumed, cumulative departure at the departure time 

of a traveler will be equal to cumulative arrival at the arrival time of the same traveler).  

 

With assumptions A3-A7, the problem is simplified and the model becomes analytically 

tractable. Later our numerical analysis compares the difference between the analytical travel time 

(calculated with instantaneous conditions, which is given by Eq.(6)) and the “estimated” travel 

time (calculated with the estimated departure/arrival traffic pattern). More specifically, we 

compute  I t  and  A t  based on our “instantaneous model” (how to estimate the solution is 

presented in Section 3). And the “estimated” travel time is the horizontal gap between 

cumulative departure curve and cumulative arrival curve. For a traveler departing at time 1t , 

“estimated” travel time would be  1 2 1
ˆ

est t t t   , where    2 1A t I t  (one may refer to Figure 2 

for better understanding). “Estimated” schedule delay costs then can be determined accordingly. 

Note that the “estimated” values only appear when we want to compare them with the solution of 

the analytical model defined by assumptions A1-A7.8 

 

Given the above formulations and assumptions, the full trip cost of a commuter departing from 

home at time t  is given by 

             * *, , ,w sc t t c n t p t c t t n t p t       , (9) 

where     ,n t p t  is the travel time defined by Eq.(6), wc  is the value of unit travel time, and 

sc  is the schedule penalty of unit time.9 And the schedule penalty is sc e  for a unit time of 

                                                           
6 While in this paper the “instantaneous travel time” formulation is considered, a more accurate estimation of 

experienced travel time (e.g. as described in Yildirimoglu and Geroliminis, 2013) will not allow for analytical 

derivations. 
7 To approximate travel time with arrival-time-dependent accumulation and speed, we can define the t  in Eq.(9) as 

arrival time, and let         * *, ,w sc t t c n t p t c t t     . Then we can conduct similar derivations as those in the 

current paper. This is indeed applied to estimate the solution presented in numerical analysis (Figure 7(b)) where we 

compare our results with the solution based on arrival-time-dependent formulation. 
8 In Section 5, it is numerically shown that the “estimated” travel time over the time horizon still follows a similar 

pattern as the analytical travel time under our approximation. Also, the discrepancies in system efficiency measures 

such as total travel time, total travel cost and total schedule delay cost will be less than 10% (user equilibrium 

solution), while we omit the detailed discussion. Indeed, a vast literature in travel time estimations indicates that 

errors associated with instantaneous travel times for smoothly varying traffic conditions might be in the range of 5-

10% (e.g. Yildirimoglu and Geroliminis, 2014). 
9 In the travel cost formulation in Eq.(9), the walking time between the parking spaces and final destination (e.g., 

workplaces) is not considered, i.e., we only consider the driving time. If walking time is increasing over time (later 
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early arrival, i.e.,     * ,t t n t p t   , and is sc l   for a unit time of late arrival, i.e., 

    * ,t t n t p t   . It is assumed that we c l  , which is consistent with empirical evidence. 

 

 

3. Morning Commute Equilibrium with Cruising-for-parking 

 

3.1. User Equilibrium Description 

 

If the parking vacancy rate p  is constant during the morning peak, our study is similar to Small 

and Chu (2003) and Geroliminis and Levinson (2009). Dynamic user equilibrium is achieved 

when no one can reduce travel cost by unilaterally changing his or her departure time. However, 

the time-dependent p  would affect the cruising-for-parking and congestion dynamics in the 

network, and then re-shape the dynamic user equilibrium. 

 

Compared to the standard bottleneck studies, this research incorporates a more realistic traffic 

flow model to capture traffic dynamics, which makes it necessary to describe the initial traffic 

conditions (this is common in traffic simulation studies with more detailed traffic flow model). 

Suppose the first and last departures (from home) occur at time st  and at time et  respectively, as 

shown in Figure 2 (note that both time points are endogenous, and need to be estimated). We 

have the following assumption for initial traffic conditions. 

 

A8. At peak start time st , the accumulation equals the critical value, i.e.,  s cn t n  (onset of 

congestion). 

 

The assumption above (A8) means that the onset of congestion is at the peak start time st . This 

assumption ensures that, based on the “instantaneous travel time” formulation, the first traveler 

will experience free-flow speed and zero congestion delay. This is similar to the standard 

bottleneck model where the first traveler also experiences free-flow speed and zero congestion 

delay. 

 

                                                                                                                                                                                           
arrival indicates parking further away), which is similar to cruising time, incorporating walking time will likely give 

us similar results as those from this study. However, with more detailed spatial consideration of parking, the walking 

time will be related to specific parking spatial distribution, and might affect how travelers are cruising and are 

choosing where to park. In this case, to incorporate walking time can be much more challenging, which is under our 

consideration for further research. 
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Between time st  and time et  (one may refer to Figure 2), the accumulation will go beyond the 

critical value cn , and the speed is below the free-flow speed (congestion). At the time point of 

last departure et , the accumulation will go back to the critical value, i.e.,  e cn t n , thus the last 

traveler will also experience free-flow speed (based on the “instantaneous travel time”). Note 

that if the accumulation  e cn t n  (corresponding case in standard bottleneck model is that the 

last traveler will experience non-zero queuing delay), we can construct an equilibrium with a 

later st  such that  e cn t n , and equilibrium individual travel cost is less. An equilibrium with 

 e cn t n  also cannot exist. This is explained as follows. If  e cn t n , there must be a small 

time duration just before et  where the accumulation will be less than cn . For travelers departing 

during this small time duration, they all experience a free-flow speed. Among these travelers, a 

later departure indicates a larger travel cost (equilibrium condition does not hold), since a later 

departure means a larger travel time (trip length is larger as parking vacancy will decline), and a 

larger schedule delay (later arrival). 

*tt etst t

 I t
 A t

 n t

N

Time

cn

cn

cn

0

Cumulative

 ˆ
s st t 

 ˆ
e et t 

 ˆ t

 

Figure 2. Cumulative departure and arrival at the user equilibrium 

 

Between st  and  ˆ
s st t  , there will also be arrivals (of non-peak traffic, i.e., the traffic already 

in the network at time st ), which are displayed by dotted line in Figure 2. To compute the 
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outflow (arrival rates) during this time interval, as well as the accumulation, we need the trip 

distance information of these non-peak traffic. We have the following assumption. 

 

A9. For the travelers already in the network at time st , the parking vacancy rate experienced is 

  01sp p t p   , and trip distance is then constantly equal to  01ml d p  . 

 

Assumption A9 gives information about the trip length of the non-peak traffic already in the 

network at time st . For simplicity, we assume that the trip length of them is constantly equal to 

the trip length of the first traveler in the peak demand N  (who departs from home at time st ). 

Firstly, this assumption assures that early non-peak traffic will encounter a reasonably small 

cruising distance (and parking vacancy rate is relatively high for them). Secondly, alternative 

assumptions on trip length of the non-peak traffic can be easily accommodated in our model. 

 

Furthermore, after et , there will also be departures (which do not belong to the peak demand N ). 

These departures of non-peak traffic can be less intensive thus we have   cn t n  and the speed 

is at its maximum. The outflow after et , as well as the accumulation is related to the departures 

of non-peak traffic. For simplicity, we assume the following. 

 

A10. Between et  and  ˆ
e et t  ,   cn t n . 

 

From the discussion after assumption A8, we know that  e cn t n . Assumption A10 then means 

that between et  and  ˆ
e et t  , the accumulation will remain constant, which indicates that the 

network inflow equals the outflow during the mentioned time interval. However, we would like 

to point out that, assumption A10 is not critical to our model, as the model can easily 

accommodate alternative assumptions, e.g.,   cn t n  during this time interval (non-peak traffic 

after et  is very light such that inflow is less than outflow). 

 

The conditions assumed in the above related to the start and end of the peak might not be 

acceptable unless the peak hour is significantly longer than the travel time of a single trip with 

zero congestion. However, the model, while adopting initial or boundary condition assumptions 

A8, A9, and A10, still incorporates the standard bottleneck model (with constant highway 

capacity) as a special case. 

 

3.2. User Equilibrium Conditions 
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We now derive the dynamic user equilibrium conditions. As mentioned, equilibrium is achieved 

when no one can reduce travel cost by unilaterally changing his or her departure time. By taking 

the first-order derivative of the individual travel cost given by Eq.(9) with respect to t , we have 

 
 

 
             

*, , ,
w s s

c t t n t p t n t p tdn t dp t
c c c

t n dt p dt

   
       

    

. (10) 

Equilibrium requires that  *, 0c t t t   , indicating a traveler cannot reduce his or her travel 

cost by changing departure time. Then we have 

 
             , ,

s

w s

n t p t n t p tdn t dp t c

n dt p dt c c

 
   

  
. (11) 

Note that in Eq.(11), the schedule penalty sc  is different for early and late arrivals. 

 

For the first traveler departing at time st , travel time is given by    0
ˆ ,1s ct n p    . The on 

time traveler departs at time t , thus      *,t n t p t t     , and       ˆ ,t n t p t     . The 

last traveler will depart at time et  and      0
ˆ ˆ,1e c p st n N N p t       . The estimation of st , 

t  and et , as well as the dynamic traffic equilibrium, will be discussed later in Section 3.3. With 

Eq.(11) and the boundary conditions described in Section 3.1, we can construct the equilibrium 

travel time profile, which is given as follows 

   
   

   

*

ˆ for 

ˆ

ˆ for 

s s s

w

e

w

e
t t t t t t

c e
t

l
t t t t t t

c l



  


     

  
    
 

. (12) 

Eq.(12) is also depicted in Figure 3. 

 

As mentioned,    ˆ ˆ
e st t    holds (also shown in Figure 3), i.e., 

   0 0

1

1 1
0

p c

N d

p p N N v n   
     . 

This means that even both the first and last travelers can enjoy free-flow speed and zero 

congestion delay (similar to standard bottleneck model), they will encounter different travel 

times, due to cruising-for-parking. When there is no cruising, i.e., pN  , we have 0  . 

The above also implies that the last commuter experiencing a longer travel time (due to cruising) 

than the first commuter will experience less schedule delay cost as compensation. In an 

alternative way, to enjoy less cruising-for-parking, commuters have to travel earlier and might 

encounter larger schedule delay cost. 
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Figure 3. The equilibrium travel time profile over departure time 

 

As all travelers have identical 
*t , for given st  and  ˆ

st , the departure time of on-time traveler 

t  can even be explicitly determined by these two equations:        ˆ ˆ
s w st e t t c e t         

and   *ˆt t t    , which is 

   * ˆw
s s

w w

c e e
t t t t

c c



    , (13) 

and  ˆ t  can be determined accordingly. However, if 
*t  is not identical for the population, then 

the closed-form solution of t  is not available, and t  has to be determined by numerically 

solving the equation      *,t n t p t t     . 

 

The existence of the dynamic user equilibrium (as well as the existence of Eq.(12)) relies on 

exclusion of extreme cases with  ˆ
et  . This is discussed as follows. Eq.(12) implies that 

the inequality    ˆ ˆ
et t    holds, i.e.,       ˆ,

w

e
c e s sc e

n p t t t t
     . Suppose now that the 

network has to accommodate a relatively large demand where 01
p

N

N
p  , the parking vacancy 

rate  ep t  would be small, and travel time   ,c en p t  will be very large. The above inequality 

might still hold, as under a larger N  the peak may start earlier (smaller st ), and st t  , as well 

as    ˆ
w

e
s sc e

t t t
    will become larger. However, the cruising distance function  L p  in 

Eq.(5) is strictly decreasing, convex over p . And it is unbounded when 0p  . This means that 
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the increase of   ,c en p t  resulting from a larger demand N  can be much larger than that of 

 
w

e
s sc e

t t
    (please note that the slope 

w

e

c e
 is bounded), especially when   0ep t  . 

      ˆ,
w

e
c e s sc e

n p t t t t
      will not hold then as N  becomes close enough to pN . In 

summary, the existence of equilibrium requires that the increase of travel time due to increasing 

cruising distance (even with free-flow speed) cannot exceed the maximum travel time increase 

allowed by the equilibrium condition.10 

 

For given pN , there exists a critical st  and corresponding N  such that    ˆ ˆ
et t   , and et t  , 

and the last traveler arrives at the destination just on time.11 Denote the st  and N  in this critical 

case by st  and N . For N N , we can construct the user equilibrium solution. We would like to 

mention that excluding the extreme cases with 01
p

N

N
p   and  ˆ

et   for equilibrium 

analysis is reasonable. If the cruising time is extremely large (travel cost becomes very large), 

from a long-term perspective, people will shift to public transportation with lower travel cost. 

Thus, the equilibrium  ˆ
et  will be bounded and never reach infinity. 

 

We conjecture that the dynamic user equilibrium is unique given the existence. This is explained 

as follows. Suppose we know the peak start time st . Firstly, given st , the time et  can be 

uniquely determined. This is because, for given N  and pN ,  ˆ
st  and  ˆ

et  are fixed, and the 

first and last travelers should have identical travel cost ( et  can be fully determined by  ˆ
st , 

 ˆ
et  and st  through the equation of identical travel cost). Secondly, given st  and et , due to the 

monotonicity of Eq.(2), Eq.(5), Eq.(6), Eq.(7) and Eq.(8), the traffic pattern (both departure and 

arrival) can be uniquely determined. However, the monotonicity of Eq.(6) and Eq.(8) relies on 

that during the peak, we always have cn n and jamn n . More specifically, the monotonicity of 

Eq.(6) relies on that  v n  decreases when [ , )c jamn n n  (assumption A1); and the monotonicity 

of Eq.(8) relies on that    P n n v n   decreases when [ , )c jamn n n  (assumption A2). Note that 

                                                           
10 The equilibrium travel time profile (over time) depends on schedule preference of travelers. In our model, the 

equilibrium travel time profile would always be piecewise linear (over departure time, as shown in Figure 3). This 

determines the marginal travel time increase or decrease with respect to departure time. 
11 To identify the critical case, we can start by selecting a st , which is close to *t  (but   *ˆ

s st t t   ), and estimating 

the traffic pattern according to the estimation procedure described in Section 3.3 (given in Appendix A). Note that in 

this case N  is not fixed and indeed dependent on st . As a larger st  associates with less traffic (similar to Vickrey’s 

model), in the beginning,    ˆ ˆ
et t    would hold. We then decrease st  ( N  will increase, as well as  ˆ

et ) until 

   ˆ ˆ
et t   . 
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empirical observations indicate these two assumptions (on monotonicity) to be reasonable. Also 

note that, every st  corresponds to a specific travel demand N  (an earlier st  indicates a larger N , 

we observe this from numerical experiments), which is similar to Vickrey’s bottleneck model. 

This means that with given N  we then have a unique solution of st . 

 

3.3.Computing User Equilibrium 

 

We now discuss how to compute the user equilibrium solution. From Eq.(6), we see that 

            ˆ,n t p t L p t v n t t    . As we know   
*

ˆ t  from Eq.(12), the equilibrium 

 n t  can be determined as follows: 

         
1

* *1 ˆn t v L p t t


        
, (14) 

where  1v   is the inverse function of  v v n  over [ , )c jamn n . Later for ease of presentation, 

we may simply use “equilibrium condition” to refer to Eq.(14). But indeed, Eq.(14) is obtained 

by integrating the time-distance-speed relation in Eq.(6) into equilibrium travel time profile in 

Eq.(12) (derived from equilibrium condition in Eq.(11) and boundary conditions).12 

 

The estimation of network outflow  ô t  relies on Eq.(8), which also closely relates to  n t . The 

conservation of traffic requires that 

 
   

   ˆ
dn t dI t

dt dt
o t  . (15) 

It is worth mentioning that  A t  is the cumulative arrival of travelers belonging to the demand 

N . For    ˆ ˆ,s s e et t t t t       , we have    ˆdA t dt o t , while for  ˆ
s st t t   ,   0A t   

since no commuter in the total demand N  has arrived at the parking spaces yet. 

 

Computing the Dynamic User Equilibrium solution is more challenging compared to the 

traditional analysis of Vickrey’s bottleneck model. This is mainly due to the time-dependent 

traffic conditions and cruising-for-parking. The estimation of solution relies on simultaneously 

solving a system of equations (over the time horizon): equilibrium condition, traffic flow 

                                                           
12 In Geroliminis and Levinson (2009), since  p t  is constant (without consideration of cruising-for-parking), the 

equilibrium  n t  can be determined explicitly with Eq.(14) given   
*

ˆ t  in Eq.(12). However, in this study,  p t  

is dependent on the cumulative departure  I t , thus is related to  n t  profile over the time interval  ,st t . 

Therefore,  n t  and  p t  have to be jointly estimated. 
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dynamics, traffic conservation, parking dynamics. We discuss the estimation of the equilibrium 

solution in the following. 

 

The estimation can be, technically, divided into two levels. i) The first level is to estimate the 

peak start time st , given equilibrium is achieved for travelers departing at every  ,s et t t . Note 

that given st , time point et  is determined in the second level based on  e cn t n  (as discussed, 

this is required for equilibrium). For an intermediate st  during the estimation, it is not necessary 

that  eI t N  (this should hold at the equilibrium solution). And the gap between  eI t  and N  

gives us information on how to adjust st . Simply speaking, we adjust st  in the way such that 

 eI t  approaches the target demand N . ii) The second level is to estimate, given st  from the 

first level, the cumulative inflow and outflow, and the rates of inflow and outflow, parking 

vacancy rates, accumulation and speed for every  ,s et t t , based on equilibrium condition in 

Eq.(14), traffic flow dynamics in Eq.(8), traffic conservation in Eq.(15), parking dynamics in 

Eq.(2) and Eq.(7). 

 

More details of the estimation procedure are provided in Appendix A. Roughly speaking, the 

first and second levels correspond to mainly Step 1 and Step 2 in the estimation procedure 

described in Appendix A. Moreover, we have highlighted places where the mentioned equations 

of equilibrium condition, traffic flow dynamics, traffic conservation and parking dynamics are 

exactly used in Appendix A. We suggest readers to combine with the flowchart in Figure 4 when 

reading the estimation procedure.13 

 

                                                           
13 The time horizon is discretized into small intervals with identical length of t  for numerical computation. We 

adopt 310   and 0.1 (min)t   in this paper for numerical analysis. 
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Figure 4. The estimation procedure for User Equilibrium 

 

 

4. Optimal time-varying pricing for the downtown network 

 

The user equilibrium experiences (hyper)congestion. And there are travel delays due to roadway 

congestion (high accumulation because of concentrated schedule preference and cruising-for-

parking), and increased schedule delays due to competition for smaller cruising distance for 

parking. We now introduce a time-varying toll to minimize total social cost including travel time 
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cost and schedule delay cost. We consider that, a toll is a transfer of money from travelers to 

government, but not social cost. 

 

4.1. System Optimum 

 

We briefly show in Appendix B that, for a single-region network, the system optimum (total 

social cost consists of travel time cost and schedule delay cost is minimized) must occur at when 

the network is operating at the maximum production of the MFD during the peak, 14  i.e., 

  cn t n  and    ˆ
cv t v n , and    c cP t n v n  .15 However, this result relies on the network 

MFD specification in Section 2 (assumptions A1-A2), i.e., when the production is maximized 

(when cn n ), the speed is also at its maximum. Also, the proof presented in Appendix B takes 

advantage of our formulation with “instantaneous travel time” (which means that assumptions 

A3-A10 are adopted). This result is consistent with those described in Daganzo (2007), Gonzales 

and Daganzo (2012). If these assumptions are not valid, the system optimum might occur at 

cn n , which is explained in the following. 

 

Suppose that the network exhibits a different MFD than that assumed in the current paper (then 

assumptions A1-A2 will not hold anymore), under which the speed is decreasing over n  even 

for n  under critical accumulation cn . The speed is then not at its maximum when the production 

is maximized. If the network is operating at some cn n  where    cv n v n , even if the 

production and outflow might be smaller than those under cn n  (schedule delay will increase), 

the savings in travel delay (a higher speed) might be significant enough (overweighs the increase 

in schedule delay cost) to reduce total travel cost. Furthermore, for multi-region cities, even if 

different regions have MFDs similar to that assumed in this study, more complex control 

strategies to coordinate different regions have to be introduced (see, e.g., Haddad et al., 2013; 

Ramezani et al., 2015) to achieve the multi-region system optimum. 

 

We now develop the optimal time-varying toll (note that how to implement such a toll has to be 

further investigated). Let  T t  be the toll for the commuters departing from home at time t , 

individual full trip cost including the toll can be written as follows: 

                                                           
14 Note that the production is the veh-km travelled (of all the traffic in the network) per unit time, while the outflow 

is the rate of trip endings. The two quantities are associated with the trip length. When the trip length is time-

dependent (depends on cruising for parking), even if the production of the network reaches the maximum at cn  (as 

assumed in Section 2), network outflow might not be at its maximum, as a longer trip length will lead to smaller 

outflow. 
15 As shown later, to minimize schedule delay cost, an appropriate time interval of arrival should be chosen, as well 

as the departure. 
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               * *, ,  ,  w sc t t c n t p t c t t n t p t T t         . (16) 

Similar to the User Equilibrium case, we take the first-order derivative of Eq.(16) with respect to 

t , and let it be zero, then we have 

 
               ,

 
, 1 s

w s w s

n t p t n t p tdn t dp t dT t c

n dt p dt c c dt c c

 
    

   
. (17) 

 

Suppose under the time-varying toll, the peak starts at 
,1st , of which the estimation will be 

discussed later. For 
,1st t  we set   0T t T . After 

,1st , to achieve the system optimum, we 

maintain   cn t n ,   0dn t dt  . By adding this condition into Eq.(17), we have 

 
 

 
    

 
,c

s w s

n p tdT t dp t
c c c

dt p dt


    


. (18) 

With           ,n t p t L p t v n t  , Eq.(18) can be immediately written as 

 
 

 
 

  
 

 
 

1
s w s

c

dL p tdT t dp t
c c c

dt v n dp t dt
      . (19) 

With Eq.(19), we can derive the time-varying toll to support   cn t n  during the peak, which is 

given as follows 

  
   

     

 

0 ,1

0 ,1 ,1 ,1

,1 ,1 ,1 ,1

,1 ,1

for 

for 

for 

for 

s

s p s

p e

e e

T t t

T e t t T t t t t
T t

T t l t t T t t t t

T t t t



  




     


 
     

 

, (20) 

where  pT t  is 

  

 
     

 

 
     

 

,1

,1 ,1

,1

,1 ,1

for 
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s

w s

c

p

w e

c

L p t L p t
c e t t t

v n
T t

L p t L p t
c l t t t

v n







 
    


 


   


, (21) 

and 
,1t  is the departure time of the on-time traveler and 

,1et  is the latest departure time. For 

,1et t  we set    ,1eT t T t .  

 

Figure 5 shows the pattern of the optimal time-varying toll when the minimum toll is zero, i.e., 
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we let  ,1 0eT t  .16 The toll is non-linear over time since the impact of cruising is generally non-

linear over time, i.e.,  pT t  is nonlinear over time. 17  Indeed,  pT t  in the toll  T t  is to 

compensate the loss of a later departing traveler with a larger cruising distance. If we look into 

Eq.(21), the compensation for one unit of additional travel time is wc e  for early arrival traveler; 

and is wc l  for late arrival travelers. This is because, one unit of additional travel time indicates, 

besides one more unit of travel delay penalty ( wc ), either one unit less early arrival penalty ( e ) 

or one unit more late arrival penalty ( l ). 

0

oT

Toll

,1st ,1et,1t

Departure Time

 

Figure 5. The time-varying toll supporting   cn t n  

 

Furthermore, the first commuter would experience a higher toll than the last commuter, i.e., 

0oT   will hold if we let  ,1 0eT t  , as shown in Figure 5. This oT  is to prevent travelers from 

departing too earlier and enjoy less cruising, thus to reduce the additional schedule delay cost. 

 

                                                           
16 We would like to point out that the maximum toll might not always be experienced by the on time travelers 

(however, Figure 5 takes this case as an illustrative example). This is explained as follows. Eq.(19) is the first-order 

derivative of the toll with respect to time. For some t t , cruising might be already very costly, thus 
  
 

 dL p t dp t

dtdp t
  

can be large, and 
 

0
dT t

dt
  holds, which indicates that the toll will start to decrease before t . However, at the system 

optimum, the percentage of vacant parking spaces can be relatively large when the on-time traveler departs from 

home (early traffic is still much less than the parking capacity), cruising is then not very significant. Thus, we have 
 

0
dT t

dt
  for 

*t t . Besides, for 
*t t , it can be easily verified that 

 
0

dT t

dt
 . In this case, the maximum toll will arise 

at time t . 

17  If approximating  with  p t , and noting the cumulative departure (network inflow) is parallel to the 

cumulative arrival (network outflow) at the system optimum, it can be shown that the time-varying toll should be 

concave over time as   L p t  is convex over time. 
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Besides the toll to support   cn t n , we also need to appropriately choose the ,1st  for the system 

optimum, which is related to schedule delay cost. For different but given ,1st , if we implement 

the toll design in Eq.(20), we will obtain identical departure/arrival traffic pattern where 

  cn t n  (however, they start at different ,1st ). The total travel time cost of all travelers will be 

identical. However, different ,1st  associates with different schedule delay costs. To minimize 

total social cost, we then have to choose an appropriate ,1st  to minimize schedule delay cost, 

which is to solve the following problem: 

         *

,1 ,1
0

min :
t dI x

s s s sodx
SC t c t t x x dx



       , (22) 

where t  is the length of the travelers’ departure duration,  I x  is the cumulative departure 

(inflow) at time ,1st x , and  so x  is the travel time for travelers departing at time ,1st x .  

Note that as the departure/arrival patterns are identical under different ,1st ,  I x ,  so x  and t  

in Eq.(22) are independent of ,1st . For ,1 ,1s st t , if we implement the toll design in Eq.(20), we 

would have 

 ,1 ,1 ,1 ,1, e s e st t t t t t       . (23) 

For  0,t t  , we have    ,1 ,1s s cn t t n t t n    , it follows 

 . (24) 

Since      ,1 ,1
ˆ ˆ

s s cv t t v t t v n    , we further have 

            ,1 ,1 ,1 ,1 ,1 ,1
ˆ ˆ ˆ ˆ ˆ ˆ, , s s s s s sL t t L t t o t t o t t t t t t             . (25) 

However, the toll pattern over time would be different, i.e.,    ,1 ,1s sT t t T t t   . 

 

Taking the first order derivative of the objective function in Eq.(22) with respect to ,1st , we have 

 
 

        
*

,1,1

0 0
,1 ,1

dI x

t ts s sodxs

s

s s

c t t x xdSC t dI x
d dx c dx

dt dt dx

      
     . (26) 

Let   *

,1 ,1 ,1so st t t t       , then ,1t  corresponds to the on time traveler, and it can be 

verified that ,1 ,1 0sd t dt  . With ,1t , Eq.(26) can be rewritten as 

 
     ,1

,1

,1

0
,1

t ts

t
s

dSC t dI x dI x
e dx l dx

dt dx dx





 


      . (27) 

We then look at the second order derivative of the objective function in Eq.(22), which is given 
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as 

 
 

 

   

,1 ,1

2

,1 ,1 ,1

2

,1 ,1,1

0
s

s sx t x ts

d SC t d t d tdI x dI x
e l

dx dt dx dtd t
 

 

 

    
          
   
   

. (28) 

Total schedule delay cost is minimized if we let Eq.(27) be zero, i.e.,  

 
 

 

 

,1

,1

0,1

,1

0

t

s e

t
s l

t

dI x
dxdSC t N ldx

dI xdt N e
dx

dx











   




, (29) 

which says the early arrival traffic eN  should be l e  times as much as the late arrival traffic lN . 

This is consistent with both the case without cruising and the case in Vickrey’s bottleneck model. 

 

For given N  and pN , denote the ,1st  under which the last traveler just arrives on time by 1

,1st , 

then  1 *

,1
ˆ

s et t t t     , and denote the ,1st  under which the first traveler just arrives on time by 

2

,1st , then we have  2 *

,1
ˆ

s st t t   . It can be shown that the derivative in Eq.(27) will be negative 

when 1

,1 ,1s st t , and will be positive when 2

,1 ,1s st t . Given Eq.(28), the value of ,1st  that solves 

Eq.(29) will be within 
1 2

,1 ,1,s st t   , which means that the optimal ,1st  is both lower and upper 

bounded. The lower and upper bounds will be utilized to compute the optimal ,1st , which solves 

Eq.(29), as discussed next. 

 

4.2. Computing System Optimum 

 

Principally, the procedure for computing the system optimum solution is similar to that for user 

equilibrium solution. This is because, traffic flow dynamics in Eq.(8), traffic conservation in 

Eq.(15), and parking dynamics in Eq.(2) and Eq.(7) are still valid. The major difference is that, 

for the system optimum, Eq.(14) representing equilibrium condition (for user equilibrium in 

Section 3) will no longer hold. Instead, we know that the time-dependent accumulation should 

remain constantly at the critical value, i.e.,   cn t n . And we have an additional equation, i.e., 

Eq.(20), to compute the additional time-dependent variable, i.e., the toll  T t , which is to 

support   cn t n , as an equilibrium. 

 

The estimation of system optimum can also be divided into two levels. i) In the first level, we use 

a bi-section based approach to determine the departure time of the first traveler ,1st , given that 
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the traffic pattern with   cn t n  for 
,1 ,1,s et t t    is achieved in the second level. Specifically, 

the determination of ,1st  takes advantage of the result in Eq.(29), which states that the early 

arrival traffic eN  should be l e  times as much as the late arrival traffic lN . ii) In the second 

level, given ,1st  from the first level, we estimate the time-varying variables, i.e.,  n t ,  v̂ t , 

 I t ,  p t ,  A t , ,  ô t  and  T t  for all 
,1 ,1,s et t t   , where ,1et  is determined based on 

 ,1eI t N . 

 

To be more specific, firstly, we choose the initial lower bound 1

,1 ,1

l

s st t  and upper bound 2

,1 ,1

u

s st t  

for ,1st , and set  1
,1 ,1 ,12

l u

s s st t t   as an initial solution. Given ,1st , we can estimate all the time-

varying variables with a similar approach as the estimation for User Equilibrium starting from 

,1st t  and ending ,1et t  where  ,1eI t N . However, instead of computing  n t  directly 

through Eq.(14) (Step 2-1-2 in Appendix A for computing User Equilibrium), we firstly compute 

the toll  T t  through Eq.(20), and then compute the  n t  as follows: 

     
 

,1

1

1 
1

s

t
s

t
w s w s

dT wc
n t v L p t dw

c c c c dw




  
    
    

 . (30) 

 

Eq.(30) comes from Eq.(17), i.e., the equilibrium condition with tolling introduced. Note that as 

 T t  in Eq.(20) is determined from letting   cn t n , Eq.(30) will give us   cn t n . The other 

parts of estimation follow those for user equilibrium. However, when checking whether the 

current ,1st  is the solution or not, we compare the numbers of early and late traffic eN  and lN . If 

e lN N l e , it means the current ,1st  is too large, then we can set 
,1 ,1

u

s st t , and update 

 1
,1 ,1 ,12

l u

s s st t t  ; If e lN N l e , it means the current ,1st  is too small, then we can set 
,1 ,1

l

s st t , 

and update  1
,1 ,1 ,12

l u

s s st t t  . The System Optimum solution is achieved as  ,1 ,1 ,1

u l u

s s st t t   . 

We adopt 
310   in this paper for numerical analysis. The convergence of the estimation 

procedure is numerically illustrated in Appendix C. 

 

4.3. Approximate solution for  p t  under the System Optimum 

 

The following analysis provides an approximate closed-form solution for  p t  at the System 
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Optimum. It is mentioned that  
 

01
p

I t

N
p t p   . With Eq.(15) and   cn t n at System 

Optimum, we have 

 
     

   
1 1 1

ˆ ˆ
p p p

dp t dI t dn t
o t o t

dt N dt N dt N

 
          

 
. (31) 

With , and with  p t  to approximate , i.e., assume , 

we have 

 
   

  
1 c c

p

dp t n v n

dt N L p t


  . (32) 

Since     mL p t l d p t  , after some manipulations of Eq.(32), we obtain 

  
   

  0m

dp t dp t
l p t d p t

dt dt
       . (33) 

where c f pn v N   . We then have 

   1expm

m

l k td
p t W

l d d

   
   

  
, (34) 

where  W   is the inverse function of   Wf W W e  , and 1k  is determined by  ,1 01sp t p  . 

Eq.(34) implies that, with information of d , ml ,  ,1 01sp t p  , cn ,  cv n  and pN , we can 

estimate the shape of the parking vacancy profile over time in the system optimum. 

 

 

5. Numerical Studies 

 

In this section, we conduct some numerical experiments to illustrate and verify the models and 

analysis in the previous sections. Table 1 summarizes the values of parameters and variables 

valid for the analysis. We consider the downtown network with a total peak travel demand of 

6000 (veh)N  , and a critical accumulation of 1000 (veh)cn  , and a maximum speed of 

25 (km/h) . The travel demand can be generated at both the boundary and interior of the 

downtown network. The peak travel demand is six times of critical accumulation, i.e., 6 cN n . 

This indicates that, if we consider parking capacity is infinity, i.e., 1p  , at the System 
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Optimum, i.e.,   cn t n  and  ˆ
fv t v , the departure or arrival duration of travelers in the peak 

will be six times of free-flow travel time.18 

 

Table 1. Summary of values of parameters and variables 

Parameters or Functions Specification 

Travel demand 6000N    

Initial parking occupancy rate 
0 0%p  19 

Total parking capacity 6500pN   if not specified, indicating parking 

occupancy rate at peak end is 92.31% . 

Critical accumulation 1000cn   (veh) 

Travelling Speed   1

0

v nv n v e 
  (km/h) for cn n 20 

   cv n v n  (km/h) for cn n  

Speed function parameters 
0 68v  , 

3

1 10v  , indicating 25 (km/h)fv     

Trip distance function parameters 5ml  (km) and 0.2d  (km) 

Value of travel time 9.91wc   (EUR$) 

Early arrival penalty 4.66e   (EUR$) 

Late arrival penalty 14.48l   (EUR$) 

Desired arrival time * 200 (min)t   

Note: wc , e  and l  are from Tseng et al. (2005). 

 

Travelers’ moving distance before starting to find a parking space is 5 kmml  , and the distance 

traveled in each trial to find a space is 0.2 kmd  . A single distance d  is negligible when 

compared to ml . However, when parking availability is low, even a very small d  can lead to a 

very long cruising distance sl . A larger d  indicates more cruising for parking and longer trip 

                                                           
18 At User Equilibrium with finite parking capacity, the peak duration will be even larger (more than six times of 

free-flow travel time with infinite parking capacity). By doing so, we try to reduce the impacts of the boundary 

traffic conditions at the peak start and end, as the peak hour is much longer than the travel time for the travelers 

departing at the peak start or end. 
19 Our numerical analysis assumes fully empty parking spaces at the peak start. However, the cruising effect can be 

significant even for people traveling very early if we adopt a larger 0p , and traffic efficiency improvement through 

pricing can be larger as the potential for reducing cruising time and traffic congestion is larger. 
20 This speed specification indicates that we have jamn   . 
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length, which leads to more travel time and schedule delays (this can be verified with numerical 

experiments).21 

 

5.1. User Equilibrium 

 

Time-varying traffic and parking vacancy under User Equilibrium 

The parking capacity is 6500pN   in the benchmark case. Figure 6(a) presents the cumulative 

departure and arrival, i.e.,  I t  and  A t , at equilibrium, while Figure 6(b) presents the inflow 

(departure rate) and outflow (arrival rate). Figure 6(c) and Figure 6(d) depict the time-varying 

accumulation and associated traveling speed, and the parking vacancy rate and associated trip 

distance respectively. 

 

As shown in Figure 6(b), the network outflow (traffic exiting the network per unit time) 

decreases after the start of the peak and until =149.5 (min)t , which is partly due to the 

increasing accumulation and decreasing speed as shown in Figure 6(c)), and partly due to the 

decreasing parking availability and increasing trip length as shown in Figure 6(d). After 

=149.5 (min)t , the accumulation starts to decrease, which leads to increase in outflow shown in 

Figure 6(b). The impact of decreasing accumulation (less congestion) overweighs the impact of 

the decreasing parking availability (longer trip length). However, the network outflow at the end 

of the peak cannot go back to the level at the peak start, owing to the decreased parking 

availability (100% > 7.76%) and increased trip length (7.58km > 5.20 km) as shown in Figure 

6(d). Besides, as travelers can enjoy smaller cruising distance (as well as the whole trip length) 

by departing earlier, there are more early arrival traffic ( 3.7e lN N  ) when compared to the 

case with infinite parking capacity and zero cruising ( 2.4e lN N  ). Note that in Vickrey’s 

model, 3.1e lN N l e  . 

 

                                                           
21 Note that d  is not simply the spacing between two adjacent parking spaces (e.g., less than 10 meters), but the 

average spacing of all the parking spaces near the destination, which depends on specific parking distribution over 

the streets and the network topology. For example, travelers heading for a specific building will consider to park at 

curbside spaces just around the building, or one street away (e.g., 200 meters), or two streets away (e.g., 400 meters). 

To check parking availability at different locations, cruising travelers have to drive to different streets (even worse, 

these streets might not be in the same direction). Also, even for parking spaces quite close to drivers but on the 

opposite side of the street, drivers might have to cover a long distance, e.g., make a U-turn. More importantly, as 

travelers have the incentive to park close to the building they are heading for, they may cruise around the building 

and wait for vacancies. This can induce more cruising. While this study relies on average and deterministic cruising 

distance based on parking availability for insights, simulation approach might be considered to integrate detailed 

cruising behavior and stochasticity. 
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Figure 6. User Equilibrium: (a) flow pattern; (b) inflow and outflow; (c) speed vs. accumulation; 

(d) trip length vs. vacant parking 

 

As discussed in Section 2, we approximate travelers’ travel time with instantaneous speed and 

parking availability. Figure 7(a) displays the difference (in the unit of monetary cost) between 

the analytical travel time (based on instantaneous speed and parking availability, which is given 

in Eq.(6)) and “estimated” travel time (obtained by calculating the horizontal gap between the 

cumulative departure and arrival depicted in Figure 6(a), which is described in subsection 2.2, 

after A7). Note that, the travel time cost profile over the time horizon in Figure 7(a) is arranged 

in the order of departure time. As can be seen in Figure 7(a), the “estimated” travel time is nearly 

triangular over the time horizon and reaches its maximum at time =149.5 (min)t . This means, 

with our “instantaneous model”, the “estimated” travel time exhibits similar pattern (over time 

horizon) with the analytical travel time. Furthermore, the discrepancies of system efficiency 

measures (e.g., total travel cost, total travel time, total schedule delay) between the analytical and 

estimated values are generally small (ranging from 5%  to 10% , dependent on the parking 

capacity). 



Revised paper submitted to Transportation Research Part B 

- 33 - 

 

 

 

 (a) Travel time cost varies over departure time         (b) Travel time cost varies over arrival time 

Figure 7. Travel Time Cost (analytical vs. estimated) 

 

Besides estimating the user equilibrium solution with departure-time-based accumulation and 

speed, we can estimate the user equilibrium with arrival-time-based accumulation and speed (the 

approach is similar to that described in Section 3.3, and this can be achieved by implementing 

footnote 7). In this case, similarly, we can compare the difference between the analytical travel 

time and “estimated” travel time, which is shown in Figure 7(b) (note that the travel time cost 

profile is arranged in the order of arrival time). We can also rearrange both the analytical and 

“estimated” travel time costs over departure time in Figure 7(a) according to arrival time, which 

is also shown in Figure 7(b). We see that the discrepancy between analytical and “estimated” 

travel times of late arrival commuters is significant when we use arrival-time-dependent 

accumulation and speed for estimation (note that the “estimated” travel time cost is almost an 

increasing function with time as shown in Fig. 7(b)). However, the “estimated” travel time still 

exhibits similar pattern (arranged in the order of arrival time) with the analytical travel time 

when we use departure-time-dependent formulation. 

  

System performance under varying parking capacity 

Given 6000N  , Figure 8(a) depicts how total travel cost, travel time cost and schedule delay 

cost vary with the parking capacity pN , while Figure 8(b) shows how the number of early and 

late arrival traffic and schedule delay cost vary with the parking capacity pN . The x-axis in 

Figure 8 is the ratio of pN N , i.e. the parking occupancy rate at the end of the peak. 
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Figure 8. Costs and early/late arrival traffic vary with parking capacity 

 

As pN N  increases, i.e., parking supply decreases, the total travel cost, travel time and schedule 

delay will increase. This is because, less parking supply indicates longer trip length and thus 

smaller network outflow. Figure 8(b) further shows that the schedule delay cost of early arrival 

increases more sharply than the total schedule delay cost when parking supply decreases. The 

reason is that there will be more early arrival traffic under less parking capacity (less late arrival 

traffic), and the schedule delay cost of late arrival will decrease. In Figure 8(a), the case with 

0pN N   corresponds to the situation with no additional cruising, where the total travel cost 

reaches its minimum 4(4.507 10  (EUR$)) . 

 

5.2. System Optimum 

 

Flow pattern and travel cost under System Optimum 

As discussed in Section 4, an appropriate ,1st  should be chosen to minimize schedule delay cost, 

thus minimize total social cost. We start by considering that we can choose different ,1st , and 

then develop the time-varying toll described in Eq.(20) such that   cn t n . Also, we consider 

that the time-varying toll should be non-negative (no subsidy), and the minimum toll is set to be 

zero. This implies that we let   0 ,1min , 0eT T t  . Then, Figure 9(b) shows how the toll revenue, 
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social cost, and travel cost including toll vary with ,1st , while Figure 9(a) shows the first and last 

tolls (tolls experienced by the first or last traveler respectively) under given ,1st .  

 

                  (a) First and Last toll                             (b) Toll revenue, social cost and total cost 

Figure 9. Toll revenue, social cost and total cost (the minimum toll is zero) 

 

As can be seen in Figure 9(b), the social cost is minimized when ,1 129.3 (min)st  , which is 

denoted by SO(a). This is exactly the system optimum solution discussed in Section 4 (to 

minimize total social cost, which consists of travel time cost and schedule delay cost), under 

which the ratio of early traffic to late traffic, e lN N , is equal to 3.1l e  . The first traveler 

would experience a higher toll than the last traveler, i.e., 2.28 (EUR$) > 0 (EUR$). The time-

varying toll to support SO(a) is shown in Figure 10. 

 

Besides the SO(a) to minimize total social cost, we here define another optimum in terms of 

minimizing total cost including both social cost and the toll, which is denoted by SO(b) in Figure 

9(b). This SO(b) is achieved when ,1 122.1 (min)st  . As can be seen in Figure 9(b), the toll 

revenue is minimized at SO(b), and both the first toll (experienced by first traveler) and last toll 

(experienced by last traveler) are zero. 

 

One can verify that the toll revenue is 25580 (EUR$) at SO(a), which is 1.74 times of the toll 

revenue (14710 (EUR$)) when total cost is minimized (SO(b)). However, by imposing the toll 

derived for SO(a) instead of SO(b) as shown in Figure 10, the social cost can only be reduced 

from 28060 (EUR$) to 27490 (EUR$). This reduction is around 1.2% comparing to total travel 
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cost under User Equilibrium (49955 (EUR$)). This means, we may set a much lower toll other 

than that for SO(a) to achieve similar efficiency in reducing social cost.22 

 

Moreover, the individual travel cost is 8.87 (EUR$) at SO(a), which is higher than the that at 

User Equilibrium (8.33(EUR$)); while the individual travel cost at SO(b) (7.14 (EUR$)) is less 

than that at User Equilibrium. This means that, at SO(a), since the toll is relatively high, travelers 

are worse off compared with the UE, although social cost decreases. To make every traveler 

better off, the system operators needs to refund travelers. However, the toll to support SO(b) is 

Pareto-improving although no one receives rebate from the toll revenue. 

 

 

Figure 10. Flow patterns and costs at SO(a) and SO(b) based on departure time 

 

Figure 10(b) and Figure 10(d) respectively show the travel costs and tolls at SO(a) and SO(b), 

Figures 10(a) and 10(c) show the cumulative departure and arrival at SO(a) and SO(b). In both 

SO(a) and SO(b), the cumulative departure and arrival are parallel to each other, thus network 

accumulation remains at the critical level, i.e., 1000 (veh), and the speed is at its maximum, i.e., 

25 (km/h). Also, the cumulative departure/arrival patterns at SO(a) and SO(b) are exactly the 

same except that they start at different ,1st . Furthermore, the slopes of the cumulative departure 

                                                           
22 This can be important in practice. Firstly, smaller toll may face less objection from the public, especially when the 

public can experience much less congestion. Secondly, the government can be wasteful in how it allocates the 

revenue it collects (thus we try to achieve similar efficiency with less toll revenue). 
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and arrival, i.e., inflow and outflow of the network, decrease over time (not very significant as 

traveling speed is at its maximum) as the parking availability decreases and trip length increases 

over time. 

 

For the System Optimum case, as the accumulation and speed in the network remain constant 

during the departure/arrival of travelers, approximating the travel time with instantaneous speed 

(at departure time) does not lead to any inaccuracy. If we again compare the analytical travel 

delay with “estimated” travel delay (dashed lines in Figure 11), we see much less discrepancy 

than that in the User Equilibrium. However, discrepancy still arises as we still approximate the 

travel time with instantaneous parking availability (which determines trip length). 

 

Figure 11 also displays the analytical and estimated travel costs without toll (solid lines in Figure 

11). The discrepancy between them follows the same trend as that of travel delay, which 

approaches zero for most of early arrival traffic, and approaches the maximum (valued at one 

EUR$ in the example, which is 11% of the individual travel cost shown in Figure 10(b)) for the 

last traveler. Note that, the higher discrepancy is only for a small proportion of late arrival 

travelers (moreover, there are more early arrival travelers than late arrival travelers). Given these, 

we expect the time-varying toll from our solution to be a good estimate (note that the toll is equal 

to a constant value, i.e., full trip price, minus the cost without toll). In addition, the discrepancies 

in system efficiency measures such as total travel time, total travel cost and total schedule delay 

cost will be less than 3%. It is worth mentioning that, if parking capacity approaches infinity 

such that p  approaches constant, the discrepancy will approach zero for system optimum 

solution. This is because, the inaccuracy from using instantaneous parking availability to 

estimate trip length diminishes. 

 

Figure 11. Travel cost without toll and travel delay cost (analytical vs. estimated) 

 



Revised paper submitted to Transportation Research Part B 

- 38 - 

 

Cases of “underpricing parking” and “underpricing travel” 

Figure 12 further shows the user costs and equilibrium accumulation profile over time under two 

different time-varying tolls (red dashed lines in Figure 12(a) and 12 (c)) than the System 

Optimum toll (the toll to support SO(a), which is shown in Figure 10(b)). Specifically, the two 

different tolls are: a toll considering only the travel pricing (and neglecting parking), which 

corresponds to Figure 12(a) and Figure 12(b); and a toll considering only parking pricing (and 

neglecting travel pricing), which corresponds to Figure 12(c) and Figure 12(d). As can be seen in 

Figure 12(a) and Figure 12(c), travelers will depart between the two time points marked by the 

two vertical dash-dot lines (otherwise they will encounter a larger cost, see the red solid lines). 

Figure 12(b) and Figure 12(d) display the corresponding accumulation and speed profiles for the 

duration with departures (i.e., the duration between the two time pointes marked by the two 

vertical dash-dot lines in Figure 12(a) and Figure 12(c)). Moreover, Table 2 summarizes the 

relevant efficiency measures under different tolls. 23  By doing so, we aims to show the 

inefficiency due to either underpricing parking or underpricing travel. 

 

Figure 12. User costs and accumulations: (a) costs and toll under travel pricing only; (b) 

accumulation under travel pricing only; (c) costs and toll under parking pricing only; (d) 

accumulation under parking pricing only; 

                                                           
23 Note that to have a “fair” comparison, we adopt different peak start times for different tolls, i.e., the peak start 

time is chosen in the way that the ratio of early arrival traffic to late arrival traffic will be 3.1e lN N l e  , which 

is also presented in Table 2. 
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The toll (the red dashed lines) in Figure 12(a) is obtained by letting   0pT t   (travel pricing 

only or underpricing parking) in Eq.(20), thus is piece-wise linear (just similar as the fine toll in 

the standard bottleneck model, which is due to the constant   and   schedule cost setting). The 

peak start time is 126.45 (min)  thus the ratio of 3.1e lN N l e  . Figure 12(b) then displays 

the corresponding time-varying accumulation at equilibrium (for the duration with departures 

only). As can be seen, without consideration of parking in the toll, the accumulation during the 

peak can go beyond the critical values (approximately for 80% of the peak duration 

accumulation is 250 vehicles more than the critical value 1000). This leads to larger moving and 

cruising delays ( 0.973 0.747  and 0.618 0.510 ), and larger social cost ( 3.180 2.749 ), as 

shown in Table 2. 

 

Table 2. Various efficiency measures for three pricing cases 

 SO(a) Travel pricing only Parking pricing only 

Social cost (104 EUR$) 2.749  3.180  6.191  

Toll revenue (104 EUR$) 2.558  2.022  3.558  

Moving time (105 min) 0.747  0.973  2.069  

Cruising time (104 min) 0.510  0.618  1.741 

Schedule (104 EUR$) 1.430  1.473  2.486  

Early arrival (104 EUR$) 1.042  1.081 2.030  

Late arrival (104 EUR$) 0.388  0.390  0.456  

Ratio of e lN N   3.1 3.1 3.1 

Departure duration (min) 76.8  79.8  99.2  

 

In contrast, we also can only keep the parking pricing, i.e.,  pT t  in Eq.(21), and ignore the 

pricing for travel, which corresponds to  ,1se t t   or  ,1sl t t    in Eq.(20). This toll is shown 

in Figure 12(c), and the corresponding time-varying accumulation (for the duration with 

departures) is shown in Figure 12(d). As implementing such a “parking-pricing-only” toll would 

lead to congestion, when calculating  pT t , we need to replace the speed  cv n  in Eq.(21) by 

  v n t . Similarly, the peak start time 88.74 (min)  is chosen thus 3.1e lN N l e  . As can be 

seen, the “parking-pricing-only” toll is non-linear, and decreasing over time, mainly due to the 

nonlinearly increasing trip length over time. We have to point out that, this toll is very inefficient, 

thus social cost, toll revenue, moving time, cruising time (fourth column in Table 2) are all 

significantly larger than those under SO(a). This is expected as the toll pattern over time is quite 
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different from that for SO(a). A very important implication from these results is that, partial 

pricing (parking pricing only) can lead to very inefficient situation, which indeed highlights the 

importance of the proposed joint pricing (of travel and parking) model in this paper, especially 

when cruising for parking cannot be neglected. 

 

5.3. Comparison of Different Cases 

 

Table 3 further summarizes different efficiency measures for five cases: i) User Equilibrium with 

cruising-for-parking; ii) User Equilibrium without cruising-for-parking (parking capacity 

approaches infinity); iii) SO(a) with cruising-for-parking; iv) SO(b) with cruising-for-parking; 

and v) System Optimum without cruising-for-parking. Note that cases (i) and (ii) are described in 

Section 5.1, and cases (iii) and (iv) are described in Section 5.2, and case (v) is the system 

optimum under Vickrey’s bottleneck model when parking capacity is infinity. 

 

Table 3. Various efficiency measures for different cases 

 UE with 

cruising 

UE (no 

cruising) 

SO(a) with 

cruising 

SO(b) with 

cruising 

SO (no 

cruising) 

Social cost (104 EUR$) 4.996  4.507  2.749  2.806  2.553  

Toll revenue (104 EUR$) 0  0  2.558  1.471 1.309  

Moving time (105 min) 1.732  1.657  0.747  0.747  0.748  

Cruising time (104 min) 1.128  0  0.510  0.510  0  

Schedule (104 EUR$) 1.949  1.770  1.430  1.487  1.318  

Early arrival (104 EUR$) 1.448  1.137  1.042  1.306  0.996  

Late arrival (104 EUR$) 0.501  0.633  0.388  0.181  0.322  

Ratio of e lN N   3.7  2.4  3.1 5.2  3.1 

Departure duration (min) 97.2  92.9  76.8  76.8  74.7  

 

By comparing the UE with and without cruising (the first two columns in Table 3), we see that 

cruising-for-parking lead the total social cost, moving time, cruising time, and schedule delay to 

increase. However, the schedule delay cost of late arrival decreases, which is due to the fact that 

travelers are departing earlier to enjoy less cruising (there is a sharp increase in schedule delay 

cost of early arrival). By comparing the UE with SO(a) (both with cruising), we see huge 

reduction in travel cost (44.98%), moving time (56.87%), cruising time (54.79%), and schedule 

delay (26.63%) from implementing the pricing. 

 

Besides, total cost including the toll at SO(a) is larger than social cost under UE with cruising, 

i.e., 2.749+2.558 > 4.996, which means all individual travelers are worse off (as mentioned 
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before, in SO(b) all travelers are better off, and in Table 3 we have 2.806+1.471 < 4.996). 

However, for the cases without cruising, total cost including toll at SO (2.553+1.309) will be less 

than social cost at UE (4.507). This is consistent with Geroliminis and Levinson (2009). 

 

Due to cruising-for-parking, there are more early arrival traffic, i.e., 3.7e lN N   for UE with 

cruising, which is larger that 2.4e lN N   for UE without cruising. The toll to support SO(a) 

then prevents early departure of travelers and e lN N  reduces to 3.1, which is equal to the ratio 

of late arrival penalty to early arrival penalty, i.e., l e . This is consistent with our analytical 

results in Section 4. The peak starts later under SO(a) when compared to UE with cruising, and 

the peak duration shortens as well, i.e., the departure duration under SO(a) (76.8) is shorter than 

that under UE with cruising (97.2). Furthermore, the reduction of departure duration from UE 

with cruising to SO(a) or SO(b) (20.4) is larger than the reduction from UE without cruising to 

SO without cruising (18.2). This is because, besides the moving traffic, the cruising traffic also 

benefits from the reduced traffic congestion in the network. 

 

 

6. Conclusion and discussion 

 

In this paper, we construct a model to capture interactions between cruising and traffic 

congestion in the context of dynamic user equilibrium. Specifically, we formulate and analyze 

the morning commute equilibrium solution in a congested downtown network with a focus on 

cruising-for-parking. During the morning peak, as curbside parking vacancy decreases with time, 

the cruising distance and time for finding a vacant parking space is higher. Due to travelers’ 

competition for smaller cruising distance (as well as trip length), the peak starts earlier; and due 

to reduced outflow when considering cruising-for-parking, the peak lasts longer. 

 

A dynamic model of pricing for the network is then developed to reduce social cost, including 

cruising time cost, moving time (or in-transit time) cost, and schedule delay cost. It is shown that 

at the system optimum, the network should be operating at the critical accumulation with 

maximum production and highest traveling speed. However, the network outflow still decreases 

over time as parking vacancy decreases and trip length increases. The optimal time-dependent 

pricing gives the first commuter a higher toll than the last commuter, which prevents travelers 

from departing earlier due to competition for less cruising, and thus reduces total schedule delay 

of all travelers. Furthermore, it is proved that the total schedule delay is minimized when the 

ratio of early traffic to late traffic is equal to the ratio of late arrival penalty to early arrival 

penalty, even if the network outflow is not constant over time. 
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While this paper considers driving as the only travel mode, the analysis in the paper can be 

extended to the bi-modal transportation system with public transit as the alternative mode. In this 

case, besides departing earlier to enjoy less cruising time, travelers can take public transit to 

avoid cruising-for-parking. It is conjectured that similar dynamic toll can be introduced to reduce 

traffic inefficiency due to cruising-for-parking and roadway congestion, and achieve the bi-

modal system optimum. However, if we consider that public transit service (e.g., fare, frequency) 

is responsive to the operating state of roadway network (similar to those in e.g., Zhang et al., 

2014, Zhang et al., 2016), the problem will become more complicated, which is under our 

consideration for future research. 

 

This study considers that the distribution of congestion over the network or region is 

homogeneous. If this is not the case, the MFD for the whole region might experience significant 

scatter or hysteresis. Recent studies (e.g., Geroliminis and Sun, 2011) have identified the spatial 

distribution of vehicle density as one of the important features that affect the scatter and the 

shape of the network MFD. However, the concept of an MFD and modeling framework in the 

paper might still be applied for the heterogeneously loaded downtown network if it can be 

partitioned into a small number of homogeneous regions. Recent work created clustering 

algorithms for heterogeneous transportation networks (e.g., Ji and Geroliminis, 2012). 

 

Besides, the spatial distribution of parking over the network can be an important element to be 

taken into account as it affects drivers’ cruising. In this case, one possible way could be 

classifying the parking spaces into groups where the parking is similarly distributed. Then we 

study how spatial distribution of parking can influence travelers’ parking choices as well as 

traffic congestion. Also, we may consider garage parking in the extensions of the model. 

 

The current study is from a long-term perspective, and relies on the recurrent behavior of 

travelers. However, in reality, travelers' travel choices and traffics are uncertain over time even if 

they are recurrent. Therefore, it is of our interest to develop a dynamic congestion/parking 

pricing system based on both the information of recurrent commuting behavior (e.g. distribution 

of travel demand over time which might be used for prediction of future traffics) and real 

dynamic traffic, which can maintain the downtown running at or at least near its optimum. 

 

In practice, many travelers may have employee-based parking spaces, or contract-based parking 

spaces, or reservation-based parking spaces (for parking or highway capacity reservation, see, 

e.g., Liu et al., 2014a, 2015a) and they do not have to cruise for curbside spaces. In this case, the 

travelers can be classified into two categories: those with and without a guaranteed space. We 
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then have to treat these two classes of travelers differently to study the commuting equilibrium 

with cruising for parking. Similar consideration has already been given in Yang et al. (2013), and 

we expect similar results as Yang et al. (2013). 
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Appendix A. Computing User Equilibrium 

 

Step 0: initialize st  as  * ˆ
s st t t   ,24 and go to Step 1. 

Step 1: (check convergence of st , and update st ) 

(i) take the initial value from Step 0, and go to Step 2; or 

(ii) if   eN I t N   , update st  by s s st t t  , where the st  is based on the gap 

 eN I t , i.e., 
 

   e

e

N I te
s e se l I t

t t t



     ,25 and then go to Step 2; otherwise, the equilibrium 

solution of st  is achieved. 

Step 2: given st  from Step 1, estimate time-dependent variables  n t ,  v̂ t ,  I t ,  p t ,  A t , 

 p t , and  o t  for every  ,s et t t , where et  has to be determined during the estimation, based 

on  e cn t n . 

Step 2-0: (check if t  reaches et , and if not, update clock time t ) 

(i) update the current (clock) time by st t  from Step 1, and go to Step 2-1; or 

(ii) if   c cn t n n   , update t t t  , and go to Step 2-1; otherwise, let et t , go 

to Step 1(ii). 

Step 2-1: (given t  from Step 2-0, solving a series of equations together, which are 

equilibrium condition in Eq.(14), traffic dynamics in Eq.(8), traffic conservation in 

Eq.(15), and parking dynamics in Eq.(2) and Eq.(7)) 

Step 2-1-0: (check convergence of  I t , and update  I t ) 

                                                           
24 The initial value  * ˆ

s st t t    is relatively large (the first traveler just arrives on time), and the corresponding 

 eI t  would be smaller than N  in the beginning. As can be seen in Step 1 of the estimation procedure (or Loop 1 in 

Figure 4), we gradually reduce st  to achieve  eI t N . As  eI t N , the adjustment of st , i.e., st  will 

approach zero, thus s s st t t   , which is numerically shown in Appendix C. 

25 In Vickrey’s model, as the early arrival travelers are l e  times of late arrival travelers, a more efficient step size 

st  would be 
 

   e

e

N I tl
e se l I t

t t



   . Here we have a more conservative step size, i.e., e l

e l e l 
 , because we try to ensure 

that  eI t  will not go beyond N . 
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(i) let 0k  ; initialize  I t  by  
 

0

k
I t I  , and go to Step 2-1-1; or 

(ii) if  
 

 
    

 1k k k
I t I t I t


     , let 1k k  , and then go to Step 2-1-1; 

otherwise, let    
 1k

I t I t


  , and then go to Step 2-0(ii). 

Step 2-1-1: (update  p t ) 

With    
 k

I t I t   from Step 2-1-0, calculate  I t , then compute 

   
 k

p t p t  with Eq.(2) (Parking dynamics), and go to Step 2-1-2. 

Step 2-1-2: (update  n t ) 

With    
 k

p t p t  from Step 2-1-1, compute    
 k

n t n t  through Eq.(14) 

(Equilibrium condition) where  ˆ t  is from Eq.(12)., and go to Step 2-1-3. 

Step 2-1-3: (update  ô t  and  A t ) 

Step 2-1-3-0: (check convergence of  ô t  and update  ô t ) 

(i) let 0i  , and initialize  ô t  by    
  

0
ˆ ˆ

k i
o t o t o  , and go to Step 2-

1-3-1; or 

(ii) if  
  

 
     

  1
ˆ ˆ ˆ

k i k i k i
o t o t o t


   , let 1i i  , then go to Step 2-

1-3-1; otherwise, let    
  1

ˆ ˆ
k i

o t o t


 , and then go to Step 2-1-4; 

Step 2-1-3-1: with  ô t  from Step 2-1-3-0, update  A t  and  A t , and 

then compute  p t  with Eq.(7) (Parking dynamics), and go to Step 2-1-

3-2; 

Step 2-1-3-2: with  p t  from Step 2-1-3-1, and    
 k

n t n t  from Step 

2-1-2, compute the outflow    
  1

ˆ ˆ
k i

o t o t


  through Eq.(8). (Traffic 

dynamics), and go to Step 2-1-4; 

Step 2-1-4: with    
  1

ˆ ˆ
k i

o t o t


  from Step 2-1-3-2, compute  
 1k

I t


  with 

Eq.(15) (Traffic conservation), and then go to Step 2-1-0. 

 

Appendix B. System Optimum for a Single-region network 

 

Given our “instantaneous model” and assumptions (A1-A10), we now show that the system 

optimum for a single-region network (in terms of minimizing social cost consists of only 

queueing delay cost and schedule delay cost) must occur at when the transport network is 

operating at the maximum production of its MFD, i.e.,   cn t n  and    ˆ
cv t v n , and 

production  c cP n v n  , during the departure and arrival intervals of travelers. Besides 

maintaining   cn t n , as shown in Section 4, the peak start ,1st  should be appropriately chosen 
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such that the schedule delay can be minimized. While this is a standard finding in traffic 

engineering and control community, where drivers experience only congestion delay (and not 

schedule delay) cost, note that under different assumptions than A1-A10, the situation might be 

different.  

 

First, we show that travel time cost will minimized when    ˆ
cv t v n . For ease of presentation, 

we arrange the travelers in the order of their departure, then for the -thx  traveler, the distance 

travelled will be  01
p

x

N
L p   (based on Eq.(2) and Eq.(5)). Suppose the -thx  traveler has a 

traveling speed of xv , the total travel time is then 

 
 0

0

1
 

p

x
N N

x

L p
TT dx

v

 
  . (35) 

As  x cv v n , it follows that 

 
   

 

0 0

0 0

1
 

1
p p

x x
N NN N

x c

L p L p
TT dx dx

v v n

   
   . (36) 

 

We now explain that to minimize total schedule delay cost, we must have   cn t n  during the 

peak. We now focus on travelers’ arrival at destination, as schedule delay depends on the arrival. 

We arrange the travelers in the order of their arrival, and at system optimum, the -thx  traveler 

arrives at time xt . The outflow at time xt  then is given by 

  
  

 0

ˆ ˆ
1

p

x

x x x
x

N

P n t
o o t

L p
 

 
 . (37) 

Based on the analysis in Section 4, we know that at system optimum, the ratio of early traffic to 

late traffic should be e lN N l e , i.e., l
e e l

N N


 . This means that the -thl

e l
N


 will arrive at 

time 
*t . This is shown in Figure 13 that the cumulative arrivals (no matter how it exactly looks 

like) would intersect with the vertical line representing 
*t  at l

e l
x N


 . Then, we have 

 
*

1

1
 

e

e

N

e
x

y

x
x

e
N

y

dy x N
o

dy x N
o

t t





  












. (38) 

The total schedule delay cost would be 
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0

1 1
 

e e

e e

N N N x

x N N
y y

TS e dydx l dydx
o o

       . (39) 

As       x c cP n t n v n  , with Eq.(37) and let 

    0 o ,1
p

x c Nc
xn po n   , (40) 

where  ,o n p  is defined in Eq.(8), we have   ̂ x x co o n . Then, 

 
   0

1 1
 

e e

e e

N N N x

x N N
y c y c

TS e dydx l dydx
o n o n

       . (41) 

*t

x

a a

cc

b b
l

e l
x N




x N

 1 xn t
 2 xn t

  1x xo n t

  2x xo n t

 

Figure 13. Cumulative arrival pattern over the peak 

 

Appendix C. Convergence of estimation procedures 

 

Figure 14(a) depicts the errors defined in the estimation procedures for User Equilibrium, i.e., 

  eI t N N , and for System Optimum, i.e.,  ,1 ,1 ,1

u l u

s s st t t , against the number of iterations, 

and Figure 14(b) depicts how the peak start time st  evolves over iteration. In Figure 14, for the 

UE and SO with cruising, 6000N   and 6500pN   are applied, while for the UE and SO 

without cruising, 6000N   and 106 10pN   . (Figure 14 is illustrative, we have tested different 

levels of demand and parking capacities, and observe similar trends.) 

 

As can be seen in Figure 14, it takes more iterations for the UE with cruising (number of 

iteration: 18) than the UE without cruising (number of iteration: 8) to achieve 

   310eI t N N   . As shown in Figure 14(b), for estimating UE with or without cruising, by 

utilizing the information of the gap  eI t N , and the average departure rate, i.e., 
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   e e sI t t t , in the first few iterations, st  is sharply reduced and becomes much closer to the 

final converged solution. The estimation of ,1st  for SO with and without cruising is bi-section 

based, thus the ,1st  goes up and down over iterations, and gradually converge (11 iterations). 

 

 

                    (a) Errors against iteration               (b) The peak start time st  against iteration 

Figure 14. Convergences of peak start time for both UE and SO 
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