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Quantile regression forecasts of inflation under model
uncertainty
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Abstract

This paper examines the performance of Bayesian model averaging (BMA)
methods in a quantile regression model for inflation. Different predictors are
allowed to affect different quantiles of the dependent variable. Based on real-
time quarterly data for the US, we show that quantile regression BMA (QR-
BMA) predictive densities are superior and better calibrated compared to those
from BMA in the traditional regression model. Additionally, QR-BMA methods
compare favorably to popular nonlinear specifications for US inflation.

Keywords: Bayesian model averaging; quantile regression; inflation forecasts; fan
charts
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1 Introduction

Quantile regression generalizes traditional least squares regression by fitting distinct
regression lines for each quantile of the distribution of the variable of interest. Least
squares regression only produces coefficients that allow to fit the mean of the dependent
variable conditional on some explanatory/predictor variables. In that respect, quantile
regression is more appropriate for making inferences about predictive distributions and
assessing forecast uncertainty. At the same time quantile regression estimates are more
robust against outliers in the dependent variable. Therefore, quantile regression can be
used to discover predictive relationships between the dependent and exogenous variables,

∗Adam Smith Business School, University of Glasgow, Gilbert Scott Building, G12 8QQ Glasgow,
UK. Tel: +44 141 330 2950. email: Dimitris.Korobilis@glasgow.ac.uk.
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when typical regression modelling fails to indicate the existance of predactibility in these
exogenous variables; see Koenker (2005).

In this paper we examine the forecasting performance of Bayesian quantile regression.
The final aim is to produce quantile forecasts for inflation using several potential
explanatory variables and examine the role of model uncertainty in quantile forecasts.
Bayesian model averaging (BMA) and selection (BMS) methods have been traditionally
used to deal with model uncertainty in forecasting regressions. Following Alhamzawi
and Yu (2012) and Yu et al. (2013), it is shown that application of BMA to the quantile
regression model, allows for forecasting each quantile of inflation using a different set
of predictors whereas estimation is quite straightforward using Bayesian methods. By
using model selection and averaging in a quantile regression setting means that we
can approximate complex forms of the posterior predictive density of inflation, despite
the fact that the quantile regression model specified in this paper is inherently linear1.
Although a large empirical literature using quantile regression exists, applications of
(Bayesian) model averaging are scarce. The only exception is the study of Crespo-
Cuaresma, Foster and Stehrer (2011), however, these authors approximate Bayesian
inference by using Least Squares and the Bayesian Information Criterion (BIC).

This paper integrates two vastly expanding literatures. On the one hand, there are
several studies which develop estimation, inference and forecasting in (Bayesian) quantile
regression models, such as Gaglianone and Lima (2012), Geraci and Bottai (2007),
Gerlach, Chen and Chan (2011), Lancaster and Jun (2010), Meligkotsidou, Vrontos
and Vrontos (2009), Schüler (2014), Tsionas (2003) and Yu and Moyeed (2001). On the
other hand, there is a vast literature in macroeconomic and financial forecasting that
shows the superiority of Bayesian model averaging and selection methods over other
alternatives; see Koop and Korobilis (2012) and Wright (2008), among others.

Empirical evaluation of the quantile regression BMA method is based on real-time
forecasting of quarterly US consumer price index inflation, observed for the period
1947Q1-2015Q3, using 16 potential predictors also measured in real-time. We show
which predictors are relevant for each quantile of inflation at various forecast horizons,
and we compare my results to Bayesian model averaging in the mean regression
specification, as well as popular nonlinear regression specifications that have been shown
to forecast inflation well. Based on predictive likelihoods (Geweke and Amisano, 2011)
the quantile regression BMA provides superior density forecasts compared to regular
regression BMA, and naive quantile regression methods without BMA.

In the next Section we present the Bayesian quantile dynamic regression model and
the BMA prior, and in Section 3 we present the empirical results. Section 4 concludes
the paper and discusses further extensions.

1A recent exception is Bernardi, Casarin and Petrella (2016). These authors allow for quantile
regressions with time-varying parameters and dynamic assessment of model uncertainty using dynamic
BMA.
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2 Bayesian quantile regression

Following Yu and Moyeed (2001) the quantile regression model has a convenient
mixture representation which, as explained below, is particularly convenient for Bayesian
estimation using the Gibbs sampler. In particular, I consider for the inflation process yt
the following linear model

yt = x′tβp + εt, (1)

where xt is a n × 1 vector of explanatory variables and own lags, and βp is a vector of
coefficients dependent on the p-th quantile of the random error term εt which is defined
as the value qp for which Pr(εt < qp) = p. In typical specifications of quantile regression
(Koenker, 2005) the distribution of εt is left unspecified (that is, it is a nonparametric
distribution Fp), and estimation of βp is the solution to the following minimization
problem

min
β

T∑
t=1

ρp (εt) , (2)

where the loss function is ρp (u) = u (p− I (u < 0)) and I (A) is an indicator function
which takes value one if event A is true, and zero otherwise.

The major contribution of Yu and Moyeed (2001) was to show that the minimization
problem shown in equation (2) is equivalent to maximizing a likelihood function under
the asymmetric Laplace error distribution; see also Tsionas (2003). Reed and Yu (2011)
have recently established, both theoretically and empirically, that the assymetric Laplace
likelihood accurately approximates the true quantiles of many distributions having
different properties. At the same time, as shown in Kotz et al. (1998), the asymmetric
Laplace distribution can admit various mixture representations. In Bayesian analysis
a popular representation is that of a scale mixture of normals with scale parameter
following the exponential distribution. This mixture formulation allows for the likelihood
function to be written in conditionally Gaussian form, and inference based on conditional
posterior distributions is straightforward. Even when the joint posterior distribution of
model parameters is of complex form (as it is the case when the likelihood is asymmetric
Laplace - no matter what the prior is), one can rely on the Gibbs sampler (Reed and
Yu, 2011) in order to sample from these conditional posteriors. When the conditional
lilkelihood admits a normal or a mixture of normals form, these conditional posteriors
belong to known distributions and, thus, easy to draw samples from; see the Techincal
Appendix for details.

Following Kozumi and Kobayashi (2011) we can represent the error distribution εt
using the form

εt = θzt + τ
√
ztut, (3)

where zt ∼ Exponential (1), that is, a variate from an exponential distribution with rate
parameter one, and ut is distributed standard normal. In this formulation it holds that
θ = (1− 2p) /p (1− p), and τ 2 = 2/p (1− p), for a given quantile p ∈ [0, 1]. Supplanting
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the formula for εt into equation (1) gives the new quantile regression form

yt = x′tβp + θzt + τ
√
ztut, (4)

and the conditional density of yt given the Exponential variates zt is Normal and is of
the form

f (y|βp, z) ∝

(
T∏
i=1

z
− 1

2
t

)
×

exp

{
−1

2

T∑
i=1

(yt − x′tβp − θzt)
2(

τ
√
zt
)2

}
,

where y = (y1, ...., yT )′ and z = (z1, ...., zT )′.
Given this likelihood formulation we can now define prior distributions. Bayes

theorem says that the posterior distribution is simply the product of the (conditionally)
Normal likelihood and the prior. In particular, Yu and Moyeed (2001) prove that all the
posterior moments of βp exist when the prior for βp is Normal. In this paper we consider
the conditionally Normal prior

(βi,p|γi,p, δi,p) ∼ (1− γi,p)N
(
0, c× δ2i,p

)
+ γi,pN

(
0, δ2i,p

)
, (5)(

δ−2i,p
)
∼ Gamma (a1, a2) , (6)

(γi,p|π0) ∼ Bernoulli (π0) , (7)

(π0) ∼ Beta (b1, b2) . (8)

where c → 0 is a fixed hyperparameter. This multi-level prior specification for βi,p,
i = 1, ..., n, is a mixture of normals prior. Whenever the indicator variable γi,p = 1
then βi,p has a Normal prior with variance δ2i,p. When γi,p = 0 then βi,p has a Normal
prior with mean zero and variance c × δ2i,p which will be very close to zero as long as c
is selected to be small enough (in the empirical application of this paper c = 0.00001).
Such an extremely informative prior means that predictor xi,t is not relevant for the
p-th quantile. The indicators γi,p are estimated from the data, thus they have their own
Bernoulli prior with probability π0. Additionally, in order to avoid subjectively selecting
the hyperparameters π0 and δ2i,p, we introduce hyper-prior distributions on them so that
they are estimated from the likelihood.

Posterior computation is relatively straightforward, as all conditional posterior
distributions belong to known families and can easily be sampled from using Markov
Chain Monte Carlo methods. In particular, we sequentially sample from the posteriors
of each unkown parameter conditional on all other parameters using a standard Gibbs
sampler algorithm, which is provided in the Technical Appendix. For results in the
next Section referring to the full sample of the data, 50000 Monte Carlo iterations have
been used, 10000 iterations are discarded for convergence, and from the remaining 40000
draws only every 40th draw is retained; see also Appendix B for a justification of this
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approach and the selection of draws. For the more demanding recursive forecasting
exercise, also outlined in the next Section, 22000 iterations are used of which 2000 are
discarded, and only every 20th draw is stored (for a total of 1000 draws from the posterior
densities used for inference). In both cases, convergence of the Gibbs sampler is quite
satisfactory and the number of iterations can be considered sufficient for the nature of
the application and the length of the sample. Convergence diagnostics are also provided
in the Appendix.

3 Empirics

3.1 Data and models

In this section we examine whether QR-BMA can provide superior point and density
forecasts compared to popular linear and nonlinear specifications that have been
considered successful at forecasting inflation. We consider real-time data for CPI for
the period 1947Q1-2015Q3 as the dependent variable, and two own lags of inflation as
well as 16 variables measured in real-time as the potential predictors. In particular, the
dataset contains various measures of economic activity (e.g. unemployment, investment),
money supply (e.g. M1) and expectations (e.g. default yield spread). All predictors
are either measured in real time, or their final vintage is used if they are not subject to
revisions (e.g. interest rates). Further important variables can also be used as predictors
(e.g. surveys), however, they either are not available in real-time, or their sample is
considerably smaller which would make any forecast comparison less reliable (due to
small estimation and evaluation samples). The data, which are downloaded from the
Real Time Data Research Center of the Philadelphia Fed, and the St Louis Federal
Reserve Economic Database (FRED), are explained in detail in the Data Appendix.

For the purpose of forecasting, the model in equation (1) is re-written as

yt+h,p = x′tβp + εt+h, (9)

for t = 1, ..., T − h, and a similar expression holds for the transformed model in (4).
This is a typical specification of a generalized backwards-looking Phillips curve model for
forecasting the p-th quantile of inflation; see Stock and Watson (2007). When computing
quantile forecats, we follow Gaglianone et al (2012) and collect the quantities ypT+h|T
using a fairly large grid for p 2 and construct the full predictive density using kernel
smoothing based on a Gaussian kernel.

For comparison we also estimate and forecast with several alternative specifications
which have been shown to forecast inflation well:

2For each draw from the Gibbs sampler we generate forecasts of quantiles p ∈
[0.05, 0.10, ..., 0.90, 0.95], i.e. we obtain 19 quantiles. We do not consider the 5% probability from
each tail of the predictive distribution for reasons explained in Gaglianone et al. (2012).
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1. BMA regression (Wright, 2008): The standard “mean”regression model is of the
form

yt+h = x′tβ + εt+h,

where now there is a single β such that E (y) = E (x) β. For the sake of simplicity
and comparability, BMA is implemented using the prior described in equations
(B.2)-(B.3), which is now applied on β instead of βp (and posterior expressions are
a special case of the ones derived for the BMA quantile regression). The same 16
predictors defined for the benchmark QR-BMA are also used in the estimation of
the BMA regression.

2. UCSV regression (Stock and Watson, 2007): The Unobserved Components
Stochastic Volatility model is already a benchmark model for forecasting inflation.
It takes the form

yt+h = ct + εt+h,

ct = ct−1 + ut,

where ct is trend inflation and the disturbance terms εt+h and ut+h have stochastic
volatilities (such that log-variances follow random walks).

CPS regression (Cogley, Primiceri and Sargent, 2010): This is the UC-SV model
of Stock and Watson where now there is one autoregressive term for inflation, i.e.
yt, which also has a time-varying coefficient.

3. TVP-DMA regression with Dynamic Model Averaging (Koop and Korobilis, 2015):
This model generalizes the UC-SV and CPS models by allowing inflation to
depend on further predictors. Similar to the benchmark QR-BMA and BMA
regression models, the same 16 real-time predictors are used for estimation of this
model. In order to deal with overparametrization concerns (especially compared
to the parsimonious UC-SV model) Koop and Korobilis (2012) suggest to perform
Bayesian model averaging at each point in time, leading to a Dynamic Model
Averaging (DMA) scheme.

All the models above rely on various tuning hyperparameters and prior distributions,
given that estimation in the original respective papers is Bayesian. In that respect, and
given that these are highly nonlinear models, we try to follow settings which are fairly
uninformative or that broadly follow the recommendations of the original authors. For
example, for the time-varying coefficients in the UCSV, CPS and TVP-DMA models
we use the same initial condition, N(0, 10), while the prior on state covariances is a
“business as usual prior” in the sense of Cogley and Sargent (2005). Therefore, in the
USSV and the CPS models the prior scale is 0.0001 × I, while in the TVP-DMA the
relevant forgetting factor is set to λ = 0.99; the reader should consult the original papers
for more details.
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3.2 How does QR-BMA work?

This subsection clarifies certain features of the QR-BMA algorithm, and explains why
this can be potentially useful for forecasting inflation. The first interesting exercise is to
pin down the relevant predictor variables selected by BMA for each quantile of inflation.
Table 1 presents these variables for the QR-BMA model estimated at three representative
forecast horizons, h = 0 (short horizon), h = 4 (medium), and h = 8 (long). Additionally
results for five representative quantiles are presented, p = 0.05, 0.25, 0.5, 0.75, 0.95. These
results refer to the full sample of the data, 1947Q1 - 2015Q3; a different sample will
imply different relevant predictors. Koop and Korobilis (2012) have shown in particular,
that predictors of inflation are extremely unstable over time, so relevant predictors are
expected to be quite different for different samples.
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The Table shows which predictors have probability of inclusion in the final regression
which is higher than 0.5, i.e. what Barbieri and Berger (2004) call the “median
probability model”. Consistent with the Bayesian variable selection literature (e.g.
Chipman et al., 2001), these probabilities are calculated as the mean of the posterior
of γi,p: the posterior distribution of γi,p is a sequence of zeros and ones, so that the
posterior mean denotes a probability for each variable i in each quantile p.

The main message of this Table is two-fold: i) more predictors are relevant when
forecasting inflation at longer horizons, and ii) more predictors are relevant when
forecasting extreme quantiles. The first message is already well established in the
relevant literature. Papers such as Koop and Korobilis (2012) find that only two variables
are relevant for forecasting CPI one-step ahead (inflation expectations and M1 in their
model), while many more variables are relevant as the forecast horizon increases. The
second message, though, is a novel one in this literature and an encouraging one. It says
that in times of extreme changes in inflation rates, that is changes that are beyond the
“median expectation” of consumers and/or the central bank, there is potential predictive
ability conveyed in several variables.

In order to understand why this can be the case, it would be interesting to examine
predictive distributions from the QR-BMA for two recent extreme events. One is the
big drop in inflation in 2009Q1 following the collapse of the global banking system and
the turbulence in commdoity markets. Note that in monthly data the largest drop
was actually in November 2008, but since this paper relies on quarterly data which
are averages of monthly ones the decrease is dated as 2009Q1. The second important
extreme event for US inflation was the deflation in 2015Q1, when annualized quarter-on-
quarter inflation rates hit negative territory. Both these events are very important for
policy-makers, so that accurate prediction of their occurrence is of paramount interest.

The top and bottom panels of Figure 1 show one-step ahead predictive distributions
of inflation estimated in 2008Q4 and 2014Q4, respectively. The graphs show the realized
value one-step ahead (that is, 2009Q1 and 2015Q1), and the predictive distribution
of the QR-BMA, the regular (mean) regression BMA, and the Survey of Professional
Forecasters (SPF) 3. The quantile regression model predictive distribution can be multi-
modal and asymmetric, while the regression model distribution is always (conditionally)
Normal and, thus, symmetric. The SPF distribution in 2008Q4 is close to Normal and
matches very closely that of the mean regression BMA. In this specific case the QR-BMA
gives quite a lot of weight on highly negative outcomes, and considerably lower weight
on positive outcomes for inflation. By allowing this kind of multimodality the QR-BMA
distribution gives twice as much mass closer to the realization for inflation (which was
-9.2% at an annual rate). In contrast, the symmetric regression and SPF distributions
are restricted into giving equal weight to highly negative and highly positive outcomes.

In 2014Q4 a slightly different story is observed. The QR-BMA distribution is again
multimodal, although this time looks symmetric. However, it is striking that, while
the SPF distribution is a mixture with possibly three modes, it is quite concentrated

3Detailed data on the SPF are also available from the Philadelphia Fed website.
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Figure 1: Predictive densities for abruptly occurred deflation events in U.S. data

around a certain value, that is 1%. Forecast disagreement is quite low, however, the vast
majority of forecasters failed to account for the possibility of disinflation. In contrast,
there is a mode with very low mass at the realized value of inflation, signifying that a
small proportion of forecasters had correct expectations about inflation. Nevertheless,
the model-based distributions (regular BMA and QR-BMA) perform much better in
this particular case, since they both assign more probability on the true realization of
inflation than the SPF distribution does.

3.3 Forecasting results

In order to evaluate the forecast performance of each model we consider a recursive
pseudo-out-of-sample (poos) procedure: we start with estimation of model parameters
for the 1975Q1 vintage (sample is 1947Q1-1974Q4), nowcast the 1975Q1 observation and
forecast out-of-sample for each horizons h = 1, 2, 3, 4, 5, 6, 7, 8. Then take the 1975Q2
vintage (sample is 1947Q1-1975Q1) in order to estimate model parameters, nowcast and
forecast, and repeat this procedure until the sample is exhausted (i.e. until the vintage
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2015Q3-h). All forecasts are evaluated relative to their true value, which we consider to
be the last available vintage in the dataset, that is, 2015Q4 (for the sample spanning
1947Q1-2015Q3).

A first assessment of forecasting performance can be implemented by looking at point
forecasts. While the quantile regression model is naturally designed to allow for more
complex predictive densities, reporting point forecasts is still the most popular way for
policy-makers to communicate to the public their expectations about inflation. In that
respect, the top panel of Table 2 presents Mean Squared Forecast Errors (MSFEs).
In particular, the first row presents the performance on an AR(2) model for inflation,
and the subsequent rows provide the MSFEs relative to the MSFE of the AR(2). Values
lower than one show that the respective model generates point forecasts that are superior
to the AR(2). Asterisks next the relative MSFEs show that the respective model has
significantly better forecasting performance compared to the AR(2) at the 1% (∗∗∗),
5% (∗∗∗), and 10% (∗∗∗) level, based on the Diebold-Mariano statistic; see Diebold and
Mariano (1995).

While one should be careful when comparing point forecasts 4, the results suggest
that QR-BMA improves over traditional BMA to the extend that it is comparable to the
nonlinear UCSV specification of Stock and Watson (2007). Regarding the three time-
varying parameter specifications, results are slightly different to previous results found
in Koop and Korobilis (2012) using a shorter sample (which didn’t include the 2009-
2015 period) and slightly different set of predictors (they also included measures such
as inflation expectations). In particular, the UCSV specification seems to be the best
performing model for longer term forecasts (h > 6), even though this specification has
no explanatory variables. Additionally, the nonlinear CPS and TVP-DMA specifications
are not performing that well compared to the benchmark AR(2), even though previous
evidence (Koop and Korobilis, 2012) suggests that for short-term forecasts of inflation
it is nonlinearity that matters (while there is scant evidence that inflation is affected by
predictors).

A natural second step in the analysis is to evaluate density forecasts. The bottom
panel of Table 2 shows the mean log predictive scores of all forecasting models. The first
row shows the log predictive scores of the AR(2) model, and the subsequent rows the
log score differentials for each model from the AR(2). As it is the case with the MSFEs,
asterisks show significant differentials at the 1% (∗∗∗), 5% (∗∗∗), and 10% (∗∗∗) level,
based on the Diebold-Mariano statistic. These results clearly indicate that QR-BMA
offers substantial improvements when considering the whole distribution of forecasts.
The improvements are particularly evident in short horizons (nowcasting and h = 1),
where surprise movements of inflation can result in failure of forecasting models (see also
discussion in previous subsection and Figure 1).

4All methods but QR-BMA model the conditional mean of yt, while in QR-BMA results are based
on the p = 0.5 quantile (median) of yt.
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Additional insight can be provided by the Probability Integral Transform (PIT),
which is used here in order to evaluate the correct specification of predictive densities.
For a given probability density function p(yt+h|yt), the PIT is the corresponding
cumulative density function (CDF) evaluated at the realization yt+h:

zt+h =

∫ yt+h

−∞
p(u|yt)du ≡ P (yt+h|yt). (10)

If the estimated predictive density is consistent with the “true” predictive density, then
the sequence of all zt+h in the out-of-sample evaluation period (i.e. 1975Q1-2015Q3-h)
is is an independent and identically distributed (iid) Uniform (0,1) and its cumulative
distribution function is the 45◦ line; Diebold, Gunther and Tay (1998).

A visual assessment by means of plotting histograms of the PITs is a first way
of evaluating predictive densities: the closer the PITs look to a continuous Uniform
distribution, the better calibrated they are. Nevertheless, more formal metrics exist,
which allow to formally test uniformity of the PITs. Following Rossi and Sekhposyan
(2014), we can test how close the CDF of the PITs is to that of the uniform distribution
using the Kolmogorov-Smirnov (KS) test and its Anderson-Darling (AD) modification.

Additionally, we can use the result of Berkowitz (2001) that if zt+h
iid∼ U (0, 1) then

ζt+h ≡ Φ−1 (zt+h)
iid∼ N (0, 1) where Φ−1 (·) is the inverse of the Normal CDF denoted

by Φ (·). The Doornik-Hansen (DH) test is used to assess normality of the transformed
variable ζt+h. Finally, the Ljung-Box (LB) test is used to test for independence in the
first and second central moments of the PITs; see Rossi and Sekhposyan (2014) and
references therein. We denote by LB1 the LB statitic for testing independence of the
mean, and LB2 the statistic for testing independence of the variance of the PITs.

Table 3 provides diagnostics related to calibration of predictive densities, and is
similar to Table 1 of Metaxoglou, Pettenuzzo and Smith (2016). Entries are p-values,
and values lower than 0.05 signify rejection of the null hypothesis of the test at the 5%
level. In the case of BMA for both horizons the KS test rejects the null of uniformity of
the PITs. For the other models there is evidence that the PITs are uniformly distributed,
even though this evidence is weaker (i.e. p-values marginally higher than 0.05) in the case
of the UCSV and TVP-DMA models for h = 1. The DH test of the inverse Normal of the
PIT also shows that BMA is the only misspecified model at both forecast horizons, while
UCSV and TVP-DMA are misspecified at horizon h = 1. The LB statistics for serial
correlation in the mean and variance of the PITs, LB1 and LB2 respectively, suggest
that PITs for all models are serially correlated - the only exception being the variance of
the PIT for the UCSV at h = 0. These statistics are not illuminating in comparing the
various models, but the KS and DH statistics suggest that the quantile regression model
generates predictive densities which are as well-calibrated as the predictive densities of
popular nonlinear specifications for inflation.

13



Table 3: PIT statistics
Horizon h = 0 Horizon h = 1

KS DH LB1 LB2 KS DH LB1 LB2
BMA 0.042 0.001 0.002 0.006 0.022 < 0.001 < 0.001 < 0.001
QRBMA 0.284 0.384 0.000 0.013 0.142 0.458 0.001 < 0.001
UCSV 0.464 0.068 0.002 0.369 0.088 0.036 < 0.001 < 0.001
CPS 0.301 0.164 0.000 0.003 0.165 0.137 < 0.001 0.001
TVP-DMA 0.294 0.416 0.009 0.171 0.066 0.017 < 0.001 0.001

Notes: Entries are p-values of the respective statistics for the Probability Integral Transforms (PITs)

of the predictive densities: Kolmogorov-Smirnov (KS), Doornik-Hansen (DH), Ljung-Box test of the

mean (LB1), and Ljung-Box test of the variance (LB2); see Rossi and Sekhposyan (2014) for more

information.

Finally, if the policy-maker is interested in a certain quantile of inflation, as it is
typically the case with Value-at-Risk (VaR) forecasting in finance, one can use several
measures such as the DQ test of Engle and Manganelli (2004). In a recent paper,
Gerlach, Chen and Lin (2016) show how to implement Bayesian variants of popular
tests proposed in the quantile regression literature. Since VaR and similar measures are
not of interest for assessing forecasts of inflation, such tests are not presented in this
paper.

4 Conclusions

This paper proposes a new empirical procedure for implementing Bayesian model
averaging, which allows different predictor variables to affect different quantiles of the
dependent variable. The benefits of this flexible approach are evaluated using real-time
data for CPI inflation for the US and a number of predictor variables. Results indicate
that the quantile regression BMA approach indeed finds that different predictors are
relevant for each quantile of inflation, and that by taking this feature into account,
predictive distributions are superior.
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A Data Appendix

Real time data are from Philadelphia Fed (https://www.philadelphiafed.org/research-
and-data/real-time-center/real-time-data), and variables which are not revised (final
vintages) are from FRED (http://research.stlouisfed.org/fred2/). The dependent vari-
able is CPI (Consumer Price Index, Quarterly Vintages). All variables are transformed
to be approximately stationary, implying that instead of forecasting second differences
of CPI, inflation rates are forecast (which are close to being random walk). In particular,
if zi,t is the original untransformed series, the transformation codes are (column Tcode
below): 1 - no transformation (levels), xi,t = zi,t; 4 - logarithm, xi,t = ln (zi,t); 5 - first
difference of logarithm, annualized, xi,t = 400× ln (zi,t/zi,t−1).

No Mnemonic Description Tcode Source

1 CPI Consumer Price Index, Quarterly Vintages 5 Philly
2 IPM Industrial Production Index, Manufacturing 5 Philly
3 HSTARTS Housing Starts 4 Philly
4 CUM Capacity Utilization Rate, Manufacturing 5 Philly
5 M1 M1 Money Stock 5 Philly
6 RCOND Real Personal Cons. Expenditures, Durables 5 Philly
7 RCONS Real Personal Cons. Expenditures, Services 5 Philly
8 RG Real Government Cons. & Gross Inv., Total 5 Philly
9 RINVBF Real Gross Private Domestic Inv., Nonresidential 5 Philly
10 ROUTPUT Real GNP/GDP 5 Philly
11 RUC Unemployment Rate 2 Philly
12 ULC Unit Labor Costs 5 Philly
13 WSD Wage and Salary Disbursements 5 Philly
14 DYS Default yield spread (Moody’s BAA - AAA) 1 St Louis
15 NAPM Purchasing Manager’s Index 1 St Louis
16 NAPMII Inventories Index 1 St Louis
17 NAPMNOI New Orders Index 1 St Louis
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B Technical Appendix

B.1 Posterior inference in the Bayesian quantile regression
with model averaging prior

The transformed quantile regression model is given in equation (4) which we rewrite
here for convenience

yt = x′tβp + θzt + τ
√
ztut, (B.1)

with x′t being the (fixed) exogenous variables, and zt ∼ Exponential (1) and ut ∼ N (0, 1)
are new variables introduced when transforming the likelihood (see main text for more
details). The prior we use is of the form

(βi,p|γi,p, δi,p) ∼ (1− γi,p)N
(
0, c× δ2i,p

)
+ γi,pN

(
0, δ2i,p

)
, (B.2)(

δ−2i,p
)
∼ Gamma (a1, a2) , (B.3)

(γi,p|π0) ∼ Bernoulli (π0) , (B.4)

(π0) ∼ Beta (b1, b2) . (B.5)

where (a1, a2, b1, b2) are prior hyperparameters chosen by the researcher, and c is a fixed
parameter set very close to zero. In order to obtain draws from the posteriors of all the
unknown parameters, we sample sequentially from the following conditional distirbutions

1. Sample β (p) conditionally on knowing all other parameters (incl zt) and, of course,
the data xt, yt, from:

βp|γp, τ 2, z,x,y ∼ N
(
β, V β

)
,

where V β =
(∑T

t=1
x̃′tx̃t
τ2zt

+ ∆−1p

)−1
and β = V β

[∑T
t=1

x̃t(yt−θzt)
τ2zt

]
, and ∆ is a

diagonal prior variance matrix with diagonal element δ2i,p if γi,p = 1 or cδ2i,p if
γi,p = 0

2. Sample δ−2i,p conditional on other parameters and data from:

δ−2i,p |βi,p,x,y ∼ Gamma (a1, a2) ,

where a1 = a1 + 1
2
, a2 =

(βi,p)
2

2
+ a2.

3. Sample γi,p conditional on other parameters and data from:

γi,p|γ−/i,p, βi,p, z,x,y ∼ Bernoulli (π) ,

where π =
π0f(γi,p=1|γ−/i,p;x,ỹ)

π0f(γi,p=1|γ−/i,p;x,ỹ)+(1−π0)f(γi,p=0|γ−/i,p;x,ỹ)
, ỹ = y−θz, and γ−/i,p denotes

the vector γp with its i-th element removed (i.e. condition γi,p on all remaining
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n− 1 elements in γp). The function f
(
γi,p = 1|γ−/i,p; x,ỹ

)
is the likelihood of the

model
ỹt = yt − θzt = x′tβp + τ

√
ztut,

evaluated assuming γi,p = 1, and similarly for the function f
(
γi,p = 0|γ−/i,p; x,ỹ

)
.

4. Sample π0 conditional on other parameters and data from:

π0|γp, βp, z,x,y ∼ Beta
(
b1, b2

)
,

where b1 = nγ + b1 and b2 = n− nγ + b2, and nγ denotes the number of elements
in γp which are one, i.e. nγ =

∑
i γi,p = 1.

5. Sample zt conditional on other parameters and data from:

z|βp, γp,x,y ∼ GIG

(
1

2
, κ1, κ2

)
,

where κ1 =
[∑T

t=1 (yt − xtβp) /τ
]

and κ2 =
√

2 + θ2/τ . The p.d.f of the

Generalized Inverse Gaussian density is of the form

f (x|v, a, b) =
(b/a)v

2K (ab)
xv−1 exp

{
−1

2

(
a2x−1 + b2x

)}
,

with x > 0, −∞ < v <∞, a, b ≥ 0.

B.2 Convergence diagnostics

This subsection assesses convergence of the Markov chain Monte Carlo algorithm in the
baseline application to the U.S. data. In general, for the simple univariate regression
model of this application convergence to the posterior is not sensitive to different starting
points of the chain (selected randomly), or the size of the burn-in period (which, to some
extend, is in line with the point of Geyer, 2011, that a burn-in period is not necessary
for finding a good starting point in MCMC samplers).

Convergence of the posterior sampling algorithm is relatively straightforward for
the case of the univariate regression models we examine in this paper. However,
the parameter draws for different quantiles are quite autocorrelated (as well as cross-
correlated, i.e. across quantiles). A simple fix for such an efficiency issue is to do
thinning, that is retain only n-th draw from the MCMC chain. The top and middle
panels of Figure B.1 show the first order autocorrelation of the draws of βp for all
p ∈ [0.05, 0.10, ..., 0.90, 0.95]. This figure reveals that if we save a single draw every
40 iterations of the Gibbs sampler, then this is enough to ensure that autocorrelation
among draws is reasonably low.

The bottom panel of Figure B.1 presents the inefficiency factors (IFs) of the posterior
estimates of βp. The IF is the inverse of the relative numerical efficiency measure of
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Figure B.1: MCMC diagnostics, βp coefficients only

Geweke (1992), that is, the IF is an estimate of (1 + 2
∑∞

k=1 ρk), where ρk is the k-th
order autocorrelation of the chain which is estimated using a 4% tapered window for
the estimation of the spectral density at frequency zero. As a rule of thumb, IFs equal
or lower than 20 are considered satisfactory. One can further increase the length of the
MCMC chain in order to achieve accuracy, however, in a recursive forecasting exercise
this is costly computationally and a balance between precision and computation has to
be achieved.
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