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In this paper, two different Locally Weighted Support Vector Regression (wSVR) algorithms 

are generated and applied to the task of forecasting and trading five European Exchange 

Traded Funds. The trading application covers the recent European Monetary Union debt 

crisis. The performance of the proposed models is benchmarked against traditional Support 

Vector Regression (SVR) models. The Radial Basis Function, the Wavelet and the 

Mahalanobis kernel are explored and tested as SVR kernels. Finally, a novel statistical SVR 

input selection procedure is introduced based on a principal component analysis and the 

Hansen et al. (2011) model confidence test. The results demonstrate the superiority of the 

wSVR models over the traditional SVRs and of the v-SVR over the ε-SVR algorithms. We note 

that the performance of all models varies and considerably deteriorates in the peak of the 

debt crisis. In terms of the kernels, our results do not confirm the belief that the Radial Basis 

Function is the optimum choice for financial series.   
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1. Introduction 

Support Vector Machines (SVMs) is a class of powerful nonlinear algorithms with a variety of 

applications in almost every aspect of Science. They can generate nonlinear decision 

boundaries through linear classifiers and still have a simple geometric interpretation. 

Initially their applicability was limited to classification problems but this changed with the 

novel work of Vapnik (1995) and the introduction of Support Vector Regression (SVRs). SVRs 

are capable of modelling high-dimensional, noisy and complex feature problems (Suykens et 

al., 2002). These features made them perfect tools for Finance practitioners challenged with 

the task of producing profitable trading algorithms.  

Financial trading series are dominated by non-linear, noise and non-stationary nature. They 

are affected not only by a large universe of relevant time series but also by behavioural 

elements (Froot et al., 1992) and exogenous factors such as political decisions (Frisman, 

2001). It is not possible to model financial trading series completely. Practitioners seek for 

algorithms capable of generating enough profitable trading signals to beat the market. 

Contrary to the popular belief, the aim of traders is not to maximize their wealth but to 

survive in the market (Lo, 2004). Linear trading rules seem unable to help traders on this 

task. They seem to have low power and volatile behaviour through time (LeBaron (2000) 

and Qi and Wu (2006)). On the other hand, artificial intelligence models and heuristics have 

provided promising empirical evidence in trading applications (see amongst others Allen and 

Karjalainen (1999), Jasic and Wood (2004) and Sermpinis et al. (2016)). However their 

atheoretic nature and the lack of sufficient robustness checks on their performance is 

generating scepticism among finance professionals and researchers.  

In this study, twelve SVRs models are applied to the task of forecasting and trading five 

equity markets Exchange Traded Funds (ETFs). Compared with other non-linear techniques 

(such as Neural Networks), SVRs are based on sound theory and are capable of providing 

global and unique solutions. In SVRs the practitioner can apply kernel functions to data so 

the vector space is not fixed in terms of dimensions. Although the use of SVRs in financial 

forecasting is not new, this study aims to provide an insight to a class of promising SVR 

algorithms, the locally weighted SVR (wSVR). wSVRs are based on the notion that the 
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nearest to the predictor values are its best indicators. They can capture the local trend of 

the data and handle noise adaptively. This feature seems advantageous in financial series 

which exhibit structural breaks, where recent observations have more influence than past.   

There is a wealth of SVR applications in Finance. Pai et al. (2006) combines SVR with genetic 

algorithms and forecasts accurately several exchange rates. Ince and Trafalis (2006) forecast 

with SVRs four different exchange rates and demonstrate their superiority over NNs. In a 

similar task, Huang et al. (2010) generates a hybrid chaos-based SVR algorithm which 

performs better than chaos-based NNs and traditional non-linear models. Hsu et al. (2009) 

integrate SVR in a two-stage architecture for stock price prediction and present empirical 

evidence that show that its forecasting performance can be significantly enhanced 

compared to a single SVR model. Lu et al. (2009) use independent component analysis to 

select the inputs of their SVR models and predicts the Nikkei 225 opening index and the 

TAIEX closing index. On the other hand, Bao et al. (2005) and Lin and Pai (2010) apply fuzzy 

SVR models to the task of forecasting the Shanghai Stock Exchange index and business 

cycles respectively. Kim and Sohn (2010) apply successfully SVM in default prediction of 

small and medium enterprises. Yeh et al. (2011) develop a two-stage multiple-kernel 

learning algorithm for SVRs and forecast the TAIEX index. Yao et al. (2015) evaluate SVRs 

over the task of predicting recovery rates of defaulted corporate instruments between 1985 

and 2012. The results show the superiority of the SVRs over other commonly used methods, 

such as linear regression, fractional response regression and the two-stage methodology.  

Geng et al. (2015) compares NNs, SVM, decision trees and majority voting classifiers in a 

forecasting competition. All algorithms are predicting the financial distress of listed Chinese 

companies. In this study, NNs outperform the SVM, but it is acknowledged that this is 

contradicting previous literature. Rosillo et al. (2014) simulate the S&P 500 movements with 

GARCH and Support Vector Machines while Sermpinis et al. (2015) forecast three exchange 

rates with genetically optimized SVRs. Finally, Yao et al. (2015) estimate accurately the 

recovery rates of corporate bonds with SVRs.   

In the field of wSVR, there are only a handful of applications in Science. Huang et al. (2006) 

apply wSVR to the task of forecasting three stock indices. The statistical evaluation indicates 

the superiority of wSVR compared to a simple SVR model. Chuang (2007) combines wSVR 
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with fuzzy logic. The proposed approach proves seems more accurate and computationally 

efficient than more traditional SVR algorithms. Huang and Shen (2008) apply wSVR at a 1-

dimensional data set simulation. Elattar et al. (2010) estimates successfully the electric load 

forecasting with the LSVR. In this approach, the weighted distance of the algorithm is based 

on the Mahalanobis distance. Suykens et al. (2002) presents a sparse approximation 

procedure for weighted and unweighted for least squared support vector machines (SVM). 

Jiang and He (2012) forecast financial series with SVR and a Grey relational grade weighting 

function. Their model seems able to forecast accurately the Shenzhen Stock and the 

Shanghai Stock Exchange indices.  

To the best of our knowledge, this is the first study that applies wSVR to a financial trading 

application. Additionally, compared to previous studies, we will attempt to answer the 

kernel question. The vast majority of studies on SVRs in Finance apply the Radial Basis 

Function (RBF) as kernel. In addition to RBF, this research is extended to two recently 

introduced promising kernels, the Wavelet and the Mahalanobis kernels. For both kernels 

there are limited applications in SVRs although they possess several advantages. In wSVR 

studies, there is none that applies the Wavelet or the Mahalanobis kernel. Additionally, all 

models are examined under different market conditions. This provides a useful insight on 

the robustness of the models under consideration and strengthens the conclusions.  It also 

provides empirical evidence in favour of the Adaptive Market Hypothesis (AMH) of Lo 

(2004). AMH argues that trading models have different strength under different market 

conditions. If the market is stressed, the performance of trading rules should be worse 

compared to normal market conditions.  Finally, compared with the majority previous 

studies in the field, this research follows a robust statistical approach on selecting the SVRs 

inputs. The performance of a SVR model is crucially depending on the informational capacity 

of the chosen inputs. In this study, a large pool of linear and nonlinear predictors is 

generated and the SVR inputs are selected through two statistical procedures, a Principal 

Component Analysis (PCA) and the Hansen et al. (2011) Model Confidence Set (MCS) test. 

This unique approach aims on increasing the forecasting performance of the SVR models 

and providing a statistically stable process on SVR input selection.  
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From the results of this study, it emerges that LSVR present a superior forecasting and 

trading performance compared to the traditional SVR models. Similarly, the ν-SVR 

algorithms seem superior from their ε-SVR counterparts for the series and time periods 

under study. The results concerning the kernel function seem mixed and are not supporting 

the notion that RBF is superior in simulating financial datasets.  Nevertheless, all SVR models 

seem capable of producing profitable forecasts after transaction costs. Finally, we note the 

performance of all models deteriorates on the peak of the European debt crisis. It seems 

that technical models lose their power to produce profitable signals during periods of 

financial crisis.  

The rest of the paper is organized as follows. In Section 2, there is a detail description of this 

study’s dataset. A description the SVR algorithms under study are presented in Section 3. 

The statistical and trading performance of the implemented models is in Section 4 while the 

concluding remarks are in Section 5. In the appendix, there is the characteristics of the 

linear and nonlinear predictors that constitute the SVR input pool and a description of the 

statistical and trading measures.  

2. Dataset 

In this study, twelve SVR algorithms are applied to the task of forecasting and trading the 

logarithmic returns of five ETFs. These ETFs are designed to replicate the performance of the 

Spanish, French, Italian, German and the whole European Monetary Union (EMU) equities 

markets. ETFs offer investors the opportunity to trade stock market indices with very low 

transaction costs1.The summary statistics of the five return series and the tickers of the ETFs 

under study for the whole dataset are presented in Table 1 below.  

Table 1. Summary Statistics and Tickers 

Equity Market Spain Italy France Germany EMU 

Ticker EWP EWI EWQ EWG EZU 

Mean -0.0002 -0.0004 -0.0002 0.0000 -0.0005 

Standard deviation 0.0218 0.0218 0.0196 0.0194 0.0254 

Skewness -0.1332 -0.1914 -0.1523 0.0504 -11.1060 

Kurtosis 7.2671 6.8587 8.3027 11.4435 315.1631 

                                                           
1 The transaction costs for the three ETFs tracking their respective benchmarks do not exceed 0.5% per annum 

for medium size investors (see, for instance, www.interactive-brokers.com). 
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Jarque-Bera  (p value) 0 0 0 0 0 

ADF (p value) 0.0001 0.0001 0.0001 0.0001 0.0001 

 

As anticipated, the five returns series exhibit small skewness and high kurtosis. The Jarque-

Bera statistic confirms that the three return series are non-normal at the 99% confidence 

level. The Augmented  Dickey-Fuller  (ADF) reports that the  null  hypothesis  of  a  unit  root  

is  rejected  at  the  99%  statistical  level for all five return series.  

All models are evaluated through three different forecasting exercises. In the first 

forecasting exercise the out-of-sample represents the start of the debt EMU crisis, the 

second is on the peak of the crisis while the third (and more recent) refers to the end of the 

crisis, when most EMU countries seem to have stabilize their economies. The intuition 

behind the selection of these periods is to test the robustness and the profitability of the 

models under different market conditions. A summary of these periods is presented in Table 

2 below.  

Table 2. Dataset 

Forecasting Exercise Periods Dates Trading Days 

1 
In-Sample 

3 January 2007 to 31 December 
2008 

504 

Out-of-Sample 3 January 2009 to 31 January 2009 252 

2 

In-Sample 
3 January 2010 to 31 December 

2011 
504 

Out-of-Sample 
3 January 2012 to 31 December 

2012 
252 

3 
In-Sample 

3 January 2012 to 31 December 
2013 

504 

Out-of-Sample 
3 January 2014 to 31 December 

2014 
252 

 

All models will be optimized in the in-sample and their forecasts will be evaluated in the 

out-of-sample.  

In order to make the application more realistic, a novel training procedure will be followed. 

A trader is unlikely to keep the same specification for a model that performs badly in the 

out-of-sample over a given period. In real world trading environments practitioners re-

estimate the parameters of their algorithms when there is a structural brake in their series 

and their losses exceed a level. In this study, all models will be re-estimated when the 
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maximum drawdown of the trades of a model in the out-of-sample reach or exceeds the -

10%. Maximum drawdown, the essence of risk for an investor, represents the maximum 

consecutive loss over a given period. If the maximum drawdown of trades of a model in the 

out-of-sample reach or exceeds -10%, the in-sample will be roll forward until this point (in 

order to include the most recent information) and the parametrization procedure presented 

in Section 3.5 will be reinitiated.   

3. Theoretical Framework 

Support Vector Machines (SVM) is a class of powerful supervised learning systems 

introduced by Boser et al. (1992). Their formulation embodies the Structural Risk 

Minimisation principle which is superior to the traditional Empirical Risk Minimization 

applied by conventional supervised learning systems (Gunn et al., 1997). SVMs machines 

have provided promising empirical evidence in classification problems in various aspects of 

Science (see for example Christianini and Shawe-Taylor (2000)). Their initial use in financial 

forecasting was limited as most problems require a regression based technique. This 

changed with the introduction of the ε-insensitive loss function and the Support Vector 

Regressions (SVRs) by Vapnik (1995).  SVRs main advantage is their ability to generate 

nonlinear decision boundaries through linear classifiers, while having a simple geometric 

interpretation. Additionally, their solution is global and unique and do not suffer from 

multiple local minima, such as the solution of NNs. This allows them to balance between 

model accuracy and complexity and to present a remarkable forecasting ability (Kwon and 

Moon (2007) and Suykens et al. (2002)).  

3.1 The ε-SVR 

Let’s consider the training data {(x1,y1), (x2,y2)…, (xn, yn)}, where 

, , 1...i ix X R y Y R i n      and n is the total number of training samples. SVRs seek to 

estimate functions: 

bxwxf T  )()(                                                                    [1] 

where φ(x) is the feature input of x (see Figure 2c) and w and b are coefficients which 

estimated by minimizing the regularized risk function: 
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The parameters C and ε are user determined parameters, yi is the actual value at time i 

while f(xi)is the predicted value at the same period. The function Lε(di,yi) is called the ε-

insensitive loss function and is described below:   

                                   [3]                 

The norm term 
2

w characterizes the flatness of the model, C is a constant that determines 

the trade-off between empirical risk and the model flatness and ε is the degree of model 

noise insensitivity. Equation 3 finds the predicted values that have at most ε deviations from 

the actual obtained values yi (see Figure 1a and 1b).  

  Figure 1: a) The f(x) curve of SVR and the ε-tube, b) plot of the ε-sensitive loss function and c) 

mapping procedure by φ(x)                                                

 

 

If we introduce two positive slack variables *,i i   that correspond to the distance of the 

actual values from the corresponding boundary values of the ε-tube (figure 1a), then 

Equation [2] is transformed to the following argument: 
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The term *

1

( )
n

i i

i

 


 
 


 is the training error, as specified by the slack variables. This 

optimization problem can be transformed in a dual problem which solution is based on two 

Langrangian multipliers ( ia  and *

ia ) and mapping through a kernel function ( , )iK x x : 

    

*

1

( ) ( ) ( , )
n

i i if x a a K x x b


    where *0 ,i ia a C                          [5] 

Factor b is estimated following the Karush-Kuhn-Tucker conditions (for a detail 

mathematical derivation see Vapnik (1995)). Support Vectors (SVs) are called all the xi that 

contribute to equation [5], thus they lie outside the ε-tube, whereas non-SVs lie within the 

ε-tube.2 Increasing ε leads to more SVs being selected, whereas decreasing it results to 

more 'flat' estimates’. 

3.2. The ν-SVR 

In the v-SVR, the parameter ε is encompassed in the optimization process and controlled 

with a new parameter (0,1]v . The motivation for the v-SVR is to simplify the optimization 

process and create models with more meaningful interpretation (Chang and Lin, 2002). In 

the v-SVR, the optimization problem is transformed to: 

 Minimize 2*

1

1 1
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i i
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C v w
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         [6]  

 

The methodology is similar as in the ε-SVR. Vapnik (1995) showed that with Lagrange 

multipliers, Equation [6] is a convex optimization problem with a global minimum. The 

solution takes the form: 

                 *

1

( ) ( ) ( , )
n

i i if x a a K x x b


    where *0 ,i i

C
a a

n
                                              [7] 

                                                           
2 A SV is either a boundary vector (  * *( ) / , / , 0i i i ia a C n C n       ) or an error vector ( * *, / , 0i i i ia a C n and    ). 



10 

 

 

Schölkopf et al. (1999) demonstrate that an increase of ε leads to the proportional increase 

of the first term of *

1

1
( )

n

i i

i

v
n

  


 
  

 
 , while the second term decreases proportionally to 

the fraction of points outside the ε-tube. Factor v can be considered as the upper bound on 

the fraction of errors. Similarly a decrease in ε leads to a proportional change of the first 

term, but the second term’s change is proportional to the fraction of SVs. That means that ε 

will shrink as long as the fraction of SVs is smaller than v, therefore v is also the lower band 

in the fraction of SVs. 

3.3. The locally weighted SVR 

Locally weighted SVR (wSVR) is an extension of the Locally Weighted Regression (LWR) to 

the SVR methodology. LWR is a simple memory based procedure for fitting a regression 

surface to the data through multivariate smoothing. It is based on the assumption that the 

nearest to the predictor values are its best indicators. This is extremely beneficial in 

problems such as modelling financial trading series where some training points are more 

important than others and models will have higher accuracy for the training input data that 

are closer to the new input point for prediction. 

LWR can approximate an estimate g(x) of the regression surface for every value x in the 

dimensional space of the independent variables. Following the suggestions of Cleveland and 

Devlin (1988) each point of the neighbourhood is weighted according to its distance from 

point of interest x. The neighborhood is set by estimating the distances of q observations xi 

from x, where 1 q n   Those points that are close to x are assigned large weights, while 

those that are far have small weights. This confirms the local element of the method (Lee et 

al., 2005).The idea of assigning weights to each point of the dataset could be expressed as: 

                                                  [8] 

A quadratic function of the independent variables is fitted to the dependent variable using 

weighted least squares with these weights. In that way, g(x) is taken to be the value of this 

fitted function at x. A distance function in the space of the independent variables and a 

weight function to specify the neighborhood size are needed. The work of Cleveland and 
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Devlin (1988) provides a detailed description on how to select these. The most common 

approach and the one followed in this study is to use the ratio q/n as a smoothness factor. 

The practitioner should interpret the smoothing factor rather than the q. The reason for 

that is that increasing the smoothing factor provides a smoother g(x) estimate. The selected 

weight function is the tricubic one specified below: 

                              

3 3(1 ) ,0 1
( )

0,

u u
W u

otherwise

   
  
                                                                      [9]   

Based on the above, the weight of each training data (xi, yi) is: 

                                     

( , )
( )

( )

i
i i

x x
w x W

d x

 
  

                                                                                                 [10]

  

where ρ is the Euclidian distance and d(x) is the Euclidian distance specifically from the qth-

nearest xi to x. 3 

From equation [9] it is verified that [0,1]iw  .  The weight has its maximum value when xi is 

closest to x and its minimum for the qth-nearest xi to x.           

If we apply the principles of the LWR to SVR, we can obtain a locally Weighted SVR (wSVR), 

where the parameter C is not constant, but locally adjustable: 

                                                                      
*i iC w C

                                                                                  [11] 

In this study, the M plots of Mallows (1973) are applied for the selection of the smoothing 

ratios. Their utility for the LWR is supported by Cleveland and Devlin (1988) because they 

illustrate the trade-off between the variance contribution and bias to the error estimate, as 

the smoothing ratio is changing. Once the optimal smoothing ratio is selected for each point 

of interest, the estimate g(x) uses q observations, whose xi values are closest to x (defined 

                                                           
3 For instance, when the daily return for ETFs is desired and the expected return for the respective 
time series is roughly equal to zero, outliers of 5% gain per ticker could be ignored due to major 
structural change rather than routine behaviour of the time series. In this example x is the expected 
return target when modelling the deviation from this point, the outlier is xi and wi is the weight the 
Euclidean distance assigns to this observation  



12 

 

local neighbourhood). Then, the Euclidian distance between x and xi is scaled over the 

Euclidian distance between the qth-nearest xi from x (equation [10]). This value is then 

inserted in the tricubic function (equation [9]) to estimate the final weight and the final 

appointed Ci (equation [11]). 

For the ε-SVR, the optimization functions Equation [4] is translated to:  

Minimize 2*
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                    [12] 

The v-SVR optimization Equation [6] is now expressed as: 

Minimize 2*
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    [13] 

The traditional SVR attempts to track all training data with a specific model complexity 

through a constant C. Conceptually, this suggests that that the size of *,i i  does not 

fluctuate much. The wSVR, on the other hand, highly penalizes the errors near x in an 

attempt to increase predictability. In that way, wSVR’s predictive performance is increasing 

gradually, as the shape of the weight function is becoming sharper (Lee et al., 2005). In 

other words, the weight of every point for a traditional regression model is 1/n, meaning that the 

assigned weight is similar for every point. In LWR the importance/weight increases continuously, 

once we move from outliers to more central points.  If the weight functions for both cases are 

plotted, the function of the traditional regression would be horizontal line, whereas in LWR the 

function would have a bell-shape around the central point. Once the importance of distance is 

increased through higher orders of power, the LWR function plot becomes narrower or in other 

words sharper. This is a clear point of superiority of LSVR over the non-locally optimized 

method. For more details and the full mathematical derivation of the weighted ε-SVR (ε-

wSVR) see Huang and Shen (2008) and for the weighted v-SVR (v-wSVR) see Elattar et al. 

(2010). 
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3.4. Kernels 

In the heart of all SVR algorithmic procedures lies a kernel function ( , )iK x x . Its role is to 

map the data in a higher dimensional space where the problem can be easily solved. Any 

function that satisfies Mercer's condition by Vapink (1995) can be used as the Kernel 

function. Different kernels lead to different mapping and thus different regression outputs. 

Therefore the correct choice of the kernel function is of outmost important. Unfortunately 

there is no formal way to determine the kernel function a priori4.In this study, the three 

most promising nonlinear kernels (the Gaussian Radial Basis Function, the wavelet kernel 

and the Mahalanobis kernel) will be applied.  

The most common non-linear kernel function is the Gaussian Radial Basis Function (RBF) 

and it is based on the Euclidean distance. It is specified as: 

                                                           
2

( , ) exp( ), 0    i iK x x x x                                                     [a] 

where γ represents the variance of the kernel function. RBF is a flexible kernel with a single 

parameter and a simple numerical solution (Hsu et al., 2003).RBF has provided promising 

empirical results in similar problems (see amongst others Lu et al. (2009), Yeh et al. (2011) 

and Dunis et al. (2013)).  

The Wavelet kernel was introduced by Zhang et al. (2004) and comes from the wavelet 

theory. It takes the form: 

                                                                 )()(),(
a

cx
h

a

cx
hxxK i

i


                                                     [b] 

where a and c are the wavelet dilation and translation coefficients, while h(x) denotes a 

mother wavelet function. Zhang et al. (2004) suggests: )
2

exp()75.1cos()(
2x

xxh  .   

The Mahalanobis kernel is based on the RBF but instead of using the Euclidean distance is 

applying the Mahalanobis distance which takes in account the correlation among the 

                                                           
4 Automatic kernel selection has been proposed by several authors (see for example Ali and Smith-Miles (2006) 

and Howley and Madden (2005)). However overfitting and selection bias dominate such algorithms (Cawley 

and Talbot, 2010).    
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features.  If we consider that all training data belong to a cluster, the Mahalanobis distance 

between a datum x and the cluster is: )()()( 1 cxQcxxd T                                                                                                  

where c is the center vector and Q is the covariance matrix of the data.  The Mahalanobis 

kernel takes the form:    

                                                         ))()(exp(),( 1 xxQxx
m

xxK i

T

ii  
                                        [c] 

where δ>0 is the scaling factor of the Mahalanobis distance.                                                 

 

3.5. Parametrization 

The forecasting performance of the SVRs is heavily dependent on the parameters that the 

practitioner applies to the algorithm. The input and parameters of the SVR along with the 

parameters of the kernel function need to be set up in a priori procedure. Different 

parameters lead to different forecasts.  More specifically the practitioner need to select the 

inputs of the SVR from a pool of potential predictors, parameters C, ε or v for the ε-SVR and 

the v-SVR respectively and the parameters of the kernel function (the gamma parameter in 

the RBF, a and c for the Wavelet and δ and m for the Mahalanobis kernel).   

Several different procedures have been proposed for the SVR parametrization. The most 

popular and one of the simpler approaches is cross validation in the in-sample (see amongst 

others Ince and Trafalis (2006), Pang et al. (2011) and Hsu et al. (2009)). Grid search for SVR 

parametrization has been applied in similar problems with success (see amongst others Hsu 

et al. (2003) and Chen (2014)). Other researchers use variants of the previous two methods 

(see for example Shi et al. (2008) and Huang and Tsai (2009)) or apply heuristics to the task 

(Pai et al., 2006; Yuan, 2012; Dunis et al., 2013).  Unfortunately there is no formal theory 

behind the selection of the appropriate method. In this study the parameters of the SVR and 

the parameters of the kernel function will be selected through a 5-fold cross validation (CV) 

in the in-sample. This approach has provided promising empirical evidence on SVR 

applications in similar problems (Ince and Trafalis, 2006; Pang et al., 2011; Hsu et al., 2009). 

Model selection based on CV processes is well accepted in the econometrics literature and 
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shields against in-sample overfitting (see amongst others Andrews (1991), Hansen (2007), 

An et al. (2007) and Arlot and Celisse (2010)).  

Additionally, the researcher needs to select the inputs of the SVR. This selection depends on 

the problem under study and is crucial to the SVR forecasting performance. The SVR inputs 

should be informationally efficient and independent. Inputs with low or similar information 

can cripple the algorithm’s performance and lead to under-fitting. The SVR studies 

mentioned in the previous sections applied cross validation, heuristics or objective criteria 

to select the input series. In this research, the selection will be based on two statistical 

techniques. At a first stage, a large pool of potential predictors will be created in the in-

sample. This pool will comprise a series5 of Autoregressive (AR), Simple and Exponential 

Moving Average (MA), Autoregressive Moving Average (ARMA) linear models and eight non-

linear algorithms namely a Nearest Neighbours Algorithm (k-NN), two Smooth Transition 

Autoregressive (STAR) models, a Multi-Layer Perceptron (MLP), a Recurrent Neural Network 

(RNN), a Higher Order Neural Network (HONN), a Psi-Sigma Neural Network (PSN) and a 

Radial Basis Function Neural Network (RBFNN). Each of these models is applied to the in-

sample period and generates a forecast for the same period. Then a PCA is applied to this 

pool of forecasts in order to reduce its dimension. Several variables in the predictors pool 

might be correlated and thus offering no extra information.  PCA is a statistical method that 

reduces the dimensions of a dataset with minimal loss of information (for a detail 

description of PCA see Jolliffe (2002)). The first fifty principal components are selected and 

fed to the MCS test. The MCS procedure deduces the ‘best’ models from a full set of models 

under specified criteria as well as a given level of confidence. In this study, the criterion is 

the mean square error (MSE) and the level of confidence is set at 90%.  MCS is a random 

data-dependent set of best forecasting models, as a standard confidence interval covers the 

population parameter, while it acknowledges the limitations of the data (Hansen et al., 

2011). Hence, more informative data can lead to only one best model, whilst less 

informative data result in a MCS including several models, because it is impossible to 

differentiate between the competing approaches. The relaxed confidence level (90%) allows 

us to deduct the best forecasters from the predictors’ pool in the in-sample and these series 

                                                           
5 For a description on these methods see Appendix A. 
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will act as inputs to the SVR algorithm6. This input selection approach is unique in the 

literature and aims to take advantage of some of the latest development in 

statistics/econometrics. The derived inputs should be informationally independent (through 

PCA) and superior (through the MCS test)7. Both the PCA and the MCS test are theoretically 

solid methods and their application should offer an advantage compared to the atheoretic 

approaches that dominate the relevant literature.  

The initial selected SVR inputs for all periods under study are presented in Appendix B. Then 

the parameters of each SVR model are generated through CV in the in-sample. The SVR 

structural risk minimization principle (Amari et al., 1997) and the CV procedure should 

protect the models under study against in-sample overfitting.  

 

4. Empirical Application 

In the next sections, the statistical and the trading evaluation of the models under study is 

presented. 

4.1 Statistical Performance 

The statistical performance of all models in the out-of-sample is presented in table 38. The 

Root Mean Square Error (RMSE), the Pesaran-Timmermann (PT) (1992) test and the findings 

from the Diebold Mariano (DM) (1995) test are reported. The PT test examines whether the 

directional movements of the real and forecast values are the same. In other words, it 

checks how well rises and falls in the forecasted value follow the actual rises and falls of the 

time series. The null hypothesis is that the model under study has no power on forecasting 

the ETF. The DM test checks the null hypothesis of equal predictive accuracy. In this study, 
                                                           
6 In order to further validate the input selection process, the statistical performance of all models with inputs the 

first twenty lags of the series under study, the Exponential Moving Averages (EMA) for orders 2 to 20, the k-

NN and the RNN was computed. In all cases, the in-sample statistical performance of all models under study 

was better with the proposed approach.   
7The PCA analysis ensures that the MCS tests realizations are independent. For example, let us consider two 

input series that are highly correlated and informationally superior to their counterparts. The MCS test is likely 

to select both models as SVR inputs. This would cripple the SVRs’ performance as the two inputs would offer 

similar information.  
8 The in-sample statistical performance is not reported for the sake of space. The statistical ranking of the 

models is similar the out-of-sample. These results are available upon request. From the in-sample performance 

we note that the statistical accuracy of our models do not differ in great extent from their relevant out-of-sample 

performance. The average RMSE for all models and periods decrease in the out-of-sample only by 0.00026. 

This result further validates that the models under study do not suffer from overfitting.  
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the Mean Squared Error is applied as DM loss function and each model is compared against 

a random walk9.  

Table 3. Statistical Performance 

Forecasting Exercise  EWP EWI EWQ EWG EZU 

 
 
 
 
 
 
 
 
 
 
3 January 2009 to 31 
January 2009 

ε-SVRa 0.0054 
(6.93)** 

0.0056 
(7.25)** 

0.0060 
(6.05)** 

0.0055 
(7.56)** 

0.0052 
(7.14)** 

ε-SVRb 0.0056 
(7.01)** 

0.0055 
(6.92)** 

0.0061 
(5.84)** 

0.0059 
(7.78)** 

0.0058 
(6.27)** 

ε-SVRc 0.0052 
(6.69)** 

0.0054 
(7.04)** 

0.0058 
(6.33)** 

0.0057 
(7.01)** 

0.0055 
(6.88)** 

ν-SVRa 0.0053 
(7.14)** 

0.0054 
(8.02)** 

0.0059 
(6.70)** 

0.0052 
(8.00)** 

0.0050 
(8.04)** 

ν-SVRb 0.0056 
(7.29)** 

0.0058 
(7.78)** 

0.0057 
(7.15)** 

0.0055 
(7.71)** 

0.0056 
(7.25)** 

ν-SVRc 0.0052 
(7.61)** 

0.0050 
(7.30)** 

0.0058 
(7.14)** 

0.0054 
(7.90)** 

0.0052 
(7.77)** 

ε-wSVRa 0.0047 
(10.54)** 

0.0049 
(9.86)** 

0.0051 
(8.90)** 

0.0049 
(9.26)** 

0.0044 
(10.48)** 

ε-wSVRb 0.0049 
(10.98)** 

0.0046 
(10.49)** 

0.0049 
(9.73)** 

0.0046 
(9.94)** 

0.0047 
(10.02)** 

ε-wSVRc 0.0047 
(9.82)** 

0.0050 
(10.08)** 

0.0047 
(9.55)** 

0.0045 
(10.33)** 

0.0048 
(10.93)** 

ν-wSVRa 0.0044 
(11.56)** 

0.0048 
(10.90)** 

0.0049 
(10.64)** 

0.0047 
(10.57)** 

0.0042 
(11.49)** 

ν-wSVRb 0.0046 
(10.35)** 

0.0046 
(9.88)** 

0.0045 
(11.05)** 

0.0048 
(10.56)** 

0.0045 
(10.23)** 

ν-wSVRc 0.0047 
(11.94)** 

0.0045 
(11.11)** 

0.0044 
(10.27)** 

0.0044 
(10.80)** 

0.0044 
(10.32)** 

 
 
 
 
 
 
 
 
 
 
3 January 2012 to 31 
December 2012 

ε-SVRa 0.0066 
(5.04)** 

0.0071 
(4.44)** 

0.0076 
(4.29)** 

0.0068 
(6.24)** 

0.0061 
(6.33)** 

ε-SVRb 0.0070 
(4.78)** 

0.0074 
(4.83)** 

0.0078 
(4.56)** 

0.0065 
(6.06)** 

0.0064 
(5.80)** 

ε-SVRc 0.0067 
(5.17)** 

0.0072 
(4.65)** 

0.0074 
(5.40)** 

0.0069 
(5.79)** 

0.0062 
(6.59)** 

ν-SVRa 0.0069 
(5.19)** 

0.0067 
(5.58)** 

0.0070 
(5.06)** 

0.0064 
(6.60)** 

0.0058 
(7.09)** 

ν-SVRb 0.0064 
(6.09)** 

0.0065 
(5.29)** 

0.0068 
(5.74)** 

0.0065 
(6.41)** 

0.0057 
(7.31)** 

ν-SVRc 0.0065 
(6.43)** 

0.0062 
(6.21)** 

0.0066 
(6.09)** 

0.0064 
(6.85)** 

0.0055 
(7.55)** 

ε-wSVRa 0.0059 
(8.37)** 

0.0057 
(8.73)** 

0.0058 
(7.96)** 

0.0056 
(8.44)** 

0.0051 
(8.77)** 

ε-wSVRb 0.0055 
(8.81)** 

0.0059 
(8.03)** 

0.0057 
(8.17)** 

0.0058 
(7.86)** 

0.0054 
(8.52)** 

                                                           
9 A simple random walk is defined as: ( ) , ~ (0,1)t t tE R e e N  where μ is the in-sample mean.  
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ε-wSVRc 0.0055 
(8.10)** 

0.0056 
(8.31)** 

0.0059 
(7.91)** 

0.0059 
(7.39)** 

0.0050 
(9.30)** 

ν-wSVRa 0.0052 
(9.81)** 

0.0050 
(8.69)** 

0.0054 
(8.80)** 

0.0054 
(9.05)** 

0.0049 
(10.15)** 

ν-wSVRb 0.0054 
(9.14)** 

0.0053 
(9.17)** 

0.0051 
(9.95)** 

0.0056 
(8.69)** 

0.0050 
(9.67)** 

ν-wSVRc 0.0053 
(9.47)** 

0.0057 
(9.20)** 

0.0053 
(8.77)** 

0.0057 
(8.38)** 

0.0048 
(9.90)** 

 
 
 
 
 
 
 
 
 
 
3 January 2014 to 31 
December 2014 

ε-SVRa 0.0060 
(5.27)** 

0.0062 
(5.19)** 

0.0065 
(5.53)** 

0.0063 
(6.93)** 

0.0059 
(6.78)** 

ε-SVRb 0.0059 
(5.55)** 

0.0065 
(4.97)** 

0.0069 
(5.17)** 

0.0066 
(6.56)** 

0.0059 
(6.15)** 

ε-SVRc 0.0064 
(5.01)** 

0.0061 
(5.70)** 

0.0070 
(4.88)** 

0.0065 
(6.21)** 

0.0060 
(6.03)** 

ν-SVRa 0.0057 
(7.91)** 

0.0060 
(6.69)** 

0.0063 
(6.14)** 

0.0058 
(7.34)** 

0.0056 
(7.39)** 

ν-SVRb 0.0061 
(6.84)** 

0.0063 
(6.11)** 

0.0062 
(6.44)** 

0.0059 
(7.11)** 

0.0057 
(6.81)** 

ν-SVRc 0.0057 
(7.68)** 

0.0062 
(6.33)** 

0.0063 
(6.70)** 

0.0057 
(7.70)** 

0.0055 
(7.26)** 

ε-wSVRa 0.0052 
(8.71)** 

0.0054 
(8.37)** 

0.0055 
(8.05)** 

0.0054 
(8.38)** 

0.0053 
(8.12)** 

ε-wSVRb 0.0054 
(8.09)** 

0.0055 
(7.86)** 

0.0058 
(8.49)** 

0.0055 
(8.10)** 

0.0054 
(7.70)** 

ε-wSVRc 0.0055 
(8.69)** 

0.0052 
(8.74)** 

0.0056 
(8.90)** 

0.0054 
(8.69)** 

0.0051 
(8.83)** 

ν-wSVRa 0.0049 
(10.29)** 

0.0050 
(9.22)** 

0.0051 
(9.71)** 

0.0051 
(9.30)** 

0.0046 
(9.68)** 

ν-wSVRb 0.0051 
(9.85)** 

0.0053 
(8.98)** 

0.0054 
(9.25)** 

0.0052 
(9.18)** 

0.0048 
(9.03)** 

ν-wSVRc 0.0050 
(10.44)** 

0.0051 
(9.75)** 

0.0052 
(9.35)** 

0.0049 
(9.99)** 

0.0047 
(9.40)** 

Note: The subscript next to each model represents the SVR kernel function. In this table, the RMSE of 
the SVR model forecasts are presented. The values in the parenthesis are the PT statistics. ** denotes 
that the DM null hypothesis of equal predictive accuracy is rejected at the 1% significance level. 

From the table above, we note that the statistical accuracy of our forecasts deteriorates in 

the second period (in the peak of the debt crisis). The locally weighted SVRs produce more 

accurate forecasts than their benchmarks for all periods and ETFs. It seems that the local 

memory feature of the wSVRs, assisted them in this forecasting exercise.  Similarly, the v-

SVRs perform better than their ε-SVR counterparts10. This implies that the v-trick can make 

the SVR algorithm more efficient. Concerning the kernel function, the results are mixed. It is 

not possible to clearly distinguish between the forecasting performances of the three 

different kernels. The RBF and the Mahalanobis kernel seem superior to the Wavelet kernel 

                                                           
10 In order to confirm these findings, the DM statistics for each forecast pair was computed. The realizations of 

the DM test (which are provided as supplementary material) confirm our findings. 
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but this difference is small and not valid in all exercises. The PT statistics indicate that all 

models are capable of capturing the directional movements of the ETF returns. The DM test 

reveals that all forecasts do not have equal predictive accuracy with a simple random walk 

model.   

In addition to the tests above, the Hansen’s (2005) Superior Predictive Ability (SPA) test is 

performed.  The  SPA  test  compares  the  relative  forecasting  performance  between  

multiple  methodologies  in  a  full  set  of  models.  The  null  hypothesis  is  that  the  

benchmark  forecast  is  not  inferior  to  the  best  alternative  one.  The benchmark model is 

a random walk while the set includes the random walk and all the SVR algorithms. As 

performance measurement, we apply the MSE and the Information ratio. Low p-values 

indicate that the respective benchmark model is outperformed by at least one alternative, 

whereas high p-values specify the opposite. The SPA p-values are presented below. 

Table 4. SPA test 

Forecasting Exercise MSE Information Ratio 

3 January 2009 to 31 January 2009 0.001** 0.000** 

3 January 2012 to 31 December 2012 0.002** 0.000** 

3 January 2014 to 31 December 2014 0.000** 0.000** 

Note: ** denotes rejection of the null hypothesis at the 1% significance level. 

Our findings demonstrate that a random walk is not superior from our models. We can 

conclude that the out-of-sample performance of the models under study is genuine.  

4.2 Trading Application 

In trading applications the practitioner’s utmost interest is to produce models that can be 

translated to profitable trades. Trading profitability is not always synonymous to statistical 

accuracy.  In this section, all models are evaluated through a simple trading strategy. The 

strategy is to go ‘long’ when the forecast return is above zero and go or stay ‘short’ when 

the forecast return is below zero. Therefore the position is defined by the sign of the 

forecast. The ‘long’ and ‘short’ ETF position is defined as buying or selling the relevant ETF at 

the current price respectively.  
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ETFs offer investors’ the opportunity to trade stock indices with low transaction costs. For 

the five ETFs under study, the expense ratio is 0.48% per annum11. The annualised return 

and the Information ratio after transaction costs for all models and periods in the out-of-

sample is presented in table 5, while the trading performance measures are described in 

Appendix C. As mentioned in section 2, all models are re-estimated, when the maximum 

drawdown of their trades reaches or exceeds the -10%. This approach keeps the maximum 

consecutive loss of all models close to -10%12.  

Table 5. Trading Performance 

Forecasting Exercise  EWP EWI EWQ EWG EZU 

 

 

 

 

 

3 January 2009 to 31 

January 2009 

ε-SVRa 5.71% 
(1.54) 

6.47% 
(1.49) 

5.90% 
(1.62) 

6.63% 
(1.83) 

6.29% 
(1.75) 

ε-SVRb 6.22% 
(1.74) 

5.83% 
(1.32) 

5.66% 
(1.53) 

6.87% 
(1.92) 

5.61% 
(1.44) 

ε-SVRc 5.95% 
(1.62) 

6.00% 
(1.38) 

6.18% 
(1.75) 

6.12% 
(1.61) 

5.88% 
(1.56) 

ν-SVRa 6.13% 
(1.68) 

6.89% 
(1.70) 

6.73% 
(1.99) 

7.05% 
(2.00) 

7.15% 
(2.11) 

ν-SVRb 6.57% 
(1.88) 

6.91% 
(1.71) 

7.09% 
(2.15) 

6.70% 
(1.85) 

6.64% 
(1.90) 

ν-SVRc 6.74% 
(1.92) 

6.38% 
(1.53) 

6.62% 
(1.95) 

6.99% 
(1.99) 

6.87% 
(2.00) 

ε-wSVRa 8.50% 
(2.61) 

7.75% 
(1.99) 

7.52% 
(2.36) 

8.81% 
(2.75) 

9.27% 
(3.04) 

ε-wSVRb 8.88% 
(2.75) 

8.23% 
(2.14) 

8.34% 
(2.70) 

9.23% 
(2.95) 

8.50% 
(2.70) 

ε-wSVRc 8.27% 
(2.56) 

8.12% 
(2.10) 

8.20% 
(2.65) 

9.58% 
(3.08) 

8.72% 
(2.81) 

ν-wSVRa 10.21% 
(3.21) 

8.94% 
(2.39) 

9.53% 
(3.24) 

10.44% 
(3.45) 

11.08% 
(3.81) 

ν-wSVRb 9.76% 
(3.12) 

8.70% 
(2.30) 

10.44% 
(3.65) 

10.62% 
(3.53) 

10.57% 
(3.61) 

ν-wSVRc 10.63% 
(3.45) 

9.49% 
(2.58) 

10.03% 
(3.47) 

11.17% 
(3.76) 

10.71% 
(3.69) 

 

 

 

ε-SVRa 4.48% 
(0.86) 

3.85% 
(0.63) 

4.75% 
(0.92) 

5.08% 
(0.99) 

3.70% 
(0.52) 

ε-SVRb 4.16% 
(0.77) 

4.20% 
(0.73) 

5.00% 
(1.01) 

4.74% 
(0.86) 

3.71% 
(0.53) 

ε-SVRc 4.59% 
(0.91) 

4.23% 
(0.74) 

5.11% 
(1.06) 

4.59% 
(0.80) 

4.07% 
(0.66) 

                                                           
11 See, https://www.ishares.com/us/index  
12 The only case that models hit the -10% threshold is in the second period (3 January 2012 to 31 December 

2012) and for the simple ε-SVR and v-SVR algorithms. This confirms the difficulty that SVRs face on 

extracting profitable signals on a financial crisis.  

https://www.ishares.com/us/index
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3 January 2012 to 31 

December 2012 

ν-SVRa 5.07% 
(1.08) 

4.88% 
(0.95) 

5.60% 
(1.25) 

5.44% 
(1.12) 

4.63% 
(0.88) 

ν-SVRb 5.80% 
(1.33) 

4.60% 
(0.87) 

6.13% 
(1.45) 

5.02% 
(0.97) 

5.14% 
(1.07) 

ν-SVRc 6.32% 
(1.52) 

5.51% 
(1.16) 

6.54% 
(1.61) 

5.78% 
(1.27) 

5.30% 
(1.14) 

ε-wSVRa 7.25% 
(1.84) 

6.90% 
(1.63) 

7.77% 
(2.08) 

7.31% 
(1.86) 

7.02% 
(1.80) 

ε-wSVRb 7.71% 
(2.02) 

6.63% 
(1.55) 

7.82% 
(2.10) 

7.00% 
(1.75) 

6.85% 
(1.73) 

ε-wSVRc 6.96% 
(1.75) 

7.08% 
(1.70) 

7.32% 
(1.90) 

6.83% 
(1.68) 

7.27% 
(1.90) 

ν-wSVRa 8.46% 
(2.07) 

7.94% 
(1.99) 

8.23% 
(2.24) 

8.34% 
(2.26) 

8.08% 
(2.21) 

ν-wSVRb 7.90% 
(2.25) 

8.12% 
(2.04) 

9.42% 
(2.70) 

7.89% 
(2.09) 

7.75% 
(2.08) 

ν-wSVRc 8.21% 
(2.18) 

8.35% 
(2.14) 

8.49% 
(2.35) 

7.60% 
(1.98) 

7.90% 
(2.12) 

 

 

 

 

 

3 January 2014 to 31 

December 2014 

ε-SVRa 5.39% 
(1.49) 

4.93% 
(1.44) 

5.07% 
(1.55) 

5.57% 
(1.73) 

5.26% 
(1.61) 

ε-SVRb 5.44% 
(1.51) 

5.25% 
(1.58) 

4.70% 
(1.36) 

5.12% 
(1.51) 

4.88% 
(1.43) 

ε-SVRc 4.86% 
(1.28) 

5.70% 
(1.77) 

4.51% 
(1.27) 

4.93% 
(1.43) 

4.59% 
(1.28) 

ν-SVRa 6.38% 
(1.79) 

6.16% 
(1.98) 

6.40% 
(2.22) 

6.13% 
(2.01) 

6.07% 
(2.00) 

ν-SVRb 6.05% 
(1.95) 

6.00% 
(1.92) 

6.58% 
(2.31) 

5.85% 
(1.87) 

5.72% 
(1.85) 

ν-SVRc 6.54% 
(1.95) 

6.29% 
(2.04) 

6.79% 
(2.40) 

6.29% 
(2.10) 

5.66% 
(1.81) 

ε-wSVRa 7.70% 
(2.41) 

7.94% 
(2.75) 

7.85% 
(2.93) 

8.01% 
(2.94) 

7.37% 
(2.66) 

ε-wSVRb 7.29% 
(2.25) 

7.67% 
(2.63) 

8.22% 
(3.12) 

7.75% 
(2.82) 

6.89% 
(2.42) 

ε-wSVRc 7.42% 
(2.30) 

8.28% 
(2.91) 

7.86% 
(2.94) 

8.33% 
(3.11) 

7.54% 
(2.74) 

ν-wSVRa 9.18% 
(3.01) 

8.58% 
(3.03) 

9.22% 
(3.61) 

9.09% 
(3.47) 

8.93% 
(3.42) 

ν-wSVRb 8.82% 
(2.89) 

8.23% 
(2.88) 

9.34% 
(3.68) 

8.74% 
(3.30) 

8.52% 
(3.23) 

ν-wSVRc 9.63% 
(3.20) 

8.80% 
(3.12) 

9.78% 
(3.90) 

9.91% 
(3.85) 

8.95% 
(3.45) 

Note: The subscript next to each model represents the SVR kernel function. The values in the 
table represent the annualised return after transaction costs, while the values in the 
parenthesis are the information ratio after transaction costs.  

From the table above, we note that the v-wSVRc model presents the best trading 

performance for all series and periods under study. Similar with our statistical evaluation, 

the locally weighted SVRs models provide more profitable trades than the simple SVRs. The 
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v-SVRs generate higher annualised return and information ratio than their ε-SVRs 

counterparts. This implies that the theoretical properties through the introduction of the 

memory feature and the v factor in the SVR algorithms as presented in Sections 3.2 and 3.3 

are being translated to a superior out-of-sample forecasting performance. Concerning the 

kernel function, it is not possible to distinguish which one fits best. The Mahalanobis kernel 

seems to provide better trades but not in all cases under study. These results do not confirm 

the belief that the RBF kernel is appropriate at all financial/trading applications. A 

preliminary study on the SVR kernels is necessary before each forecasting exercise.  It is 

worth noting, that all models (even the simplest SVR algorithms) are capable of extracting 

profitable trades.  We also note that during the peak of the debt crisis all models present a 

deteriorating trading performance. It seems that when markets are on turmoil is more 

difficult to generate profitable algorithms. These results provide to some extent evidence in 

favour of the AMH. AMH states that the performance of trading rules varies in different 

periods and during financial crises it is hard to generate profitable trading signals.    

5. Conclusions 

In this study, a ε-wSVR, a ν-wSVR, a ε-SVR and a ν-SVR algorithm are generated and applied 

to the task of forecasting and trading five European ETFs. For each SVR algorithm, the RBF, 

the Wavelet and the Mahalanobis kernel are applied and tested. The SVR input selection is 

based on a PCA, the MCS test and a pool of two hundred eighty four linear and non-linear 

predictors. Concerning the trading application, it is designed to cover the recent EU debt 

crisis, to provide an insight on the performance of the proposed models under different 

market conditions and to provide evidence in favour or against the AMH.  

Compared to previous studies, this research contributes to the literature with the first 

application of wSVR algorithm to a financial trading application. It also explores for the first 

time of the Wavelet and the Mahalanobis kernel in a wSVR framework. Finally, it introduces 

a novel SVR input selection method while it attempts to provide a comparison between the 

ε-SVR and the ν-SVR techniques.  

In terms of the experimental results, the wSVR models seem to outperform the traditional 

SVR models while the ν-SVR algorithms provide more accurate and profitable forecasts than 



23 

 

their ε-SVRs counterparts. From the three different kernels under study, it is impossible to 

distinguish the best. Their performance varies between the periods and the series under 

study. These results do not confirm the golden standard of the RBF kernel in finance studies. 

Concerning the trading application, we note that the performance of all models varies 

between periods and deteriorates in the peak of the EU debt crisis. This confirms to some 

extent the AMH, which states that the performance of trading rules is unstable and it 

worsens in financial turmoil.  

These results should go forward on convincing researchers and academics on exploring 

different and more complicated SVR algorithms, kernels and SVR input selection techniques. 

It seems that the SVR performance is highly sensitive on the algorithms parameters. This 

research supports the notion that extensive experimentation is needed before each SVR 

business application.   
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Appendix 

A. Predictors’ pool 

In this section, a brief description on the series that comprise the predictors’ pool is 

provided. The predictor’s pool is generated in the in-sample. From this pool, the SVRs’ 

inputs are selected through a PCA and the MCS test in the in-sample. The pool is consisted 

by two hundred seventy six linear and eight non-linear forecasters. Matlab R2010a and a PC 

with Intel Processor I7 and 8GB RAM were used in all simulations. 

A.1. Linear Predictors  

The linear predictors are consisted by a series of SMA, EMA, AR and ARMA models. A 

description of these forecasters is on Table A.1 below. 

Table A.1: Linear Predictors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The computational cost of the linear predictors for the series under study does not exceed 

seven minutes.  
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A.2. Non-Linear Predictors  

A brief summary of the seven non-linear predictors is presented in the next sections. 

 

A.2.1. Nearest Neighbors Algorithm (k-NN) 

Nearest Neighbors is a class of non-linear and non-parametric models based on the work of 

Fix and Hodges (1951). They are based on the idea that pieces of time series in the past have 

patterns which might have resemblance to pieces in the future. Similar patterns of behavior 

are located in terms of nearest neighbors using the Euclidean distance and these patterns 

are used to predict behavior in the immediate future. It only uses local information to 

forecast and makes no attempt to fit a model to the whole time series at once. In this study, 

we followed the guidelines of Huck and Guégan (2005) in modelling the k-NN algorithm. The 

researcher has to define three parameters: the number of neighbors K, the length of the 

nearest neighbor’s pattern m and the weighting of final prices in a neighbor α'.  Huck and 

Guégan (2005) suggest that K and m should be dependent on the size of the information set. 

Parameter m should be chosen through the interval: 

[ (ln( )), (ln( ) 2)]m R T R T                                                 [A.1] 

where R is the rounding function rounding to the immediate lower figure and T the size of 

the in-sample dataset. Parameter K should be approximately twice the value of m. 

The computational cost of the k-NN algorithm for the series under study does not exceed 

five minutes. 

A.2.2. Smooth Transition Autoregressive models (STAR)  

STAR models were introduced by Chan and Tong (1986). A STAR algorithm combines two AR 

models with a function that defines the degree of non-linearity (smooth transition function). 

In general, they take the form:    

 1 2( ) (1 '( ', ', ')) '( ', ', ') 't t t t t tE R F z F z u                                             [A.2] 
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where
,0 ,1 ,' ( , ,... ), 1,2i i i i p i      and 

,0 ,1 ,, ,...i i i p   the regression coefficients of the two 

AR models, (1, )t t    with 
1 ''(R ,...,R )t t t p  

  , 0 '( ' , ', ') 1tF z     the smooth 

transition function, 
'' , ' 0t t dz R d   the lagged endogenous transition variable, ζ' the 

parameter that defines the smoothness of the transition between the two regimes, λ' the 

threshold parameter and ut’  the error term. The most popular smooth transition functions 

are the first order logistic function (LSTAR) and the exponential function (ESTAR).  In this 

study, the two-resime LSTAR and ESTAR are explored. The construction of the algorithms is 

based on the guidelines of Lin and Teräsvirta (1994). For both models the orders 1 to 20 are 

explored. 

The computational cost of both STAR algorithms for the series under study does not exceed 

five minutes. 

A.2.3. Neural Networks (NNs)  

NNs is a class of artificial intelligence models inspired by the work and functioning of 

biological neurons. They exist in different forms and architectures. The simpler and most 

popular NN is the Multi-Layer Perceptron (MLP). A standard MLP has at least three layers. 

The first layer is called the input layer (the number of its nodes corresponds to the number 

of explanatory variables). The last layer is called the output layer (the number of its nodes 

corresponds to the number of response variables). An intermediary layer of nodes, the 

hidden layer, separates the input from the output layer. Its number of nodes defines the 

amount of complexity the model is capable of fitting. In addition, the input and hidden layer 

contain an extra node called the bias node. This node has a fixed value of one and has the 

same function as the intercept in traditional regression models. Each node of one layer has 

connections to all the other nodes of the next layer.   

The network processes information as follows: the input nodes contain the value of the 

explanatory variables. Since each node connection represents a weight factor, the 

information reaches a single hidden layer node as the weighted sum of its inputs. Each node 

of the hidden layer passes the information through a non-linear activation function and 

passes it on to the output layer if the calculated value is above a threshold. The training of 

the network (which is the adjustment of its weights in the way that the network maps the 
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input value of the training data to the corresponding output value) starts with randomly 

chosen weights and proceeds by applying a learning algorithm called back-propagation of 

errors (Shapiro, 2000)13. The learning algorithm tries to find those weights which minimize 

an error function (in our case the sum of all squared differences between target and actual 

values). Since networks with sufficient hidden nodes are able to learn the training data (as 

well as their outliers and their noise) by heart, it is crucial to stop the training procedure at 

the right time to prevent overfitting (this is called ‘early stopping’). This is achieved by 

dividing the dataset into three subsets respectively called the training and test sets (the 80% 

and the 20% of the in-sample respectively) used for simulating the data currently available 

to fit and tune the model and the validation set used for simulating future values. The 

network parameters are then estimated by fitting the training data using the 

backpropagation of errors. The iteration length is optimized by maximizing the forecasting 

accuracy for the test dataset. Then the predictive value of the model is evaluated applying it 

to the validation dataset (out-of-sample dataset).  

In addition to the MLP network, a Recurrent Neural Network (RNN) is also applied. A simple 

RNN has an activation feedback which embodies short-term memory. In the RNN, the inputs 

are (potentially) taken from all previous values. On the one hand, this leads to more 

connections, more memory during simulations than standard MLPs and substantially more 

computational time (see Tenti (1996)). On the other hand, the additional memory leads to a 

superior forecasting performance compared to standard backpropagation networks. The 

third NN model included in the feature space is the Higher Order Neural Network (HONN). 

HONNs are able to simulate higher frequency, higher order non-linear data, and 

consequently provide superior simulations. They provide some rationale for the simulations 

they produce and thus can be regarded as “open box” rather than “black box”. Their main 

disadvantage is that the required number of weights increases exponentially with the 

number of inputs.  Psi Sigma Networks (PSNs) are considered as a class of feed-forward fully 

connected HONNs. First introduced by Ghosh and Shin (1991), the PSN creation was 

motivated by the need to create a network combining the fast learning property of single 

layer networks with the powerful mapping capability of HONNs, while avoiding the 

                                                           
13 Backpropagation networks are the most common multi-layer networks and are the most commonly used type 

in financial time series forecasting (Kaastra and Boyd, 1996). 
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combinatorial increase in the required number of weights.  In these networks the weights 

from the hidden to the output layer are fixed to 1 and only the weights from the input to 

the hidden layer are adjusted, something that greatly reduces the training time. Moreover, 

the activation function of the nodes in the hidden layer is the summing function, while the 

activation function of the output layer is a sigmoid. The order of the network in the context 

of PSN is represented by the number of hidden nodes. A Radial Basis Function Neural 

Network (RBFNN) is a feedforward neural network where hidden units do not implement an 

activation function, but a radial basis function. An RBFNN approximates a desired function 

by superposition of non-orthogonal, radially symmetric functions. They have been proposed 

by Broomhead and Lowe (1988) as an approach to improve accuracy of artificial neural 

networks while decreasing training time complexity. Compared to the classical MLPs, they 

faster convergence, smaller extrapolation errors and higher reliability. For more details on 

the MLP and the HONN see Dunis et al. (2010 and 2011). An analysis of the RNN 

architecture is provided by Tenti (1996) and Ghosh and Shin (1991) provide a detail insight 

on the PSN model. More details on the RBFNN can be found on Broomhead and Lowe 

(1988)14.  

There is no formal theory behind the selection of the NN inputs and their parameters 

(number of hidden neurons, learning rate, momentum and iterations). For that reason, we 

conduct NN experiments and a sensitivity analysis on a pool of lags of the forecasted series 

in the in-sample dataset. For example, regarding the number of iterations we started from 

5.000 iterations and stopped at the 100.000 iterations, increasing in each experiment their 

number by 5.000. This is a very common approach in the literature (Tenti, 1996; Zhang et 

al., 1998). Based on these experiments and the sensitivity analysis, the sets of variables and 

parameters selected are those that provide the higher trading performance for each 

network in each in-sample period.  For example, the inputs set of the five NNs in the first 

forecasting exercise for the EWP ETF is presented in table A.2 below.  

 

 

                                                           
14 In this study, we follow the guidelines of Broomhead and Lowe (1988), Tenti (1996), Ghosh and Shin (1991) 

and Dunis et al. (2010 and 2011) in modelling our NNs. For the sake of space, the analysis of the NNs 

architectures is brief. More details on the training and architecture of these models is available upon request.  
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Table A.2: Neural Network Inputs 

Note: The value in the parenthesis represents the order of the lag series 

For the same period and series, the parameters of the NNs models are presented in table 

A.3. 

Table A.3: Neural Network Inputs 

 

The computational cost for all NN models for the series under study does not exceed twenty 

minutes.  

B. Initial SVR Inputs 

Table B.1 presents the initial set of SVR inputs selected for each forecasting exercise. The 

selection process (see Section 3.5) depends on the forecasting power of each predictor and 

not on the individual SVR characteristics. Thus, the initial sets of inputs are the same for 

each SVR algorithm. However, based on the trading performance of each SVR, the set of 

inputs might change. This depends whether the consecutive losses of a SVR reach or exceed 

the -10% threshold.  

 

 

 

 
MLP RNN HONN PSN RBFNN 

EWP 

EWP (1) EWP (1) EWP (1) EWP (1) EWP (1) 

EWP (2) EWP (2) EWP (2) EWP (2) EWP (2) 

EWP (4) EWP (3) EWP (3) EWP (4) EWP (3) 

EWP (5) EWP (5) EWP (4) EWP (5) EWP (5) 

EWP (7) EWP (6) EWP (6) EWP (6) EWP (6) 

 EWP (8) EWP (8) EWP(7)  

   EWP(9)  

 
PARAMETERS 

MLP RNN HONN PSN RBFNN 

EWP 

 

Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent k-means clustering 

Learning rate 0.004 0.002 0.4 0.3 - 

Momentum 0.005 0.003 0.5 0.4 - 

Iteration steps 40000 30000 20000 20000 2000 

Initialisation  

of weights 
N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 5 6 6 7 5 

Hidden nodes  3 4 3 4 3 

Output node 1 1 1 1 1 
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Table B.1: SVR Inputs 

 

From the table above, it seems that the input selection process excludes all linear 

predictors. From the non-linear models, the RNN is the most popular and the ESTAR, HONN 

and the PSN the less popular choices.  

C. Trading Performance Measures 

The trading performance measures are described in Table C.1 below. 

Table C.1: Trading Performance Measures 
 

Forecasting 
Exercise 

EWP EWI EWQ EWG EZU 

1 RNN, RBFNN, 
k-NN 

RNN,  RBFNN, 
LSTAR 

RNN, k-NN,  
RBFNN , MLP 

RNN, k-NN, 
MLP 

RNN,  RBFNN , 
LSTAR 

2 RNN, MLP, k-
NN, ESTAR 

MLP, k-NN, 
PSN, LSTAR 

RNN, RBFNN, 
k-NN 

RNN, k-NN, 
PSN, LSTAR 

RNN,  RBFNN,  
k-NN 

3 RNN, RBFNN, 
k-NN 

RNN, RBFNN, 
LSTAR 

RNN, k-NN, 
LSTAR 

RNN,  RBFNN, 
HONN, k-NN 

RNN, MLP, 
LSTAR 

TRADING PERFOMANCE 
MEASURES 

DESCRIPTION 

Annualized Return 
  where  the daily return and is the 

annualized transaction cost 

Annualized Volatility  where  is the mean return 

Information Ratio 
 

Maximum Drawdown 

Maximum negative value of  over the period  

1, , ; 1, ,
j

i N
j i

MD Min R


  


 
  

 


 


