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Abstract 

The design of slender power ultrasonic devices can often be challenging due to the excitation of parasitic modes of vibration 
during operation. The excitation of these modes is known to manifest from behaviors such as modal coupling which if not 
controlled or designed out of the system can, under operational conditions, lead to poor device performance and device failure. 
However, a report published by the authors has indicted that the excitation of these modes of vibration could be minimized 
through device design, specifically careful location of the piezoceramic stack. This paper illustrates that it is possible, through 
piezoceramic stack position, to minimize modal coupling between a parasitic mode and the tuned longitudinal mode of vibration 
for slender ultrasonic devices. 
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1. Main Text 

It has been widely documented that ultrasonic devices can exhibit vibrational responses that lie outwith their 
linear vibrational regime. These nonlinear behaviors can be induced in the ultrasonic device through modal coupling 
or by the excitation of autoparametric or Duffing-like responses (Cardoni et al. 2004, Mathieson et al. 2013, Aurelle 
et al. 1996). Slender ultrasonic cutting devices, such as devices used in the food industry to cut textured or layered 
products or those utilized in surgical procedures to cut soft or hard tissue, can be prone to exhibiting such behaviors, 
which if allowed to manifest can lead to suboptimal performance or premature device failure. 
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Modal coupling can occur in ultrasonic devices under several scenarios; when two or more resonant frequencies 
are spaced sufficiently close together, when two or more modes of vibration exhibit high damping, or through a 
combination of the two previous conditions. This induces a vibrational response which is not dominated by a single 
mode of vibration, but contains characteristics of multiple modes of vibration (Ewins 2000). Typically, slender 
ultrasonic devices such as cutting devices, which exhibit modal coupling, are driven in a longitudinal mode of 
vibration. This will generally couple with a (parasitic) bending mode of vibration which manifests in the response as 
a combined longitudinal-bending mode of vibration, and which can induce elevated stresses in the device.  

Traditionally, the piezoceramic stack of the transducer is located at or close to the nodal plane of the longitudinal 
mode of vibration, however, this location often lies close to the nodal plane of a neighboring mode of vibration, 
which under the correct conditions can couple with the tuned mode of vibration. Previous observations have 
indicated that the location of the piezoceramic stack in the transducer can affect the level of the response of a mode 
of vibration to an extent that it can be reduced if the piezoceramic stack is located in its anti-nodal plane (Mathieson 
et al. 2013). Therefore, this report investigates the possibility of reducing the response of a parasitic mode of 
vibration when a device is driven in its tuned longitudinal mode of vibration through locating the piezoceramic stack 
in the anti-nodal plane of the parasitic mode. 

2. Investigated devices 

The investigated ultrasonic devices consist of a Langevin transducer and rod horn, Fig. 1. The transducers, which 
are half-wavelength, consist of a titanium alloy endmass (TiAl6V4) and four PZT8 equivalent piezoceramic rings 
(Sonox P8), while the TiAl6V4 rod horns, either ϕ9mm or ϕ5mm, are also half-wavelength. The devices are tuned to 
vibrate longitudinally at a frequency between 27.0 and 30.1 kHz, however, the devices are also designed so that a 
parasitic bending mode of vibration is tuned at a resonant frequency close to the resonant frequency of the 
longitudinal mode of vibration. The devices named T1D9 and T2D5 are tuned so that the piezoceramic stack is 
located in the nodal plane of the parasitic mode of vibration (this location also corresponds with the longitudinal 
nodal plane for T1D9), while T2D9 and T1D5 are tuned so that the piezoceramic stack is located at the anti-nodal 
plane of the parasitic mode of vibration. The 7th bending mode was tuned as the parasitic mode that neighbors the 
tuned longitudinal mode of T1D9 and T2D9, while the 5th bending mode of the rod horn neighbors the tuned 
longitudinal mode of T1D5 and T2D5. 

Fig 1: Full-wavelength devices; (a) transducer 1 with ϕ9mm rod horn (T1D9), (b) transducer 2 with ϕ9mm rod horn (T2D9), (c) transducer 1 
with ϕ5mm rod horn (T1D5) and (d) transducer 2 with ϕ5mm rod horn (T2D5) 

3. Device characterization 

3.1. Resonant frequency and mode shape identification 

The resonant frequencies and corresponding modes of vibration of the devices were identified in the frequency 
range of 0-80 kHz using experimental modal analysis (EMA), Fig. 2(a). To facilitate this, the devices were excited 
with a random excitation signal at low power by a function generator inbuilt to the data acquisition hardware 
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(DataPhysics Quattro) and then amplified through a power amplifier (QSC RMX 4050HD). A 3D laser Doppler 
vibrometer (LDV) (Polytec CLV-3D), was used to measure the velocity responses over a grid of points located on 
the surface of the devices and the acquired frequency response functions, with a resolution of 1.6 Hz, were recorded 
using data acquisition software (Signal Calc ACE, DataPhysics). The frequency response functions were imported to 
modal analysis software (ME'ScopeVES, Vibrant Technology), where the modal parameters of modal frequency and 
mode shape, were identified from the model. Lastly, the mode shapes were visualized using a 3D model that 
represented the geometry of the devices. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: (a) Schematic of EMA, and (b) LDV configuration during harmonic analysis 

3.2. Harmonic analysis 

The devices were excited close to the frequency of the tuned longitudinal mode via bi-directional frequency 
sweeps. It has been widely reported in the literature that piezoelectric material properties vary with changes in 
temperature, with the subsequent effect that this influences the behavior of the ultrasonic device (Aurelle et al. 1996, 
Mathieson et al. 2013). To ensure that heating within the piezoceramic stack did not significantly influence the 
response, the devices were excited under constant voltage conditions with a burst-sine signal which had a fixed 
length of 4000 cycles. This excitation interval was sufficient for the device to achieve steady-state conditions, but 
minimized heating within the stack. Furthermore, a time delay of 2.5 seconds was incorporated between successive 
bursts to allow for any residual heat to dissipate. 

The devices were excited at five voltage levels between 2 Vpeak and 10 Vpeak with a frequency increment step of 2 
Hz. The sinusoidal excitation signal was generated by a function generator (Agilent 3322A) which was amplified 
through a power amplifier (HFVA-62). A 1D LDV (Polytec OFV 3001 with OFV 303 sensor head) was used to 
measure the axial (Z-direction) velocity response of the rod horn while a 3D LDV (Polytec CLV 3000) was used to 
measure the radial (R-direction) velocity response at the free end of the rod horns, Fig. 2(b).  

4. Results 

4.1. Resonant frequency and mode shape identification 

Fig. 3 presents the curve-fitted FRFs of the devices and Fig. 4 depicts the mode shapes of the longitudinal and 
bending modes identified from the experimental measurements. As expected, the response of the longitudinal mode 
dominates the neighboring bending mode, however, it can be observed from Fig. 3 that the response of the bending 
mode in T1D9 and T2D5 is slightly stronger than those observed in the FRFs of T2D9 and T1D5.  

Other modes of vibration, 2nd and 3rd torsional (T2 and T3) as well as the 9th bending (B9) modes and the 1st 
longitudinal mode of the bolt, have been identified in the curve-fitted response of T1D9, while not observed in the 
response of T2D9. This indicates that torsional modes of vibration are not easily excited unless the piezoceramic 
stack is located in their nodal plane, while longitudinal modes of vibration, specifically of the bolt in this study, are 
also easier to excite when the piezoceramic stack is located in a nodal plane. However, it can also be observed that 
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the 4th bending (B4) mode appears in the response of T2D9 while not in the response of T1D9. This illustrates how 
locating the stack in the anti-nodal plane of one mode of vibration (B7) can inherently locate it in the nodal plane of 
another mode of vibration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Curve-fitted FRF plots, where (i) presents the full 0-80 kHz frequency range and (ii) presents an expanded region of the FRF at the 

frequencies of interest (a) T1D9, (b) T2D9, (c) T1D5 and (d) T2D5 
 

Fig. 4: Bending and longitudinal mode shapes of devices; (i) deformed and undeformed plot, (ii) contour plot, where high vibrational 
amplitude is depicted as red and the lowest as blue for (a) T1D9, (b) T2D9, (c) T1D5 and (d) T2D5 

4.2. Harmonic analysis 

As expected, the response of the transducer measured in the Z-direction, Fig. 5(i), is dominated by motion 
generated by the longitudinal mode of vibration. Only the longitudinal mode is detected in the responses of T1D9, 
T2D9 and T1D5, however in the Z-direction response of T2D5, both the parasitic (horn B5 mode) and the 
longitudinal mode can be detected. Measurements taken in the R-direction confirm that the parasitic mode of 
vibration of T2D5 is significantly more responsive than those of the other devices. Furthermore, it is considerably 
more responsive at the longitudinal resonant frequency. This indicates that a strong coupling is occurring between 
the longitudinal mode and the parasitic mode of vibration. This is confirmed by the longitudinal mode shape, 
identified through EMA, Fig. 3(d), as this clearly illustrates that the longitudinal mode exhibits bending responses.  

Although T1D5 also exhibits vibrational motion in the R-direction, Fig. 5(c), and the longitudinal mode shape 
contains a bending component stemming from the parasitic mode of vibration, Fig. 3(c), the significantly reduced 
vibrational response measured in the R-direction indicates that locating the piezoceramic stack in the anti-nodal 
plane of the parasitic mode reduces the response induced by that mode of vibration. The responses of T1D9 and 
T2D9 indicate similar findings. The device with the piezoceramic stack located in the nodal plane (T1D9) exhibits a 
larger response in the R-direction when excited at the tuned longitudinal mode than the device with the 
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piezoceramic stack located in the anti-nodal plane (T2D9). The mode shape of the longitudinal mode of T1D9 also 
exhibits a bending component, Fig. 3(a), while T2D9 exhibits a limited response in the R-direction while the 
longitudinal mode shape does not appear to contain a bending component, Fig. 3(b).   

Another behavior typical of power ultrasonic devices, stiffness softening, can also be observed in the responses 
as a lowering of the resonant frequency for increasing amplitude, however, as the devices were driven within a 
relatively low excitation range, it is not possible to fully assess the effect that the piezoceramic stack location has on 
this nonlinear behavior. Finally, it can be observed from the harmonic sweeps, Fig. 5, that the parasitic mode 
appears to be excited at two distinct frequencies, Fig. 5(a), 5(c) and 5(d). This phenomenon is known as repeated 
modes, or multiple modes, and can arise in devices that are nominally symmetric but possess a degree of 
asymmetry.    

Fig. 5: Harmonic sweeps close to the resonant frequencies of interest; (i) displacement in Z-direction, (ii) displacement in R-direction for (a) 
T1D9, (b) T2D9, (c) T1D5 and (d) T2D5 

5. Conclusions 

This report has demonstrated that locating the piezoceramic stack of a slender power ultrasonic device at the anti-
nodal plane of a mode of vibration reduces the vibrational response of that mode. Furthermore, locating the 
piezoceramic stack in the anti-nodal plane of a parasitic mode of vibration that closely neighbors the tuned mode of 
vibration, has been shown to reduce coupling between the tuned mode and the parasitic mode. Therefore, by 
implementing these findings into the design of ultrasonic devices, especially those with slender geometries, which 
exhibit modal coupling between the tuned mode of vibration and a parasitic mode of vibration, it may be possible to 
remove or minimize modal coupling and improve performance and reliability.    

 
Acknowledgements 

This project was funded by the Engineering and Physical Science Research Council (EPSRC), grant number 
EP/K020013/1. Thanks to Ceram Tec UK Ltd for supplying the piezoceramic material used in the transducers.  

 
References 
A. Cardoni, M. Lucas, M. Cartmell, F. Lim, A novel multiple blade ultrasonic cutting device. Ultrasonics 42 (2004) 69.  
A. Mathieson, A. Cardoni, N. Cerisola, M. Lucas, The influence of piezoceramic stack location on nonlinear behavior of langevin transducers. 
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (2013) 1126. 
D.J. Ewins, Modal testing; theory, practice and application. Wiley, UK, 2000. 
N. Aurelle, D. Guyomar, C. Richard, P. Gonnard, and L. Eyraud, Nonlinear behavior of an ultrasonic transducer. Ultrasonics 34 (1996) 187. 

 
 


