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LINEAR DEGENERATIONS OF FLAG VARIETIES

G. CERULLI IRELLI, X. FANG, E. FEIGIN, G. FOURIER, AND M. REINEKE

Abstract. Linear degenerate flag varieties are degenerations of flag varieties as
quiver Grassmannians. For type A flag varieties, we obtain characterizations of
flatness, irreducibility and normality of these degenerations via rank tuples. Some
of them are shown to be isomorphic to Schubert varieties and can be realized as
highest weight orbits of partially degenerate Lie algebras, generalizing the corre-
sponding results on degenerate flag varieties. To study normality, cell decomposi-
tions of quiver Grassmannians are constructed in a wider context of equioriented
quivers of type A.

1. Introduction

Let B be a Borel subgroup in the group SLn+1. The flag variety SLn+1 /B has an
explicit realization in linear algebra terms. Namely, let V be an n + 1-dimensional
vector space. Then SLn+1 /B is isomorphic to the variety of collections V1, . . . , Vn of
subspaces of V , such that Vi ⊂ Vi+1 and dimVi = i. One can think of Vi as sitting
inside its own copy of V . Let us denote the identity maps id : V → V by fi. Then
a point in the flag variety is a collection of subspaces Vi ⊂ V such that dimVi = i
and fiVi ⊂ Vi+1. This construction can be generalized in a very straightforward way:
namely, we allow the fi to be arbitrary linear maps from V to V . We denote the
resulting variety by Flf∗(V ), where f∗ is the collection of maps fi. The varieties
Flf∗(V ) can be naturally seen as degenerations of the classical flag variety SLn+1 /B
(which corresponds to fi = id); we thus call Flf∗(V ) the f∗-linear degenerate flag
variety.

Varying f∗, one can glue the varieties Flf∗(V ) together into a universal object Y .
By definition, there is a map π from Y to the parameter space R of all possible f∗
(this is nothing but the product of n−1 copies of the space of linear endomorphisms
from V to V ). We call Y the universal linear degeneration of the flag variety. The
main goal of the paper is to study the variety Y , the map π : Y → R and the fibers
of the map π.

Our motivation comes from several different sources of representation theory and
algebraic geometry. In [13] the PBW degenerations (G/B)a of the classical flag va-
rieties G/B were constructed. The construction is of Lie-theoretic nature and works
for arbitrary Lie groups. More precisely, one starts with an irreducible representation
of G and, using the PBW filtration on it, constructs the associated graded space.
Then the degenerate flag variety (G/B)a is the orbit closure of an abelian additive
group acting on the projectivization of the PBW graded representation. Being ap-
plied to the case of SLn+1, the construction produces the variety Flf∗(V ) with all fi
being corank one maps whose kernels are linear independent. It has been observed in
[6] that methods of the theory of quiver Grassmannians can be used in order to study
the properties of the PBW degenerations. Moreover, in [6] a family of well-behaved
quiver Grassmannians was defined; these projective algebraic varieties share many
nice properties with the PBW degenerate flag varieties. Finally, in [9] the authors
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have identified the degenerate flag varieties (G/B)a in types A and C with certain
Schubert varieties (for larger rank groups). So for special values of f∗ the varieties
Flf∗(V ) have nice geometric properties and many rich connections to structures of
Lie theory and representation theory of quivers. It is thus very reasonable to ask
whether one can describe and study the f∗-linear degenerate flag varieties for other
f∗ and the global (universal) degeneration Y .

We note that the parameter space R is naturally acted upon by the group GL(V )n.
It is easy to see that the varieties Flf∗(V ) and Flg∗(V ) are isomorphic if f∗ and g∗
belong to the same group orbit. The orbits of GL(V )n are parametrized by tuples
r = (ri,j)i<j of ranks of the composite maps fj−1 ◦ · · · ◦ fi. We denote the orbit
corresponding to the rank tuple r by Or ⊂ R. For example, the rank tuple r

0 is
defined by r0i,j = n+1; the corresponding f∗-degenerate flag varieties are isomorphic
to the classical flag variety SLn+1 /B. We note that the orbit Or0 degenerates to
any other orbit Or. The main result of the paper is the description of the following
diagram of subsets of R:
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inclusions of subsets:

UPBW ⊂ Uflat,irr ⊂ Uflat ⊂ R

The sets U• are defined as follows:

• Uflat ⊂ R is the subset of R over which π is flat;
• Uflat,irr ⊂ R is the subset of R over which π is flat with irreducible fibers;
• UPBW ⊂ R is the subset of R where the kernels of the maps fi are at most

one–dimensional and linearly independent.

Each subset is a union of several GL(V )n orbits; the properties of the f∗-degenerate
flag variety strongly depend on the set f∗ belongs to. Let r

2 be the rank tuple such
that r2i,j = n− j + i. Our first theorem gives a description of the largest set Uflat.

Theorem A. a) Uflat is the union of all orbits degenerating to Or2.
b) Over Uflat all fibers are reduced locally complete intersection varieties admit-

ting a cellular decomposition.
c) the number of irreducible components of the fiber over a point of Or2 is equal

to the n-th Catalan number.

Let r
1 be the rank sequence such that r

1
i,j = n + 1 − j + i. The second theorem

describes the flat locus with irreducible fibers.
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Theorem B. a) Uflat,irr is the union of all orbits degenerating to Or1.
b) A π–fiber in Uflat is irreducible if and only if it is normal.
c) The π-fiber over any point from Or1 is isomorphic to the PBW degenerate

flag variety (SLn+1 /B)a.

Finally, the third theorem describes the locus of f∗, such that the structure of the
varieties Flf∗(V ) is very similar to the PBW degenerate flag varieties.

Theorem C. All π–fibers over points in UPBW are PBW–type degenerations of the
complete flag variety. Each of them is acted upon by a unipotent group with an open
dense orbit and it is naturally isomorphic to a Schubert variety.

The paper is organized as follows.
In Section 2, we introduce the notion of linear degenerate flag varieties and explain

the goal of this paper. Quiver Grassmannians are recalled in Section 3, and results
on dimension estimation are obtained.

Statements in Section 2 are translated into the language of quiver Grassmannians
in Section 4; orbits and transversal slices in the flat irreducible locus are studied
therein. We study the PBW locus in Section 5, where Theorem C is proved. In Sec-
tion 6, we prove Theorems A and B and study the desingularization of irreducible
components of the fibers over Or2 .

Acknowledgements. X.F. is supported by the Alexander von Humboldt Founda-
tion. X.F would like to thank G.C-I. for invitation to Sapienza-Università di Roma
where part of this work is carried out. G.C-I., G.F. and M.R. were partially sup-
ported by the DFG priority program 1388 “Representation Theory“, in whose context
this project has been initiated. E.F. was supported by the RSF–DFG grant 16-41-
01013. G.C.I. was also supported by the italian FIRB program “Perspectives in Lie
Theory" RBFR12RA9W.

2. Setup

We fix the field of complex numbers C to be the base field.
Fix n ≥ 1, and denote by V an (n + 1)-dimensional C-vector space with basis

v1, . . . , vn+1. We consider sequences of linear maps

V
f1

// V
f2

// · · · //
fn−1

// V,

denoted as f∗ = (f1, . . . , fn−1). These can be viewed as closed points of the variety

R = Hom(V, V )n−1,

on which the group G = GL(V )n with elements g∗ = (g1, . . . , gn) acts via base
change:

g∗ · f∗ = (g2f1g
−1
1 , g3f2g

−1
2 , . . . , gnfn−1g

−1
n−1).

This action admits an open orbit

Uiso = G · (idV , . . . , idV )

consisting of tuples of isomorphisms.
Let U∗ = (U1, . . . , Un) be a tuple of subspaces in V such that dimUi = i, for

all i = 1, . . . , n. Such tuples are viewed as the closed points of the product of
Grassmannians

Z = Gr1(V )× . . .×Grn(V ),
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which is a homogeneous space for the natural translation action of G given by

g∗ · U∗ = (g1U1, . . . , gnUn).

We call f∗ and U∗ compatible if

fi(Ui) ⊂ Ui+1 for all i = 1, . . . , n− 1.

Let Y be the variety of compatible pairs of sequences of maps and sequences of
subspaces, that is,

Y = {(f∗, U∗), fi(Ui) ⊂ Ui+1 for all i = 1, . . . , n− 1} ⊂ R × Z.

The actions of G on R and Z induce an action of G on Y . The projection p : Y → Z
is G-equivariant, turning Y into a homogeneous fibration over Z. The p-fiber over a
tuple (U1, . . . , Un) can be identified, fixing complements Vi to Ui in V for all i, with

∏

i<n

(Hom(Ui, Ui+1)⊕ Hom(Vi, V )) ,

thus p is a homogeneous vector bundle over Z. In particular, the variety Y is smooth
and irreducible. To summarize the setup so far, we have the following diagram of
G-equivariant varieties and maps:

Y

π

��✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏

p

��
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

a smooth irreducible G–variety

projective G–map G–homogeneous vector bundle

affine G–variety R Z G–homogeneous space

The projection π : Y → R is projective, and the fiber over (idV , . . . , idV ) can be
identified with the complete flag variety Fl(V ). Every fiber π−1(f∗) of π can thus be
viewed as a degenerate version of the complete flag variety.

Definition 1. For f∗ ∈ R, we call

Flf∗(V ) = π−1(f∗)

the f∗-linear degenerate flag variety. We call the map π : Y → R the universal linear
degeneration of Fl(V ). We define Uflat ⊂ R as the subset of R over which π is flat,
and Uflat,irr ⊂ R as the subset of R over which π is flat with irreducible fibers.

By definition, we have

Uiso ⊂ Uflat,irr ⊂ Uflat ⊂ R.

Our aim is to describe these loci and to study the geometry of the corresponding
linear degenerate flag varieties.

3. Methods from the representation theory of quivers

3.1. Quiver representations. For all basic definitions and facts on the represen-
tation theory of (Dynkin) quivers, we refer to [1].

Let Q be a finite quiver with the set of vertices Q0 and arrows written α : i → j for
i, j ∈ Q0. We assume that Q is a Dynkin quiver, that is, its underlying unoriented
graph |Q| is a disjoint union of simply-laced Dynkin diagrams.
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We consider (finite-dimensional) C-representations of Q. Such a representation is
given by a tuple

V = ((Vi)i∈Q0, (fα)α:i→j),

where Vi is a finite-dimensional C-vector space for every vertex i of Q, and fα :
Vi → Vj is a C-linear map for every arrow α : i → j in Q. A morphism between
representations V and W = ((Wi)i, (gα)α) is a tuple of C-linear maps (ϕi : Vi →
Wi)i∈Q0 such that ϕjfα = gαϕi for all α : i → j in Q. Composition of morphisms is
defined componentwise, resulting in a C-linear category repCQ of Q-representations
of Q.

This category is C-linearly equivalent to the category modA of finite-dimensional
left modules over the path algebra A = CQ of Q, in particular, it is a C-linear abelian
category.

For a vertex i ∈ Q0, we denote by Si the simple representation associated to i,
namely, (Si)i = C and (Si)j = 0 for all j 6= i, and all maps being identically zero;
every simple representation is of this form. We let Pi be a projective cover of Si,
and Ii an injective hull of Si. Considering A as a left module over itself and using
the above identification between representations of Q and modules over A, we have
A =

⊕

i∈Q0
Pi and A∗ =

⊕

i∈Q0
Ii, where A∗ denotes the C-linear dual of A, viewed

as a left module over A with the aid of the right module structure of A over itself.
The Grothendieck group K0(repCQ) is isomorphic to the free abelian group ZQ0

in Q0 via the map attaching to the class of a representation V its dimension vector
dimV = (dimVi)i∈Q0 ∈ ZQ0. The category repCQ is hereditary, that is, Ext≥2(_,_)
vanishes identically, and its homological Euler form

dimHom(V,W )− dimExt1(V,W ) = 〈dimV,dimW 〉

is given by

〈d, e〉 =
∑

i∈Q0

diei −
∑

α:i→j

diej .

By Gabriel’s theorem, the isomorphism classes [Uα] of indecomposable represen-
tations Uα of Q correspond bijectively to the positive roots α of the root system
Φ of type |Q|; more concretely, we realize Φ as the set of vectors α ∈ ZQ0 such
that 〈α, α〉 = 1; then there exists a unique (up to isomorphism) indecomposable
representation Uα such that dimUα = α for every α ∈ Φ+ = Φ ∩ NQ0.

We make our discussion of the representation theory of a Dynkin quiver so far
explicit in the case of the equioriented type An quiver Q given as

1 // 2 // · · · //// n

We identify ZQ0 with Z
n, and the Euler form is then given by

〈d, e〉 =
n∑

i=1

diei −
n−1∑

i=1

diei+1.

We denote the indecomposable representations by Ui,j for 1 ≤ i ≤ j ≤ n, where Ui,j

is given as

0 → . . . → 0 → C
id
→ . . .

id
→ C → 0 → . . . → 0,

supported on the vertices i, . . . , j. In particular, we have Si = Ui,i, Pi = Ui,n, Ii = U1,i

for all i.
We have

dimHom(Ui,j , Uk,l) = 1 if and only if k ≤ i ≤ l ≤ j
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and zero otherwise, and we have

dimExt1(Uk,l, Ui,j) = 1 if and only if k + 1 ≤ i ≤ l + 1 ≤ j,

and zero otherwise, where the extension group, in case it is non-zero, is generated
by the class of the exact sequence

0 → Ui,j → Ui,l ⊕ Uk,j → Uk,l → 0,

where we formally set Ui,j = 0 if i < 1 or j > n or j < i.

3.2. Varieties of representations of quivers. Given a dimension vector d ∈ ZQ0

and C-vector spaces Vi of dimension di for i ∈ Q0, let Rd be the affine C-variety

Rd =
⊕

α:i→j

HomC(Vi, Vj),

on which the group

Gd =
∏

i∈Q0

GL(Vi)

acts via base change

(gi)i · (fα)α = (gjfαg
−1
i )α:i→j.

By definition, the Gd-orbits OM in Rd correspond bijectively to the isomorphism
classes of representations M of Q of dimension vector d. Note that, as a consequence
of Gabriel’s theorem, there are only finitely many Gd-orbits in Rd.

The orbit of M degenerates to the orbit of N if N (or ON ) is contained in the
closure of OM . By [2], this holds if and only if dimHom(U,M) ≤ dimHom(U,N)
for all indecomposable representations U of Q.

3.3. Dimension estimates for certain quiver Grassmannians. Let M be an
arbitrary representation of the equioriented type An quiver Q of dimension vector
d = (n + 1, . . . , n + 1). Let e be a dimension vector, e ≤ d componentwise. As
in Section 2, let Ze = Gr1(V ) × . . . × Grn(V ) and let Ye ⊂ R × Ze be the variety
of compatible pairs of sequences (f∗, U∗), fiUi ⊂ Ui+1. Then Ye = GrQ

e
(d) is called

the universal quiver Grassmannian. Let π : Ye → R be the natural projection
map. Then the quiver Grasmannian for a Q representation M ∈ R is defined as
Gre(M) = π−1(M). We would like to estimate the dimension of Gre(M). A general

representation M0 of dimension vector d is isomorphic to U
⊕(n+1)
1,n , thus all its arrows

are represented by the identity maps. Since Gre(M
0) is the SLn+1-flag variety, we

know from [6] that every irreducible component of Gre(M) has dimension at least
n(n + 1)/2. We would like to know when dimGre(M) = n(n + 1)/2, and in case
the equality holds, how many irreducible components (necessarily of this dimension)
does the quiver Grassmannian have.

To this aim, we utilize a stratification of Gre(M) introduced in [6]. Namely,
for a representation N of dimension vector e, let S[N ] be the subset of Gre(M)
consisting of all sub-representations U ⊂ M which are isomorphic to N . Then
S[N ] is known to be an irreducible locally closed subset of Gre(M) of dimension
dimHom(N,M) − dimEnd(N). Since this gives a stratification of Gre(M) into
finitely many irreducible locally closed subsets, the irreducible components of Gre(M)
are necessarily of the form S[N ] for certain N .

In the following, we decompose a representation N as N = NP ⊕N , where NP is
projective, and N has no projective direct summands. We decompose M = P ⊕X
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where P is projective. We first note a result which is very special to the linearly
oriented type A quiver Q used here:

Proposition 1. Let M and N be as before and let e := dimN be a dimension
vector. Then N admits an embedding into M if and only if

(1) N embeds into X and
(2) e− dimN ≤ dimP.

The isomorphism types of subrepresentations of M of dimension vector e are para-
metrized by the isomorphism classes of representations N satisfying these two prop-
erties.

Proof. This follows using the exact criterion given in [20, Section 3] for existence of
embeddings between representations of Q:

Suppose that N embeds into X and that e − dimN ≤ dimP . Then dimNP ≤
dimP , thus there exists an embedding of NP into P . This yields an embedding of
N into M . Conversely, suppose N embeds into M . Then N embeds into X since
there are no non-zero maps from N to P . Now the special form of the inequalities
in [20, Section 3] characterizing embeddings also shows that NP embeds into P ,
which translates to dimNP ≤ dimP , yielding the second condition. Now given N
satisfying both conditions, we define NP as the unique projective representation of
dimension vector e − dimNP , which again embeds into P , thus determining the
representation N . �

Theorem 1. Let M be a representation of Q of dimension vector d, written as
M = P ⊕X, where P is a projective representation. Let e := dimA = (1, 2, · · · , n).

(1) The quiver Grassmannian Gre(M) has dimension n(n + 1)/2 if and only if,
for all subrepresentations N of X such that e−dimN is the dimension vector
of a projective representation embedding into P , we have

dimEnd(N) ≥ dimHom(N,X)− dimHom(N,A∗).

(2) In this case, the irreducible components of Gre(M) are of the form S[N ] for

representations N = NP ⊕ N as above such that, in the previous inequality
for N , equality holds.

Proof. Let N be a subrepresentation of M written as N = NP ⊕N as above.
We use the shorthand notation dimHom(V,W ) = [V,W ] and the fact that there

are no homomorphisms from representations without projective direct summands to
projective representations. Then we can calculate:

dimS[N ] − n(n + 1)/2

= [N,M ]− [N,N ]− [A,A∗]

= [N,M ]− [N,N ] + [NP ,M ]− [NP , N ]− [A,A∗]

= [N,X ]− [N,N ] + 〈dimNP ,dimM − dimN〉 − 〈dimA,dimA∗〉

= [N,X ]− [N,N ] + 〈dimNP ,dimA∗〉 − 〈dimA,dimA∗〉

= [N,X ]− [N,N ]− 〈dimN,dimA∗〉

= [N,X ]− [N,N ]− [N,A∗].

All claims of the theorem follow. �
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3.4. Some local properties of schemes. We collect some facts on local properties
of schemes and morphisms which will be used in the following.

Theorem 2. The following holds:

(1) Let f : X → Y be a morphism of varieties, where X is Cohen-Macaulay and
Y is regular. Then f is flat if and only if its fibers are equidimensional.

(2) Let f : X → Y be a flat proper morphism of varieties. Then the locus of all
y ∈ Y for which f−1(y) is reduced (resp. irreducible, resp. normal) is open in
Y .

(3) A scheme is reduced if it is generically reduced and Cohen-Macaulay.

Proof. The first statement is [19, Theorem 23.1], the second is [18, Theoreme 12.2.4],
the third follows from reducedness being equivalent to generic reducedness plus
Serre’s condition S1, and Cohen-Macaulay being equivalent to Sk for all k. �

4. Loci in R

We translate the objects introduced in Section 2 to the language of quiver Grass-
mannians. Let Q be the equioriented type An quiver, A be its path algebra, d =
(n + 1, . . . , n + 1) and e = (1, 2, . . . , n). Let M ∈ R be a d-dimensional Q-
representation with the maps fi : Mi → Mi+1. Then Gre(M) is isomorphic to
Flf∗(V ) and the isomorphism is induced via the identification of R with the variety
Rd(Q) of d-dimensional representation of Q.

The orbits of G in R are parametrized by rank tuples

r = (ri,j)1≤i<j≤n,

where

ri,j = rank(fj−1 ◦ . . . ◦ fi).

Denote by Or the set of all sequences of maps with the given ranks. This is non-
empty if and only if a set of natural inequalities in the ranks is fulfilled, namely
if

ri,j + ri−1,j+1 ≥ ri,j+1 + ri−1,j

for all 1 ≤ i ≤ j ≤ n, where we formally set ri,j = 0 if i = 0 or j = n + 1 and
ri,i = n+ 1. If non-empty, Or is a single G-orbit, and every orbit arises in this way.
In particular, we have Uiso = Or0, where r0i,j = n+ 1 for all i < j.

Moreover, it is known that Or degenerates to Or′, that is, Or′ is contained in the
closure of Or, if and only if ri,j ≥ r′i,j for all i < j.

Denote by Flr(V ) the π-fiber over a point in Or, which is well-defined up to
isomorphism since π is G-equivariant. We call Flr(V ) the r-degenerate flag variety.

Definition 2. We denote by r
1 the rank tuple defined by r

1
i,j = n+ 1− j + i for all

i < j, and by r
2 the rank tuple defined by r

2
i,j = n− j + i for all i < j,

Theorem 3. We have the following description of the flat, respectively flat and
irreducible, locus of R:

(1) Uflat is the union of all orbits degenerating to Or2.
(2) Uflat,irr is the union of all orbits degenerating to Or1.

The proof of Theorem 3 will be given in Section 6.1.
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4.1. Complements of certain open loci in R. In light of the above interpretation
of R as Rd(Q), the G-orbits in R are naturally parametrized by isomorphism classes
of representations of Q of dimension vector d. By the Krull-Schmidt theorem, a
Q-representation M is, up to isomorphism, determined by the multiplicities of the
Ui,j, that is,

M =
⊕

i≤j

U
mi,j

i,j .

Then dimM = d is equivalent to
∑

k≤i≤l

mk,l = n+ 1 for all i.

We define
ri,j(M) =

∑

k≤i≤j≤l

mk,l

for i ≤ j. Viewing M as a tuple of maps (f1, . . . , fn−1) as before, ri,j is thus the rank
of fj−1 ◦ . . . ◦ fi and, trivially, we have ri,i = n+1. We can recover mi,j from (rk,l)k,l
via

mi,j = ri,j − ri,j+1 − ri−1,j + ri−1,j+1,

which explains the natural rank inequalities above. More generally, we easily derive
the inequality

(4.1) ri,l + rj,k ≥ ri,k + rj,l

for all four-tuples i < j ≤ k < l.
We introduce some special representations: for a tuple a = (a1, . . . , an−1) of non-

negative integers ai such that
∑

i<n ai ≤ n+1, we define M(a) by the multiplicities:

m1,n = n+ 1−
∑

i

ai, m1,i = ai for i < n, mi,n = ai−1 for i > 1,

and mj,k = 0 for all other j < k. In particular, we define

M0 = M(0, . . . , 0), M1 = M(1, . . . , 1).

We also define M2 by the multiplicities

m1,1 = mn,n = 2, m1,i = 1 for all i > 1, mi,n = 1 for all i < n,

mi,i = 1 for all 1 < i < n,

and mj,k = 0 for all other j < k.
A direct calculation then shows that

r(M0) = r
0, r(M1) = r

1, r(M2) = r
2.

In more invariant terms, we can write M1 = A⊕A∗, where A is the path algebra
viewed as a (bi-)module over itself, and A∗ is the linear dual of A. There exists a
short exact sequence

0 → A → M0 → A∗ → 0.

We have canonical maps

A → A/rad(A) =: S ≃ soc(A∗) → A∗,

and M2 can be written as

(4.2) M2 ≃ A⊕ S ⊕ (A∗/S) ≃ rad(A)⊕ S ⊕ A∗.
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Now we turn to degenerations of representations. Again we write M ≤ N if
the closure of the Gd-orbit of M contains N ; the numerical characterization [2] of
degenerations mentioned above then reads

M ≤ N if and only if ri,j(M) ≥ ri,j(N) for all i < j.

The representation M0 = Un+1
1,n is generic in the sense that M0 ≤ M for all M in R.

It is proven in [6] that a representation M degenerates to M1 if and only if it fits
into a short exact sequence 0 → A → M → A∗ → 0.

We are now interested in the complement of the locus of representations degener-
ating into M1 resp. M2. For this, we introduce the following tuples:

• for 1 ≤ i < n, define

a
i = (0, . . . , 0, 2, 0, . . . , 0),

with the 2 placed at the i-th entry;
• for 1 ≤ i ≤ j < n, define

a
i,j = (0, . . . , 0, 2, 1, . . . , 1, 2, 0, . . . , 0),

with the 2’s placed at the i-th and j-th entry, except in the case j = i, where
we define

a
i,i = (0, . . . , 0, 3, 0, . . . , 0),

with the 3 placed at the i-th entry.

Now we can formulate:

Theorem 4. Let M be a representation in R.

(1) If M degenerates to M2 but not to M1, then M is a degeneration of M(ai)
for some i.

(2) If M does not degenerate to M2, then M is a degeneration of M(ai,j) for
some i ≤ j.

Proof. To prove the first part, let M degenerate to M2 but not to M1 and consider
the corresponding rank system r = r(M). Degeneration of M to M2 is equivalent to
r ≥ r

2 componentwise, thus ri,j ≥ n− j + i for all i < j. Non-degeneration of M to
M1 is equivalent to r 6≥ r

1, thus there exists a pair i < j such that ri,j < n−j+ i+1,
which implies ri,j = n − j + i. We claim that this equality already holds for a pair
i < j such that j = i + 1. Suppose, to the contrary, that ri,j = n − j + i for some
pair i < j such that j − i ≥ 2, and that rk,l ≥ n − l + k + 1 for all k < l such that
l − k < j − i. In particular, we can choose an index k such that i < k < j, and the
previous estimate holds for ri,k and rk,j. But then, the inequality (4.1), applied to
the quadruple i < k = k < j yields

2n+ 1− j + i = ri,j + rk,k ≥ ri,k + rk,j = 2n + 2− j + i,

a contradiction. We thus find an index i such that ri,i+1 = n−1, and thus rk,l ≤ n−1
for all k ≤ i < i+ 1 ≤ l trivially. On the other hand, it is easy to compute the rank
tuple of M(ai) as

rj,k(M(ai)) = n− 1 for j ≤ i < k,

and rj,k(M(ai)) = n+ 1 otherwise. This proves that r ≤ r(M(ai)) as claimed.
Now suppose that M does not degenerate to M2, and again consider the rank

system r = r(M) 6≥ r
2. We thus find a pair i < j such that

ri,j ≤ n− j + i− 1.
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We assume this pair to be chosen such that j− i is minimal with this property; thus

rk,l ≥ n− l + k for all k < l such that l − k < j − i.

For every i < k < j, application of the inequality (4.1) to the quadruple i < k = k < j
yields

2n− j + i = (n− j + i− 1) + (n+ 1) ≥ ri,j + rk,k ≥

≥ ri,k + rk,j ≥ (n− k + i) + (n− j + k) = 2n− j + i,

from which we conclude

ri,k = n− k + i, rk,j = n− k + j for all i < k < j

and

ri,j = n− j + i− 1.

Now we claim that

rk,l = n− l + k + 1 for all i < k < l < j.

This condition is empty if j − i = 1, thus we can assume j − i ≥ 2. We prove this
by induction over k, starting with k = i+ 1. For every i+ 1 < l < j, application of
(4.1) to i < l − 1 < l < l yields

ri+1,l−1 = ri+1,l−1 + ri,l − ri,l−1 + 1 ≥ ri+1,l + 1.

This, together with (4.1) for i < i+ 1 ≤ j − 1 < j, yields the estimate

n+ 1 = ri+1,i+1 ≥ ri+1,i+2 + 1 ≥ ri+1,i+3 + 2 ≥ . . .

. . . ≥ ri+1,j−1 + (j − i− 2) ≥ ri+1,j + ri,j−1 − ri,j + (j − i− 2) = n+ 1,

thus equality everywhere. Now assume that k > i+ 1, and that the claim holds for
all relevant rk−1,l. Similarly to the previous argument, we arrive at an estimate

n+ 1 = rk,k ≥ rk,k+1 + 1 ≥ rk,k+2 ≥ . . .

. . . ≥ rk,j−1 + j − k − 1 ≥ rk,j + rk−1,j−1 − rk−1,j + j − k − 1 = n+ 1,

and this again yields equality everywhere. This proves the claim.
Finally, we have the trivial estimates

• rk,l ≤ ri,j = n− j + i− 1 if k ≤ i ≤ j ≤ l,
• rk,l ≤ ri,l = n− l + i if k < i < l < j,
• rk,l ≤ rk,j = n− j + k if i < k < j < l, and trivially
• rk,l ≤ n + 1 otherwise, that is, if k < l ≤ i < j or i < j ≤ k < l.

A long but elementary calculation of r(M(ai,j)) shows that all these estimates to-
gether prove that

r ≤ r(M(ai,j)).

The theorem is proved. �
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4.2. Orbits in the flat irreducible locus. We introduce a combinatorial object,
generalizing the rhyme schemes of [23], to parametrize the orbits in the flat irreducible
locus.

Definition 3. A broken rhyme scheme of length n − 1 is a sequence (b1, . . . , bn−1)
of non-negative integers such that b1 ∈ {0, 1} and bi+1 ≤ max(b1, . . . , bi) + 1 for all
i ≤ n− 2. It is called regular if bi 6= bj whenever i 6= j and bi, bj 6= 0.

For example, the broken rhyme schemes of length 3 (the regular ones being un-
derlined) are:

000, 001, 010, 011, 012,

100, 101, 102, 110, 111,

112, 120, 121, 122, 123.

Proposition 2. The G-orbits degenerating to Or1 are parametrized by broken rhyme
schemes of length n − 1. More precisely, to a broken rhyme scheme (b1, . . . , bn−1)
we associate the orbit of the sequence (f1, . . . , fn−1), where fi = idV if bi = 0, and
fi = prbi if bi 6= 0; here prk denotes the linear map given by projection along the k-th
basis vector vk of V .

Proof. An orbit degenerating to Or1 is uniquely determined by its rank tuple (ri,j)i,j
satisfying ri,j ≥ n + 1 − j + i for all i and j. These conditions are fulfilled if and
only if ri,i+1 ≥ n for all i, in other words if and only if ri,i+1 ∈ {n, n + 1} for all i.
Thus, using the base change action, we find a point in this orbit given by linear maps
fi = idV if ri,i+1 = n + 1 (in which case we formally define bi = 0), and fi = prbi for
some bi ∈ {1, . . . , n+ 1} if ri,i+1 = n. Using the natural Sn+1-action on each V , the
resulting sequence of integers (b1, . . . , bn−1) can be transformed into a broken rhyme
scheme in a unique way. �

Remark 1. According to Theorem 3, broken rhyme schemes parametrize the G-orbits
in Uflat,irr.

Definition 4. We define the PBW locus UPBW ⊂ Uflat,irr as the union of the orbits
corresponding to regular broken rhyme schemes.

Remark 2. The parametrization of orbits in the flat locus Uflat is less explicit; we
mention without proof the following combinatorial description:

Consider the set P of sequences (I1, . . . , In−1) of subsets of {1, . . . , n+1} with the
following properties:

(1) |Ii| ≤ 2 for all i,
(2) |Ii ∪ Ii+1| ≤ 3 for all i.

The symmetric group Sn+1 acts on P by permutation in each Ii. Then the G-orbits
in Uflat are parametrized by P/Sn+1. Namely, to a sequence in P , we associate the
sequence of linear maps (prI1 , . . . , prIn−1

), where prI denotes projection along all basis
vectors vi such that i ∈ I.

4.3. Transversal slice. We are interested in constructing transversal slices, that is,
an affine subspace TPBW (resp. T ) of R which is contained in UPBW (resp. Uflat,irr),
meets every G-orbit in UPBW (resp. Uflat,irr), and intersects the minimal orbit Or1

in a single point. The construction is elementary for TPBW. Since the slice T will
not be needed in the rest of the paper, we just state the result – the method for its
construction is contained in [2, Theorem 6.2].

As before, let v1, . . . , vn+1 be a basis of the space V .
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Definition 5. Define T ⊂ R as the subset of all tuples of linear maps (f1, . . . , fn−1)
such that

(fi)(vq) =







vp , p = q 6= i+ 1,
λp−1,q−1vp , 2 ≤ p ≤ i+ 1 ≤ q ≤ n,

0 , otherwise

for certain (λi,j)1≤i≤j≤n−1.
Define TPBW as the subspace of T for which all λi,j for i < j are zero.

For example, for n = 4, the matrices representing the triples (f1, f2, f3) have the
following form:









1 0 0 0 0
0 λ11 λ12 λ13 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

















1 0 0 0 0
0 1 λ12 λ13 0
0 0 λ22 λ23 0
0 0 0 1 0
0 0 0 0 1

















1 0 0 0 0
0 1 0 λ13 0
0 0 1 λ23 0
0 0 0 λ33 0
0 0 0 0 1









Proposition 3. T is a transversal slice in Uflat,irr in the above sense, and TPBW is a
transversal slice in UPBW.

Proof. The second claim follows immediately from the parametrization of orbits in
UPBW as stated in Definition 4, Proposition 2. To prove that T is a transversal
slice in Uflat,irr, one applies the construction of [2, Theorem 6.2] to the representation
A⊕ A∗. �

The utility of this transversal slice is that we can localize the universal degenerate
flag variety, that is, we can consider the restriction of π : π−1(UPBW) → UPBW to
π : π−1(T ) → T without losing any information; the base is now a much smaller
affine space with an obvious stratification into strata over which π is locally trivial.

5. Geometry of linear degenerations - the PBW locus

In this section we study the geometry of linear degenerations in the PBW locus.
We prove that any degeneration from the PBW locus is isomorphic to a Schubert
variety; we realize each such Schubert variety as the closure of a highest weight orbit.

Theorem 5. All linear degenerations of flag varieties in the PBW locus are orbit
closures of highest weight line in the projectivized PBW degenerations of irreducible
representations. Moreover, they are isomorphic to Schubert varieties.

The goal of this section is to make this theorem explicit and to provide a proof.

5.1. Projection sequences. We start with another parametrization of the regular
broken rhyme scheme via projection sequences. Let

D = {i = (i1, i2, · · · , ik) ∈ N
k | 1 ≤ i1 < i2 < · · · < ik ≤ n− 1}

be the set of sequences of numbers between 1 and n − 1 (the empty sequence ∅ is
included).

Lemma 1. There exists a bijection between the set of regular broken rhyme schemes
and D.
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Proof. For i = (i1, · · · , ik) ∈ D, we define a sequence b = (b1, · · · , bn−1) by:

bi =

{

s if i = is for some s = 1, · · · , k;

0 otherwise.

Then b is a regular broken rhyme scheme and it is clear that the above map is a
bijection. �

For i = (i1, i2, · · · , ik) ∈ D we denote the projection sequence pr
i
by:

pri = (id, · · · , id
︸ ︷︷ ︸

i1−1 copies

, pri1+1, id, · · · , id
︸ ︷︷ ︸

i2−i1−1 copies

, pri2+1, · · · , prik+1, id, · · · , id
︸ ︷︷ ︸

n−1−ik copies

).

We write pr
i
= (f1, f2, · · · , fn−1) where fi is either the projection along a line or

identity. Then for any sequence i ∈ D, the corresponding linear degenerate flag
variety Fl in+1 is the f∗-linear degenerate flag variety Flpri(V ).

Recall that A = CQ is the path algebra of the quiver Q. We consider the quiver
Grassmannian Gre(M

i), where e = dim(A) = (1, 2, · · · , n) and

M i = P⊕n+1−k
1 ⊕

(
k⊕

m=1

Iim ⊕ Pim+1

)

.

The following proposition holds by rephrasing the definition (see for example [6,
Proposition 2.7]).

Proposition 4. We have an isomorphism of projective varieties

Fl in+1
∼

−→ Gre(M
i).

Example 1. (1) For i = ∅ ∈ D, Fl in+1
∼

−→ SLn+1 /B is the complete flag variety.

(2) For i = (1, 2, · · · , n − 1) ∈ D, Fl in+1
∼

−→ (SLn+1 /B)a is the degenerate flag
variety [13].

For i = (i1, i2, · · · , ik) ∈ D, we denote d(i) := k.

Remark 3. As shown in [8], every quiver Grassmannian associated with a represen-
tation M of the quiver Q, which is equioriented of type A, can be naturally embedded
into a flag manifold. As shown in loc. cit. the image of such an embedding is stable
under the action of a Borel subgroup if and only if M is a catenoid. In this case the
irreducible components are Schubert varieties. A quiver Grassmannian associated
with a catenoid is called a Schubert quiver Grassmannian. Since M i is the direct
sum of a projective and an injective Q–representations, it is a catenoid. Since the
quiver Grassmannian Gre(M

i) is irreducible, it is a Schubert variety. In the following
section, we will describe these Schubert varieties explicitly.

5.2. Realization as Schubert varieties. We fix i = (i1, i2, · · · , ik) ∈ D as before.
Define hi = (h1, h2, · · · , hn) by: h1 = 0 and for any s = 2, 3, · · · , n,

hs = #{t | 1 ≤ t ≤ k and it < s}.

We consider sln+1+d(i) with Weyl group Wi generated by the reflections si with respect
to the simple roots αi of sln+1+d(i). We define wi = wnwn−1 · · ·w1 ∈ Wi as follows:

wk = shk+1shk+2 · · · shk+k.

We denote ℓj := hj + j.
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Let hi be the Cartan subalgebra of sln+1+d(i) consisting of diagonal matrices and
let h := h∅ be the Cartan subalgebra of sln+1. We define a map Ψi : h∗ → h∗

i
by:

(5.1) Ψi(̟j) = ̟ℓj .

Let P+ (P+
i
) be the set of dominant integral weights for sln+1 (sln+1+d(i)). For any

λ ∈ P+, we define

λi := Ψi(λ) ∈ P+
i
⊂ h∗

i
.

Let ρ = ̟1 +̟2 + · · ·+̟n and ρi := Ψi(ρ) ∈ h∗
i
.

We let Xwi
denote the Schubert variety in SLn+1+d(i)/Pρi associated to wi where

Pρi is the parabolic subgroup of SLn+1+d(i) stabilizing the weight ρi.

Theorem 6. We have an isomorphism of projective varieties

Flin+1
∼

−→ Xwi
.

Before giving the proof of the theorem, we examine it in several known examples.

Example 2. (1) For i = ∅ ∈ D,

wi = s1s2 · · · sns1s2 · · · sn−1 · · · s1s2s1 = w0

is the longest element in the Weyl group of sln+1. In this case, Xwi
⊂

SLn+1/Pρ = SLn+1/B is the complete flag variety.
(2) For i = (1, 2, · · · , n− 1) ∈ D,

wi = (snsn+1 · · · s2n−1)(sn−1sn · · · s2n−3) · · · (s3s4s5)(s2s3)s1,

and Xwi
⊂ SL2n/P̟1+̟3+···+̟2n−1 is isomorphic to the degenerate flag variety,

as shown in [9].

The following example illustrates the above construction.

Example 3. Let g = sl5 be the simple Lie algebra of type A4. In the following table
we list all PBW linear degenerations of the complete flag variety of g.

i ∈ D Projection wi hi M

∅ (id, id, id) s1s2s3s4s1s2s3s1s2s1 (0, 0, 0, 0) P⊕5
1

{1} (pr2, id, id) s2s3s4s5s2s3s4s2s3s1 (0, 1, 1, 1) P⊕4
1 ⊕ I1 ⊕ P2

{2} (id,pr3, id) s2s3s4s5s2s3s4s1s2s1 (0, 0, 1, 1) P⊕4
1 ⊕ I2 ⊕ P3

{3} (id, id,pr4) s2s3s4s5s1s2s3s1s2s1 (0, 0, 0, 1) P⊕4
1 ⊕ I3 ⊕ P4

{1, 2} (pr2,pr3, id) s3s4s5s6s3s4s5s2s3s1 (0, 1, 2, 2) P⊕3
1 ⊕ I1 ⊕ P2 ⊕ I2 ⊕ P3

{1, 3} (pr2, id,pr4) s3s4s5s6s2s3s4s2s3s1 (0, 1, 1, 2) P⊕3
1 ⊕ I1 ⊕ P2 ⊕ I3 ⊕ P4

{2, 3} (id, pr3,pr4) s3s4s5s6s3s4s5s1s2s1 (0, 0, 1, 2) P⊕3
1 ⊕ I2 ⊕ P3 ⊕ I3 ⊕ P4

{1, 2, 3} (pr2,pr3, pr4) s4s5s6s7s3s4s5s2s3s1 (0, 1, 2, 3) P⊕2
1 ⊕ I1 ⊕ P2 ⊕ I2 ⊕ P3 ⊕ I3 ⊕ P4

For the proof of Theorem 6, we will need the following general result.
Let Fl(ℓ1,...,ℓn) be the partial flag variety for SLn+1+d(i) consisting of collections of

subspaces (Ui)
n
i=1 of dimensions ℓ1, . . . , ℓn.

Proposition 5. Let w ∈ Wi be an element satisfying the following condition for all
j = 1, . . . , n:

w(1, . . . , ℓj) = {1, . . . , ℓj − j}∪{n+1+ ℓj − j, n+1+ ℓj − (j−1), . . . , n+1+ ℓj −1}.

Then Gre(M
i) is isomorphic to the Schubert variety Xw attached to w in the partial

flag variety Fl(ℓ1,...,ℓn).
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Proof. This is a slight generalization of [9, proof of Theorem 1.2] and a particular case
of [8, Theorem 3.4 and Proposition 3.8]. We briefly recall the proof, for convenience
of the reader. Let v1, . . . , vn+1+d(i) be the standard basis of Cn+1+d(i). Assume that
the conditions on w are fulfilled. Then the variety Xw consists of collections of
subspaces

U1 ⊂ U2 ⊂ · · · ⊂ Un ⊂ C
n+1+d(i)

such that dimUj = ℓj and spanC{v1, . . . , vn+1+ℓj−j} ⊃ Uj ⊃ spanC{v1, . . . , vℓj−j}.
For every j = 1, · · · , n, we consider the space M ′

j = spanC{vℓj−j+1, . . . , vn+1+ℓj−j}
(in particular, dimM ′

j = n + 1 and U ′
j ⊂ M ′

j) and we define the linear map fj :
M ′

j → M ′
j+1 by fjva = va, if va ∈ M ′

j+1 and fjva = 0, otherwise. The representation

((M ′
j)

n
j=1, (fj)

n−1
j=1 ) of Q is isomorphic to M i. In particular, the quiver Grassmannian

Gre(M
i) is isomorphic to the variety of collections (U ′

j)
n
j=1 of subspaces of Cn+1+d(i)

such that

(1) U ′
j ⊆ M ′

j ;
(2) dimU ′

j = j;
(3) fjU

′
j ⊂ U ′

j+1 for all j.

We denote by πj : C
n+1+d(i) → M ′

j the canonical projection. The inclusion map

ζ :

n∏

j=1

Grj(Mj) →
n∏

j=1

Grℓj(C
n+1+d(i)) : (U ′

j) 7→ (π−1
j (U ′

j))

restricts to the required isomorphism ζ ′ : Gre(M
i) → Xw. �

To prove Theorem 6, it suffices to apply the following proposition.

Proposition 6. The action of wi on {1, · · · , ℓn} is given by:

(1) If ℓj = ℓj−1 + 1, then wi(ℓj) = hj + (n− j + 2).
(2) If ℓj = ℓj−1 + 2, then wi(ℓj − 1) = hj and wi(ℓj) = hj + n+ 1 .

Proof. In the first case, ℓj−1 = ℓj − 1, we have (since the ℓi are strictly increasing
and each wj is a sequence of strictly increasing simple reflections):

wi(ℓj) = wn · · ·wjwj−1 · · ·w1(ℓj) = wn · · ·wjwj−1(ℓj).

We have wj−1(ℓj) = hj + 1 and wk(hj + (k− j + 1)) = hj + (k − j + 2) for all k ≥ j,
the claim follows.

In the second case, ℓj−1 = ℓj − 2, we have

wi(ℓj − 1) = wn · · ·wjwj−1 · · ·w1(ℓj − 1) = wn · · ·wjwj−1(ℓj − 1).

But then wj−1(ℓj − 1) = hj−1 + 1 = hj and wk(hj) = hj for all k ≥ j. Further we
have

wi(ℓj) = wn · · ·wjwj−1 · · ·w1(ℓj) = wn · · ·wjwj−1(ℓj).

But wj−1(ℓj) = ℓj and wj+k(ℓj + k) = ℓj + k + 1 for all k ≥ 0. �

5.3. New gradings and filtrations. Let sln+1 = n+ ⊕ h⊕n− be a fixed triangular
decomposition of sln+1, where h consists of diagonal matrices. Let α1, . . . , αn be the
simple roots of sln+1. Then the set of positive roots is given by {αp,q = αp + · · · +
αq, 1 ≤ p ≤ q ≤ n}. We start with defining a grading on n− associated to a fixed
sequence i = (i1, i2, · · · , ik) ∈ D.

For a positive root α = αp,q we write fp,q := fα. A degree function on n− can
be identified with a sequence (tp,q)1≤p≤q≤n where tp,q is the degree of fp,q. We set
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T0 = (t0p,q)1≤p≤q≤n where t0p,q = q− p+ 1 is the height of the root αp,q. For a number
l = 1, 2, · · · , n− 1 we define a map Dl sending a degree function to another by:

Dl(T ) = T ′,

where T = (tp,q) and T ′ = (t′p,q) are degree functions satisfying

(5.2) t′p,q =

{
tp,q − 1, if p ≤ l < q;
tp,q, otherwise.

We define T i = Dik ◦Dik−1
◦ · · · ◦Di1(T0) and denote T i = (t ip,q).

Consider the following grading on n− defined by

deg
i
(fp,q) = t ip,q.

The following proposition is clear by definition.

Proposition 7. The degree of fp,q is given by

degi(fp,q) =

{

1 if p = q;

q − p+ 1−#{ij | p ≤ ij < q} if p 6= q.

As a direct consequence we have:

Corollary 1. The Lie algebra n− is filtered with respect to the grading deg
i
.

Let n−,i be the associated graded Lie algebra: the Lie algebra n− is partially
abelianized in n−,i. By Proposition 7, we get the defining relations of n−,i (for p ≤ s):

(5.3) [fp,q, fs,r] =







0 if s 6= q + 1;

0 if s = q + 1 and ∃ ij = q;

fp,r else.

The grading on n− induces a filtration F i on U(n−) by letting

Us(n
−) := span{x1x2 · · ·xt | xj ∈ n−,

t∑

j=1

deg i(xj) ≤ s}.

We let grF i
U(n−) denote the associated graded algebra. Then it is clear that

grF i
U(n−) ∼= U(n−,i)

is again an enveloping algebra.
Let V (λ) be the irreducible representation of sln+1 of highest weight λ ∈ P+ and

a highest weight vector vλ. The filtration on U(n−) induces a filtration on V (λ) by
defining

Vs(λ) := Us(n
−).vλ.

Let V i(λ) denote the associated graded vector space and let viλ be the image of vλ
in V i(λ). It is clear that V i(λ) is a cyclic U(n−,i)-module generated by v i

λ.
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5.4. Realization as highest weight orbits. Let N i be the connected linear unipo-
tent algebraic group having n−,i as Lie algebra. Then N i acts on V i(λ) and we define
the closure of the highest weight orbit by

Fl i(λ) := N i · [v i

λ] ⊂ P(V i(λ)).

In fact,

N i · [v i

λ] =






exp




∑

α∈∆+

cαfα



 · [v i

λ]

∣
∣
∣
∣
∣
∣

cα ∈ C






.

For a projection sequence i let Vwi
(λi) be the Demazure module inside V (λi),

corresponding to the Weyl group element wi. In more details, let sli := sln+1+d(i)

and let
sli = b+

i
⊕ n−

i
= n+

i
⊕ hi ⊕ n−

i

be the triangular decomposition. Then Vwi
(λi) is a cyclic b+

i
module inside V (λi)

with the cyclic vector of weight wi(λi). The main result of this subsection is the
following theorem.

Theorem 7. (1) For any λ ∈ P+, V i(λ) ∼= Vwi
(λi) as n−,i-modules.

(2) For a regular weight λ ∈ P+, there exists an isomorphism of projective vari-
eties

Xw i

∼
−→ Fl i(λ).

Combining Theorem 7 with Theorem 6, we conclude that a PBW linear degenerate
flag variety is the closure of the highest weight orbit.

Corollary 2. For a regular weight λ ∈ P+, there exists an isomorphism of projective
varieties

Flin+1
∼

−→ Fl i(λ).

The strategy of the proof of Theorem 7 is the following: the second part is a
corollary of the first part. To prove the first part of the theorem, we first define the
n−,i-module structure on Vwi

(λi), then we show that both V i(λ) and Vwi
(λi) have

the same dimension (Section 5.5), finally we construct an explicit map between the
spaces and prove its surjectivity (Section 5.6).

5.5. Proof of Theorem 7: Dimension. Here we first provide a n−,i-module struc-
ture on Vwi

(λi). We denote the set of positive roots of sli by ∆+
i
. Recall that the

Weyl group Wi acts on sli by conjugation.
The n−,i-module structure on Vwi

(λi) is defined by: for any 1 ≤ p ≤ q ≤ n and
v ∈ Vwi

(λi),
fp,q · v := w−1

i
fℓp,ℓqwi · v.

We will see below that fp,q 7→ fℓp,ℓq is a morphism of Lie algebras and w−1
i
fℓp,ℓqwi ∈ b+

i

hence the module structure is well-defined.

Recall that ℓk := hk + k. Let n−wi
denote the Lie subalgebra of sli spanned by the

root vectors
{fℓp,ℓq | 1 ≤ p ≤ q ≤ n}.

Proposition 8. The linear map η : n−,i → n−wi
given by

fp,q 7→ fℓp,ℓq

is an isomorphism of Lie algebras.
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Proof. We have to compare the commutator between fℓp,ℓq and fℓr,ℓs with (5.3). We
have for p ≤ s

[fℓp,ℓq , fℓs,ℓr ] =

{

0 if ℓs 6= ℓq + 1

fℓp,ℓr else

So this is non-zero if and only if ℓq + 1 = ℓs. Writing ℓq = hk + k, this implies that
hk+1 + (k + 1) = hk + k, hence hk+1 = hk and therefore k /∈ i. Compared to (5.3),
these are exactly the same relations as for n−,i via the map fp,q 7→ fℓp,ℓq . �

We consider the following subspace of b+
i
:

n+wi
:= spanC{eα |α ∈ ∆+

i
, w−1

i
(α) < 0} ⊂ b+

i
.

Our goal is to show that n+wi
= wi n

−
wi
w−1

i
. For the proof we need the following lemma.

Lemma 2. Let 1 ≤ t ≤ ℓq be an integer satisfying

hq + 1 ≤ wq−1 · · ·w1(t) ≤ hq + q.

Then there exists 1 ≤ p ≤ q such that t = ℓp.

Proof. The proof is executed by induction on q. The case q = 1 is clear since h1 = 0
and t = 1 = ℓ1.

There are two cases to examine:

(1) Assume that wq−1 · · ·w1(t) = ℓq. By definition, either hq−1 + 1 = hq or
hq−1 = hq.

In the first case, ℓq−1 + 1 < ℓq, hence by (5.4) wq−1 · · ·w1(ℓq) = ℓq and
t = ℓq.

In the second situation, ℓq−1+1 = ℓq, then w−1
q−1(ℓq) = w−1

q−1(ℓq−1+1) = ℓq−1.
By (5.4), wq−2 · · ·w1(t) = ℓq−1. Applying the induction hypothesis gives some
p ≤ q − 1 such that t = ℓp.

(2) Assume that wq−1 · · ·w1(t) 6= ℓq, i.e., hq+1 ≤ wq−1wq−2 · · ·w1(t) ≤ hq+q−1.
We separate the proof into two cases as above.

If hq−1 + 1 = hq, the inequality reads hq−1 + 2 ≤ wq−1wq−2 · · ·w1(t) ≤
hq−1 + q. By (5.4), hq−1 + 1 ≤ wq−2 · · ·w1(t) ≤ hq−1 + q − 1. The induction
hypothesis provides some p ≤ q − 1 such that t = ℓp.

If hq−1 = hq, the inequality turns out to be hq−1+1 ≤ wq−1wq−2 · · ·w1(t) ≤
hq−1 + q − 1. Then either hq−1 + 1 ≤ wq−2 · · ·w1(t) ≤ hq−1 + q − 2 or
wq−2 · · ·w1(t) = hq−1 + q. We can apply the induction hypothesis in the
first case to obtain some p ≤ q − 1 such that t = ℓp. For the second case,
since hq−1+q = ℓq−1+1 and wq−2 · · ·w1(ℓq−1+1) = ℓq−1+1, t = ℓq−1+1 = ℓq.

�

Proposition 9. We have n+wi
= wi n

−
wi
w−1

i
, hence n+wi

is a Lie subalgebra of b+
i

isomorphic to n−wi
via wi-conjugation.

Proof. By the definition of n+wi
, it suffices to show that

w−1
i
(∆+

i
) ∩∆−

i
= {−αℓp,ℓq | 1 ≤ p ≤ q ≤ n}.

It is equivalent to show that for αr,s, αt,u ∈ ∆+
i
, w−1

i
(αr,s) = −αt,u if and only if

there exist 1 ≤ p ≤ q ≤ n such that t = ℓp and u = ℓq.
We suppose wi(αt,u) ∈ ∆−

i
and prove that t, u ∈ {ℓ1, ℓ2, · · · , ℓn}.
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Recall the definition of wi: wi = wnwn−1 · · ·w1, where

wk = shk+1 · · · shk+k−1sℓk .

It is clear that for any k = 1, · · · , n,

(5.4) wk(r) =







r + 1 if r = hk + 1, · · · , hk + k;

hk + 1 if r = ℓk + 1;

r else.

Writing αi,j = εi− εj+1, it is a consequence of (5.4) that wk(αi,j) ∈ ∆−
i

if and only if
hk + 1 ≤ i ≤ hk + k and j = ℓk. We first show that there exists q such that u = ℓq.
Since αt,u ∈ ∆+

i
, there exists a smallest integer q such that

wq−1 · · ·w1(αt,u) ∈ ∆+
i

but wqwq−1 · · ·w1(αt,u) ∈ ∆−
i
.

It implies that wq−1 · · ·w1(αt,u) = αt′,ℓq for some hq + 1 ≤ t′ ≤ hq + q = ℓq. As
wq−1 · · ·w1(ℓq + 1) = ℓq + 1, hence u = ℓq.

Using Lemma 2 we conclude that w−1
i
(∆+

i
) ∩∆−

i
⊂ {−αℓp,ℓq | 1 ≤ p ≤ q ≤ n}. To

finish the proof of the proposition, it suffices to show that both sides have the same
cardinality: since the expression wi = wnwn−1 · · ·w1 of wi is reduced,

#w−1
i
(∆+

i
) ∩∆−

i
= ℓ(wi) =

n(n+ 1)

2
= #{−αℓp,ℓq | 1 ≤ p ≤ q ≤ n}.

�

We see immediately

Corollary 3. The element wi ∈ Wi is triangular (in the sense of [17]).

Proposition 10 ([17]). For any dominant weight λ ∈ P+, we have dim Vwi
(λi) =

dimV i(λ).

Proof. A basis of Vwi
(λi) is parametrized by the lattice points of the marked chain

polytope Pwi
(λi) (by [17, Corollary 2]). But the underlying poset is isomorphic to

the poset induced from n− (see [16]), this implies that the polytopes are isomorphic.
Hence the numbers of lattice points are equal and so the dimensions coincide. �

5.6. Proof of Theorem 7: Explicit map. As a Demazure module, Vwi
(λi) is a

b+
i
-module, hence an n+wi

-module by restriction. Let vwi
be a lowest weight vector in

Vwi
(λi) such that

Vwi
(λi) = U(b+

i
)vwi

.

Lemma 3. We have U(b+
i
)vwi

= U(n+wi
)vwi

.

Proof. We take eα ∈ b+
i

for some α ∈ ∆+
i

such that eα · vwi(λi) 6= 0. This condition
implies that

wi ew−1
i

(α) · vλi
w−1

i
6= 0,

i.e. ew−1
i

(α)vλi
6= 0. Since vλi

is a highest weight vector, w−1
i
(α) < 0. �

By Proposition 9,

U(n+wi
)vwi

= wi U(n−wi
)w−1

i
wi vλi

w−1
i

= wi U(n−wi
)vλi

w−1
i

where vλi
is a highest weight vector in V (λi). Hence as n−wi

-modules, we have

Vwi
(λi) = wi U(n−wi

)vλi
w−1

i
.
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Now we prove Theorem 7. The proof consists of two parts: the first and crucial
step is to consider the case of fundamental λ and the second step is to deduce the
general case. We prepare the following lemma.

Lemma 4. We have

w−1
i
Vwi

(̟ℓr)wi = U(n−wi
∩ n−ℓr).v̟ℓr

where n−ℓr is the nilpotent radical corresponding to the weight ̟ℓr (i.e., generated by
all fp,q with p ≤ ℓr ≤ q).

Moreover, if {p1, · · · , ps} and {q1, · · · , qs} are two sets of pairwise distinct indices
with pi ≤ r ≤ qi for all i, then

∏

i

fpi,qi · v1 ∧ · · · ∧ vr 6= 0 ∈ V i(̟r).

Proof. We have shown in the argument after Lemma 3 that

U(n−wi
)v̟ℓr

= w−1
i
Vwi

(̟ℓr)wi.

It is enough to prove the following two claims. Firstly,

degi(fp,q) + degi(ft,s) = degi(fp,s) + degi(ft,q)

for all p < t ≤ s < q. This follows easily from Proposition 7.
Secondly, we need for p < s < q, that

degi(fp,q) ≤ degi(fp,s−1) + degi(fs,q)

but this follows since the degree function is convex by definition.
The second claim shows that the module is generated by the nilpotent radical,

while the first claim shows that for a fixed weight, all monomials in root vectors of
the nilpotent radical have the same degree (they are parametrized by elements of
the symmetric group Sk (for some k)). But Sk is generated by transpositions and
hence it suffices to note that the degree is not changed under transpositions. �

We define a linear isomorphism

ζ : V i(̟r) → w−1
i
Vwi

(̟ℓr)wi.

Consider the map Λr
C

n+1 → Λr
C

ℓn+1 induced by

vi 7→

{

vℓi if i ≤ r

vℓi−1+1 if i > r

Let {c1, c2, · · · , cℓr−r} = {1, 2, · · · , ℓr}\{ℓ1, ℓ2, · · · , ℓr}. We consider the map

Λr
C

ℓn+1 → ΛℓrC
ℓn+1, u 7→ u ∧ vc1 ∧ · · · ∧ vcℓr−r

.

The composition ΛrCn+1 → ΛrCℓn+1 → ΛℓrCℓn+1 of these two linear maps will be
denoted by ζ .

Claim. ζ induces a linear isomorphism

ζ : V i(̟r) → w−1
i
Vwi

(̟ℓr)wi.
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Proof. By definition ζ is injective. By Proposition 10, it suffices to show that
its image is contained in w−1

i
Vwi

(̟ℓr)wi. By Lemma 4, we can easily see that
w−1

i
Vwi

(̟ℓr)wi is spanned by the vectors vj1 ∧ · · · ∧ vjℓr such that

{c1, · · · , cℓr−r} ⊂ {j1, · · · , jℓr} and if jt > ℓr then jt = ℓs + 1 for some s.

So we can write its generators as

(5.5) v = vℓt1 ∧ · · · ∧ vℓts ∧ vℓts+1+1 ∧ · · · ∧ vℓtr+1 ∧ vc1 ∧ · · · ∧ vcℓr−r

where 1 ≤ t1 < · · · < tr ≤ n and ℓts ≤ ℓr < ℓts+1 . By definition, ζ(vi1 ∧ · · · ∧ vir) is
of this form. �

Lemma 5. For any r = 1, 2, · · · , n, V i(̟r) ∼= Vwi
(̟ℓr) as n−,i-modules.

Proof. Recall the isomorphism of Lie algebras from Proposition 8:

η : n−,i → n−wi
, fp,q 7→ fℓp,ℓq .

It suffices to show that for any fp,q ∈ n−,i,

(5.6) η(fp,q) · ζ(vi1 ∧ · · · ∧ vir) = ζ(fp,q · vi1 ∧ · · · ∧ vir),

which implies that ζ is an isomorphism of n−,i-modules.
We fix some notations. By Lemma 4, there exist two sets of pairwise distinct

indices {p1, p2, · · · , ps} and {q1, q2, · · · , qs} with pi ≤ r ≤ qi for i = 1, 2, · · · , s such
that

vi1 ∧ · · · ∧ vir =
∏

i

fpi,qi · v1 ∧ · · · ∧ vr ∈ V i(̟r),

where fp,q ∈ n−,i. We suppose that for some t, it ≤ r < it+1

{p1, p2, · · · , pr−t} = {1, 2, · · · , r}\{i1, · · · , it}

and
{q1, q2, · · · , qr−t} = {it+1 − 1, · · · , ir − 1}.

We consider v as in (5.5): let

{m1, m2, · · · , mr−s} = {1, 2, · · · , r}\{t1, t2, · · · , ts},

then

v = ±
r−s∏

i=1

fℓmi
,ℓts+i

· v1 ∧ · · · ∧ vℓr .

Notice that t satisfies it ≤ r < it+1, then ζ(vi1 ∧ · · · ∧ vir) reads

(5.7) v′ = vℓi1 ∧ · · · ∧ vℓit ∧ vℓit+1−1+1 ∧ · · · ∧ vℓir−1+1 ∧ vc1 ∧ · · · ∧ vcℓr−r
,

which is

±
r−t∏

i=1

fℓpi ,ℓqi · v1 ∧ · · · ∧ vℓr .

The proof of (5.6) is separated into three cases. We give the statement of the case
p ≤ q < r, the cases p ≤ r ≤ q and r < p ≤ q are similar. The proofs can be done
by direct computations, we omit them here.

The following statements are equivalent:

• fp,q · vi1 ∧ · · · ∧ vir = 0 in V i(̟r);
• p ∈ {p1, · · · , pr−t} or q + 1 /∈ {p1, · · · , pr−t} or q ∈ i;
• fℓp,ℓq · ζ(vi1 ∧ · · · ∧ vir) = 0.
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Now to verify (5.6), it suffices to consider the case fp,q · vi1 ∧ · · · ∧ vir 6= 0. In this
case we may suppose that p = iw for some w ≤ t; since q + 1 ≤ r, the right hand
side of (5.6) reads:

vℓi1 ∧ · · · ∧ vℓiw−1
∧ vℓq+1 ∧ vℓiw+1

∧ · · · ∧ vℓit+1−1+1 ∧ · · · ∧ vℓir−1+1 ∧ vc1 ∧ · · · ∧ vcℓr−r
,

while the left hand side reads

vℓi1 ∧ · · · ∧ vℓiw−1
∧ vℓq+1 ∧ vℓiw+1

∧ · · · ∧ vℓit+1−1+1 ∧ · · · ∧ vℓir−1+1 ∧ vc1 ∧ · · · ∧ vcℓr−r
.

We know that the hypothesis fp,q · vi1 ∧ · · · ∧ vir 6= 0 implies q /∈ i and hence
ℓq + 1 = ℓq+1, which proves (5.6). �

Now we turn to the general case λ =
∑n

i=1 λi̟i.

Proof. (1) We consider the following commutative diagram:

w−1
i

Vwi
(λ i)wi

ι

��

V i(λ)

π

��

β
oo

(w−1
i

Vwi
(Ψi(̟1))wi)

⊗λ1 ⊗ · · · ⊗ (w−1
i

Vwi
(Ψi(̟n))wi)

⊗λn

ϕ
// V i(̟1)⊗λ1 ⊗ · · · ⊗ V i(̟n)⊗λn .

where
• the map ι is an embedding of w−1

i
n+wi

wi-modules into the Cartan com-
ponent;

• the map π is a n−wi
-module projection onto the Cartan component;

• the map ϕ is an isomorphism of n−wi
-modules by Lemma 5.

Hence as composition, β := ι−1 ◦ ϕ−1 ◦ π is surjective. By Proposition
10, β is an isomorphism for dimension reasons. This completes the proof of
Theorem 7 (1).

(2) By definition,

Xwi
:= Bi · [vwi(λi)] ⊂ P(Vwi

(λi)) and Fli(λ) := N−,i · [viλ] ⊂ P(V i(λ)).

We examine the space Bi ·vwi(λi): for α ∈ ∆+
i
, let Uα denote the corresponding

root subgroup in Bi, then

Bi · vwi(λi) =
∏

α∈∆+
i

Uα · vwi(λi) =
∏

α∈∆+
i
, w−1

i
(α)<0

Uα · vwi(λi) = N+
i
· vwi(λi).

Therefore Xwi
= N+

i
· [vwi(λi)]. By Theorem 7 (1), conjugating by wi gives

the desired isomorphism of projective varieties

Xwi
= N+

i
· [vwi(λi)]

∼= w−1
i
N+

i
· [vwi(λi)]wi = N−

i
· [vλi

] ∼= N−,i · [viλ] = Fli(λ).

�

Fibers on the PBW locus UPBW share the geometric properties of Schubert vari-
eties.

Corollary 4. For any i ∈ D, Flin+1 is a normal variety having rational singularities;
it is Cohen-Macaulay and Frobenius split.
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5.7. Construction of a unipotent group scheme. We close this section with
the construction a flat unipotent group scheme acting on the fibers over the PBW
locus with dense orbits. This scheme can be regarded as a "universal" version of the
construction given above; we use the transversal slices introduced in subsection 4.3.

Theorem 8. There exists a flat unipotent group scheme ΓPBW → TPBW acting on
π−1(TPBW) → TPBW with a dense orbit.

Proof. We start with the trivial group scheme G × R → R and consider the closed
subscheme Aut = s−1(∆), where s : G×R → R×R is the shear map, and ∆ ⊂ R×R
is the diagonal. Then the fiber of Aut over M is just the automorphism group of M
considered as a representation, which acts on the fiber π−1(M). Note that Aut is
not flat since the dimension of automorphism group varies with M . We would like
to construct closed subgroup schemes of Aut. Restricting to UPBW, we can, without
loss of generality, work over the transversal slice TPBW. We identify TPBW with Cn−1

(since an element of TPBW is specified by parameters λ = (λ11, . . . , λn−1,n−1)) and
define Γ ⊂ G × TPBW as the closed subscheme of all tuples ((g1(λ), . . . , gn(λ)), λ)
such that

(gi(λ))p,q =







0 , p < q,
1 , p = q,

λq−1,q−1xp,q , i < q < p,
xp,q , q ≤ i < p,

λp−1,p−1xp,q , q < p ≤ i

for arbitrary (xp,q)p>q.
It is immediately verified that Γ is a flat unipotent closed subgroup scheme of Aut

over TPBW. To see that it acts with an open orbit on each fiber, one just verifies that
the stabilizer of the standard flag (〈v1〉, 〈v1, v2〉, . . .) in Γ is trivial. �

6. Geometry of linear degenerations - the flat locus

Since the orbit Or2 is minimal in the flat locus Uflat, the linear degenerate flag

variety Flr
2

(V ) is maximally degenerated, thus we call it the maximally flat (mf)–
linear degeneration of the flag variety.

Theorem 9. Flr
2

(V ) is of dimension
(
n+1
2

)
, and its irreducible components are nat-

urally parametrized by non-crossing arc diagrams on n points. Consequently, the
number of irreducible components equals the n-th Catalan number.

An arc diagram on n points is a subset A of {(i, j), 1 ≤ i < j ≤ n} (draw an arc
from i to j for every element (i, j) of A). An arc diagram A is called non-crossing if
there is no pair of different elements (i, j), (k, l) in A such that i ≤ k < j ≤ l (that
is, two arcs are not allowed to properly cross, or to have the same left or right point.
But immediate succession of arcs, like for example {(1, 2), (2, 3)}, is allowed).

To a non-crossing arc diagram we associate a rank tuple r(A) by

r(A)i,j = i− |{arcs in A starting in [1, i] and ending in [i+ 1, j]}|.

Define SA ⊂ Flr
2

(V ) as the set of all tuples (U1, . . . , Un) such that

rank((fj−1 ◦ . . . ◦ fi)|Ui
: Ui → Uj) = r(A)i,j

for all i < j.



LINEAR DEGENERATIONS OF FLAG VARIETIES 25

Moreover, define representations NA and NA of Q by

NA =
⊕

(i,j)∈A

Ui,j−1, NA =
⊕

i

P ci
i ⊕NA,

where
ci = 1 + |{arcs ending in i}| − |{arcs starting in i}|.

It is immediately verified that r(A) is precisely the rank tuple of NA.
We have:

Theorem 10. The irreducible components of Flr
2

(V ) are the closures of the SA, for
A a non-crossing arc diagram.

6.1. Proofs of the theorems. We can now combine the results and methods de-
veloped so far to give proofs of Theorems 9, 3 and 10.

To prove Theorem 9, we consider M2 = P ⊕ X with P = A and X = S ⊕ A∗/S
and reformulate the criterion of Theorem 1. Using the exact sequence

0 → S → A∗ → A∗/S → 0,

and injectivity of A∗, we can rewrite

dimHom(N, S ⊕ A∗/S)− dimHom(N,A∗) = dimExt1(N, S).

We thus have to check the inequality

dimEnd(N) ≥ dimExt1(N, S).

Writing

N =
⊕

1≤i≤j<n

U
ni,j

i,j ,

we have

dimExt1(N, S) =
∑

1≤i≤j<n

ni,j ,

and certainly

dimEnd(N) ≥
∑

1≤i≤j<n

n2
i,j.

This proves the claim about the dimension of Gre(M
2). The irreducible components

are parametrized by the representations N as above for which the direct summand
N satisfies

dimEnd(N) = dimExt1(N, S).

To satisfy this equality, it is thus necessary and sufficient for N to have all multiplic-
ities ni,j of indecomposables equal to either 0 or 1, and there should be no non-zero
maps between those Ui,j for which ni,j = 1. But this can be made explicit since

dimHom(Ui,j, Uk,l) = 1 if k ≤ i ≤ l ≤ j,

and zero otherwise. Thus N has to be of the form

N =
⊕

(i,j)∈I

Ui,j−1

for a set I of pairs (i, j) with i ≤ j, such that there is no pair of different elements
(i, j), (k, l) ∈ I fulfilling i ≤ k < j ≤ l. These are precisely the representations NA

associated to non-crossing arc diagrams introduced above. It suffices to check that
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these N fulfill the additional assumptions, that is, that they embed into S ⊕ A∗/S
and the condition on dimension vectors. But this is easily verified.

We now turn to the proof of the first part of Theorem 3. Suppose that M does
not degenerate to M2. By Theorem 4, M is a degeneration of some M(ai,j). We
claim that Gre(M(ai,j)) has dimension strictly bigger than n(n + 1)/2. Namely, we
choose N = Si ⊕Sj . The conditions of Theorem 1 are easily seen to be violated. By
upper semi-continuity of fiber dimensions, dimGre(M) is also strictly bigger than
n(n + 1)/2. On the other hand, again applying semi-continuity of fiber dimensions,
since Gre(M

2) has the correct dimension, also Gre(M
′) has dimension n(n+1)/2 for

every representation M ′ degenerating to M2. But by the first part of Theorem 2, the
flat locus in R is precisely the locus where the fibers have the minimal dimension.

For the second part of Theorem 3 we argue similarly: Suppose that M does not
degenerate to M1. By Theorem 4, M is a degeneration of some M(ai). We claim
that Gre(M(ai)) is reducible. Namely, we consider the two subrepresentations N1

and N2 given by N1 = A and N2 =
⊕

j 6=i Pj ⊕ Si ⊕ Pi+1 so that N1 = 0 and

N2 = Si (notation as in section 3.3). Both N1 and N2 fulfill equality in the estimate
of Theorem 1, thus Gre(M(ai)) has at least two irreducible components. We claim
that Gre(M) is reducible. Suppose that it is irreducible. We consider the subset
U ⊂ Rd(Q) consisting of all representations degenerating to M : it is an irreducible
open subset in Rd(Q). The restriction π−1(U) → U of π is Gd-equivariant and flat,
and the orbit of M in U is the only closed orbit. By the second part of Theorem 2,
Gre(M(ai)) is irreducible, a contradiction.

On the other hand, since Gre(M
1) is irreducible, by the second part of Theorem

2, Gre(M
′) is irreducible for every representation degenerating to M1.

6.2. Geometric properties of the mf–linear degenerate flag variety.

Theorem 11. The scheme Flr
2

(V ) is reduced and locally a complete intersection.
Consequently, all linear degenerations of flag varieties over Uflat are reduced locally
complete intersection varieties.

Let us first show that the scheme Flr
2

(V ) is locally a complete intersection. By

definition Flr
2

(V ) = Gre(M) where M ≃ M2 is the Q–representation defined by a tu-
ple f∗ = (f1, · · · , fn−1) such that r(f∗) = r

2 (see Definition 2) and e = (1, 2, · · · , n).
Consider the affine variety Hom(e,M) consisting of tuples ((Ni), (gi)) inside the vec-
tor space M := Re ×

∏n
i=1HomC(C

i,Cn+1) such that fi+1 ◦ gi = gi+1 ◦Ni for every
i = 1, · · · , n− 1. The quiver Grassmannian Gre(M) can be realized as a geometric
quotient Gre(M) ≃ Hom0(e,M)/Ge (see [6]) where Hom0(e,M) is the open sub-
variety of Hom(e,M) consisting of points ((Ni), (gi)) such that all the maps gi are
injective. It is hence enough to show that Hom0(e,M) is locally complete intersec-

tion. We already know that Flr
2

(V ) is equidimensional of dimension n(n+1)
2

and hence

Hom0(e,M) is equidimensional of dimension n(n+1)
2

+ dimGe =
n(n+1)(n+2)

3
. Its codi-

mension in M is given by n(n+1)2

2
. This is precisely the number of equations defining

Hom(e,M) inside M and hence Hom0(e,M) is locally a complete intersection.

Now that we know that the scheme Flr
2

(V ) is locally a complete intersection, once
we prove that it is also generically reduced, we can apply the third part of Theorem
2 to conclude that it is reduced.

We hence prove that Flr
2

(V ) is generically reduced. For this, we first consider
duality of non-crossing arc diagrams.
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Let A be an arc diagram as above. A pair (i, j) with i ≤ j of indices is called a
chain if there is a sequence of arcs

(i = i0, i1), (i1, i2), . . . , (ik−1, ik = j)

in A. It is called a complete chain if it is a chain, and there is neither an arc ending
in i nor an arc starting in j. In particular, an isolated vertex i (that is, i is not
connected to any arc) counts as a complete chain (i, i) of length 0.

Define A∗, the dual of A, as

A∗ = {(i− 1, j) | i ≥ 2 and (i, j) is a complete chain in A}.

We denote the map A 7→ A∗ by ∗. Let us also denote by op the symmetry on the
arc diagrams induced by the Dynkin diagram symmetry i 7→ n + 1− i.

Lemma 6. The map A 7→ opA∗ is an involution.

Proof. We need to show that op(∗−1A) = (opA)∗. Let

(i = i0, i1), (i1, i2), . . . , (ik−1, ik = j)

be a complete chain of arcs in A. After applying the composite map ∗op to this chain
we obtain a long arc (n− j, n + 1− i) and k complete chains of the form

(n+1− ia+1, n+1− ia+1+1), (n+1− ia+1+1, n+1− ia+1+2), . . . , (n− ia−1, n− ia),

a = 0, . . . , k−1. We conclude that (opA)∗ consists of the parts described above (one
part for each complete chain in A) . Now it suffices to note that op(∗−1A) consists
of the same parts. �

Using the self-duality of the representation M2 under the previous symmetry, we
can define quotient representations QA of M2 dually to the subrepresentations NA

of M2 for every non-crossing arc diagram A. More precisely, we have

QA =
⊕

(i,j)∈A

Ui+1,j , QA = QA ⊕
⊕

i

Idii ,

where

di = 1 + |{arcs starting in i}| − |{arcs ending in i}|.

The following is then proved by an explicit construction:

Proposition 11. For every arc diagram A, there exists a short exact sequence

0 → NA → M2 → QA∗ → 0.

We have

dimHom(NA, QA∗) = n(n+ 1)/2.

Proof. We consider the direct sum of the following short exact sequences:

• One copy of

0 → Ui,j−1 → Ij−1 ⊕ Si → Ii → 0

for every arc (i, j) in A,
• one copy of

0 → Pj → Pi ⊕ Sj → Ui,j → 0

for every complete chain from i to j in A (equivalently, for every arc (i+1, j)
in A∗),
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• one copy of
0 → Pj → Pj → 0 → 0

for every j such that there exists an arc (i, j) in A,
• one copy of

0 → 0 → Ii → Ii → 0

for every i such that there is no arc (j, i+ 1) in A.

Using the definition of NA, M (2) and QA∗ , as well as the definition of A∗ and the
fact that A is non-crossing, one can verify in a straightforward way that this direct
sum yields the desired exact sequence.

Moreover, one computes

dimHom(NA, QA∗) = n(n + 1)/2 + |{((i, j), (k, l)) ∈ A×A∗ : k < i ≤ l < j}|.

Again using the definition of A∗, the second summand is seen to equal zero.
Using the previous proposition, for every irreducible component of Gre(M

2), we
find a specific subrepresentation U of M2 (namely the one given by the above exact
sequence) for which the tangent space TUGre(M

2) ≃ Hom(U,M2/U) is of dimension
dimGre(M

2), proving generic reducedness. �

6.3. Desingularizations of the irreducible components. In this subsection we

describe explicitly the desingularization of irreducible components of Flr
2

(V ). In
particular, we reprove that the dimension of every component is equal to n(n+1)/2.
Our main tool is the general construction of [7].

Let A be an arc diagram. The irreducible components are labeled by the non-
crossing arc diagrams. For a non-crossing arc diagram A the irreducible component

is the closure SA of the subset SA ⊂ Flr
2

(V ) of all tuples (U1, . . . , Un) such that
rank((fj−1 ◦ . . . ◦ fi)|Ui

: Ui → Uj) = r(A)i,j, where

r(A)i,j = i− |{arcs in A starting in [1, i] and ending in [i+ 1, j]}|.

The desingularization RA is formed by the collections of vector spaces Ui,j ⊂ V ,
1 ≤ i ≤ j ≤ n subject to the following conditions:

(1) Ui,j ⊂ Im(fj−1 ◦ . . . ◦ fi), dimUi,j = r(A)i,j,
(2) Ui,j ⊂ Ui+1,j, fjUi,j ⊂ Ui,j+1.

The map RA → SA sends a collection (Ui,j)i,j to (Ui,i)
n
i=1.

Lemma 7. Each variety RA is isomorphic to a tower RA = RA(1) → · · · →
RA(N) = pt, N = n(n + 1)/2, where each map RA(k) → RA(k + 1) is a fibra-
tion with the fibers being Grassmannians.

Proof. A point in RA is a collection of spaces Ui,j . Our first step is to define the space
U1,n. This is a subspace of the one-dimensional space spanned by fn−1◦ . . .◦f1. Since
dimU1,n is either one or zero (depending on r(A)1,n), we have no choice when fixing
U1,n. We define RA(N) = Gr(r(A)1,n, 1).

In general, the space RA(k) is defined as the set of collections (Ui,j)i,j∈L(k), where
the cardinality of L(k) is N+1−k and (i, j) ∈ L(k) implies (i−1, j), (i, j+1) ∈ L(k),
1 ≤ i ≤ j ≤ n; the properties (1) and (2) are assumed to be fulfilled provided all the
pairs (i, j) popping up belong to L(k). The sets L(k) satisfy

{(i, j), 1 ≤ i ≤ j ≤ n} = L(1) ⊃ L(2) ⊃ · · · ⊃ L(N) = {(1, n)}.

Now assume that (i − 1, j), (i, j + 1) ∈ L(k) and (i, j) /∈ L(k). Then we define
L(k− 1) = L(k)∪{(i, j)}. Then there is a natural map RA(k− 1) → RA(k) and the
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fiber of such a map is parametrized by the subspaces Ui,j such that Ui−1,j ⊂ Ui,j and
fjUi,j ⊂ Ui,j+1. Hence such Ui,j are parametrized by the Grassmannian

Gr(r(A)i,j − r(A)i−1,j, f
−1
j Ui,j+1 ∩ Im(fj−1 ◦ . . . ◦ fi)).

�

Corollary 5. Flr
2

(V ) is equidimensional of dimension n(n + 1)/2.

Proof. One can show that for any non-crossing arc diagram A the dimension of R(A)
is equal to dimRA = n(n + 1)/2. This implies the claim. �

6.4. Cell decompositions. We retain notations of previous sections. Thus Q de-
notes an equioriented quiver of type An (for some fixed integer n ≥ 1) and let
M := (V•, f•) be a Q-representation:

M : V1
f1

// V2
f2

// · · · //
fn−1

// Vn

We denote by di := dimC(Vi). Let e = (e1, e2, · · · , en) ∈ Z
n
≥0 be a dimension vector.

We consider the corresponding quiver Grassmannian

Gre(M) := {(U1, U2, · · · , Un) ∈
n∏

i=1

Grei(Vi)| fi(Ui) ⊆ Ui+1}.

In this subsection we show that all varieties Gre(M) (for every Q–representation M
and dimension vector e) admit cellular decompositions such that the points of each
cell are all isomorphic as representations of Q.

Let us introduce our candidates for the cells. It is well-known that there exists a
basis

Bi = {v
(i)
1 , v

(i)
2 , · · · , v

(i)
di
}

of Vi (for all i = 1, · · · , n) such that

(6.1) fi(v
(i)
k ) is either zero or a basis vector v

(i+1)
k′ ∈ Bi+1.

We call B the standard basis of M . We renumber the basis vectors in such a way that

if fi(v
(i)
k ) 6= 0 then it equals the standard basis vector v

(i+1)
k (with the same index k)

where k ≥ 1 is a positive integer. We say that a maximal collection of vectors {v
(i)
k }i

such that fi(v
(i)
k ) = v

(i+1)
k form the k–th segment of M .

Our second reduction is the following: for every index i, we renumber the basis
vectors of Bi so that

(6.2) v
(i)
k ∈ ker fi ⇒ v

(i)
j ∈ ker fi ∀j > k

for every choice of i and k. Such a renumbering is always possible (see Remark 7).
This property is equivalent to the following

(6.3) fi(v
(i)
k +

∑

j>k

ajv
(i)
j ) 6= 0 ⇒ fi(v

(i)
k ) 6= 0

for every choice of i, k and of coefficients aj ∈ C.
We can now construct our candidate for the cells (i.e. affine spaces) of Gre(M).

Following [5], we assign a degree to each standard basis vector as follows:

(6.4) deg(v
(i)
k ) = k.
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With this choice the vectors of every segment are homogenous of the same degree.
The 1–dimensional torus T = C∗ acts on the quiver Grassmannian Gre(M) as follows:
given λ ∈ T and a basis vector v ∈

⋃n
i=1 Bi we put:

λ · v = λdeg(v)v

and we extend this action to M by linearity. It is easy to see that the map v 7→ λ.v is

an automorphism of the Q–representation M : indeed, given a vector v =
∑

k akv
(i)
k ∈

Vi and λ ∈ T ,

fi(λ · v) =
∑

k

akλ
kfi(v

(i)
k ) =

∑

k:fi(v
(i)
k

)6=0

akλ
kv

(i+1)
k = λ · (fi(v))

Since the group AutQ(M) naturally acts on Gre(M), it follows that T ⊂ Aut(M)
acts on Gre(M). The set Gre(M)T of T–fixed points is finite and consists of all sub–
representations of M of dimension vector e which are spanned by standard basis
vectors. Given L ∈ Gre(M)T we consider its attracting set

C(L) := {N ∈ Gre(M)| lim
λ→0

λ ·N = L}.

Theorem 12. For every L ∈ Gre(M)T , the subset C(L) ⊆ Gre(M) is an affine space
and the quiver Grassmannian admits the cellular decomposition

(6.5) Gre(M) =
∐

L∈Gre(M)T

C(L).

Proof. The torus T acts on each Grassmannian Grei(Vi) as (6.4) and induces a cell
decomposition

Grei(Vi) =
∐

Li∈Grei (Vi)T

C(Li) where C(Li) := {Ni ∈ Grei(Vi)| lim
λ→0

λ ·Ni = Li}.

Let L ∈ Gre(M)T and let us denote by Li the corresponding subspace of Vi (for
every vertex i = 1, · · · , n). Then, since the embedding Gre(M) ⊆

∏n
i=1Grei(Vi) is

T–equivariant,

(6.6) C(L) = Gre(M) ∩
n∏

i=1

C(Li).

In order to finish the proof it remains to show that this intersection is an affine space.
It is easy to describe the affine space C(Li): suppose that Li is spanned by

{v(i)k1
, v

(i)
k2
, · · · , v(i)kei

} for some set of indices Ki := {k1 < k2 < · · · < kei}, then a

point Ni ∈ C(Li) is spanned by vectors {w
(i)
1 , · · · , w

(i)
ei } of the form

(6.7) w(i)
s = v

(i)
ks

+
∑

j>ks, j /∈Ki

a
(i)
j,sv

(i)
j

for some coefficients a
(i)
j,s ∈ C. We claim that in the coordinates {a

(i)
j,s}, the intersection

(6.6) is described by the following equations:

(6.8) a
(i+1)
j,s = a

(i)
j,s whenever fi(v

(i)
j ) 6= 0

In particular, the claim shows that C(L) is a cell. The proof of the claim is straight-

forward: let us take a point {a
(i)
j,s} ∈

∏
C(Li) which defines a collection N = {Ni}

n
i=1

of subspaces, each one spanned by vectors (6.7). This point N belongs to Gre(M) if
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and only if fi(Ni) ⊆ Ni+1 for i = 1, 2, · · · , n − 1. This means that fi(w
(i)
s ) must be

in the span of {w
(i+1)
1 , · · · , w

(i+1)
ei+1 }. In view of (6.3), if fi(w

(i)
s ) 6= 0 then it equals

fi(w
(i)
s ) = v

(i+1)
ks

+
∑

j>ks, j /∈Ki

a
(i)
j,s fi(v

(i)
j ) = v

(i+1)
ks

+
∑

j>ks, j /∈Ki, fi(v
(i)
j )6=0

a
(i)
j,s v

(i+1)
j .

(Notice that v
(i+1)
ks

∈ Li+1 since L is a sub-representation of M .) This vector is in

the span of {w
(i+1)
1 , · · · , w

(i+1)
ei+1 } if and only if it equals

w(i+1)
s = v

(i+1)
ks

+
∑

j>ks j /∈Ki+1

a
(i+1)
j,s v

(i+1)
j

and this forces (6.8). �

Remark 4. A different numbering than (6.2) does not produce cells. For example,

let V1 = span{v(1)1 , v
(1)
2 }, V2 = span{v(2)2 , v

(2)
3 } and f1(v

(1)
1 ) = 0, f1(v

(1)
2 ) = v

(2)
2 .

Then we see that condition (6.2) is not satisfied (since f1(v
(1)
1 ) = 0 but f1(v

(1)
2 ) 6=

0). Let e = (1, 1). The attracting set of the T–fixed point L = span{v
(1)
1 , v

(2)
2 } is

given by

C(L) = {(v
(1)
1 + xv

(1)
2 , v

(2)
2 + yv

(2)
3 )| xy = 0}

which is not a cell.

Recall the stratification of Gre(M) as union of locally closed subsets S(N) con-
sisting of points U ∈ Gre(M) isomorphic to N .

Corollary 6. The cellular decomposition (6.5) induces a cellular decomposition

(6.9) S(N) =
∐

L∈Gre(M)T :L≃N

C(L).

In other words all the points of a cell C(L) are isomorphic to L as Q–representations.

Proof. We need to prove that each point U of Gre(M) is attracted by a torus fixed
point which is isomorphic to it. By the explicit description of the cell C(L) given in
the proof of the theorem, it follows that the ranks of the maps induced on each point
of C(L) are precisely the ranks of the same maps induced on L. Since isomorphism
classes of Q–representations are parametrized by such ranks, this concludes the proof.

�

Corollary 7. The possible sub-representation types of M are given by torus fixed
points.

Notice that Corollary 7 is not true for Dynkin quivers of type Dn (see [6, Exam-
ple 4.3]).

Remark 5. It is worth noting that the dimension of the tangent space at Gre(M)
is not constant along each cell, in general (see Example 4). So, it can happen that
the center of a cell (i.e. its T–fixed point) is singular while the cell contains smooth
points of Gre(M).

Remark 6. Equation (6.8) provides a formula to compute the dimension of any
given attracting cell C(L) for L ∈ Gre(M)T .
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Remark 7. To each indecomposable Q–representation Uij (1 ≤ i ≤ j ≤ n) we assign
the degree

(6.10) degUij := j − i+ 1 +

(
n+ 1

2

)

−

(
j + 1

2

)

.

It satisfies the following recursive relations:

degUij =

{
degUi−1,j − 1 if 1 < i ≤ j
degUj−1,j−1 − 1 if i = 1 < j

In particular,

(6.11) degUij ≥ degUrs ⇒ j ≤ s.

This provides a total ordering on the set of indecomposable Q–representations.
Given a Q–representation M , we order its indecomposable direct summands M =

⊕N
i=1M(i) so that

i < j ⇒ degM(i) ≤ degM(j).

This ordering induces a grading of the standard basis vectors of M which satisfies

(6.2). Indeed, by assumption, the k–th segment is the span of {v
(i)
k }i and it is iso-

morphic to M(k); every standard basis vector of such segment has degree k. If v
(i)
k

is defined and fi(v
(i)
k ) = 0, then the k–th segment of M is isomorphic to Uri for some

r ≤ i and if j > k then the j–th segment is Ust with degUri ≤ degUst and in view of

(6.11), t ≤ i. In case t = i, this forces fi(v
(i)
j ) = 0 as desired.

We conclude this subsection with examples. They all concern the mf–linear de-

generate flag variety Flr
2

(V ), that we denote by Gn for simplicity. Recall that by

definition Flr
2

(V ) is the quiver Grassmannian Gre(M
(2)) where e = (1, 2, · · · , n) and

M ≃ M2 is the representation of Q given by M :=
⊕n

i=1 Pi⊕
⊕n−1

j=1 Ij⊕
⊕n

k=1 Sk. We
order the indecomposable direct summands of M as explained in Remark 7. Thus,
the strings of M (for n = 4) are ordered as follows, from top to bottom:

· 1
· 2

· // · 3
· // · // · 4

· // · // · // · 5
· 6

· // · // · 7
· 8

· // · 9
· 10
· 11

As shown in Theorem 10 the irreducible components of Gn are labeled with non–
crossing partitions on n vertices. According to Corollary 6, each stratum S(N)
of the mf-degenerate flag variety is divided into cells, parametrized by coordinate
sub-representations of M isomorphic to N . It is straightforward to compute the
dimension of each cell in examples: consider the coefficient quiver of M , and arrange
its strings as above. Given a T–fixed point L of S(N), color black the vertices of
the coefficient quiver of M corresponding to its basis vectors and color white the



LINEAR DEGENERATIONS OF FLAG VARIETIES 33

M0

M1

irreducible=normalPBW

M(a1)

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
M(a2)

✇✇✇✇✇✇✇✇✇

· · · M(an−2)

■■■■■■■■■■

M(an−1)

❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

M2

●●●●●●●●

✉✉✉✉✉✉✉✉✉

Figure 1. Flat locus

remaining vertices. The dimension of the cell C(L) is given by counting the number
of white vertices below each black source (i.e. a source of the segments defining L).

Example 4. Let us consider the following T–fixed point L of G4

• 1
· 2

• // • 3
• // • // • 4

· // • // • // • 5
· 6

· // · // · 7
· 8

· // · 9
• 10
· 11

Its attracting cell C(L) has dimension 10 which is also the dimension of the whole
variety G4. In view of Corollary 6, it follows that the stratum S(L) is generic (its
closure is an irreducible component of G4) and indeed it is indexed by the non–crossing
partition {(1, 2)}. This cell is interesting, because its center is non–smooth (the
tangent space of G4 at L has dimension 11) but the cell contains smooth points (since
Gn is generically reduced for every n).

6.5. Normal flat locus. We have shown above that the flat locus consists of those
Q–representations M such that M ≤deg M

2. Inside the flat locus, the irreducible flat
locus consists of those M such that M≤degM

1. Theorem 4 shows that M lies in the
flat locus but not in the flat irreducible locus if and only if there exists an index i
such that M(ai)≤degM≤degM

2. Figure 1 summarizes the situation. The next result
shows that the fiber over a point lying in the flat locus is normal if and only if the
point lies in the irreducible flat locus. In other words a flat linear degeneration of
the complete flag variety is normal if and only if it is irreducible.

Theorem 13. For every i, the quiver Grassmannian X := Gr(1,2,··· ,n)(M(ai)) has
singularities in codimension 1 and hence it is not normal. A flat linear degeneration
of the complete flag variety is normal if and only if it is irreducible.
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Proof. Let ai = (0, · · · , 0, 2, 0, · · · , 0), with 2 in the i–th position. The corresponding
representation M(ai) is the Q–representation

M(ai) := Cn+1 1 // · · ·
1 // Cn+1

pri,i+1
// Cn+1 1 // · · ·

1 // Cn+1

where the map pri,i+1 is between vertex i and vertex i + 1. Its decomposition is

M(ai) := P
⊕(n+1−2)
1 ⊕P⊕2

i+1⊕I⊕2
i . Since M(ai) degenerates to M2, we know that X is

Cohen–Macaulay. Let us show that it has singularities in codimension 1. Recall that
the irreducible components of X have all the same dimension d := n(n+1)/2 and they
are closures of attracting sets of some torus fixed points. We show that there exist two
irreducible components I1 = C(P ) and I2 = C(R) (for suitable subrepresentations P
and R of M(a2)) such that the intersection I1 ∩ I2 contains a cell C(L) of dimension
d− 1.

We order the indecomposable direct summands M1,M2, · · · ,Mn+3 of M(ai) as
M1 = M2 = Pi+1, M3 = · · · = Mn+1 = P1, Mn+2 = Mn+3 = Ii. This ordering

induces an ordering of the standard basis of M(ai) (see Section 6.4): {v
(ℓ)
k | k ∈

[1, n + 3], ℓ is in the support of Mk}. The one–dimensional torus T ≃ C∗ embeds

into AutQ(M(ai)) by rescaling this basis elements: λ · v
(ℓ)
k := λkv

(ℓ)
k . This induces an

action of T on X. The T–fixed points are precisely the coordinate subrepresentations
of M(ai) of the prescribed dimension vector. Moreover, as shown in Section 6.4 the
attracting sets of T–fixed points are cells.

Example 5. For n=4, M(a2) is given by

v
(3)
1

// v
(4)
1 1

v
(3)
2

// v
(4)
2 2

v
(1)
3

// v
(2)
3

// v
(3)
3

// v
(4)
3 3

v
(1)
4

// v
(2)
4

// v
(3)
4

// v
(4)
4 4

v
(1)
5

// v
(2)
5

// v
(3)
5

// v
(4)
5 5

v
(1)
6

// v
(2)
6 6

v
(1)
7

// v
(2)
7 7

In this figure, the indecomposable direct summands of M(a2) are displayed as seg-
ments (see Section 6.4) and they are numbered from top to bottom according to the
enumeration shown on the right.

We are now ready to define the torus fixed points P and R of X. Recall that a torus

fixed point is a coordinate subrepresentations of M(ai) in the basis {v
(ℓ)
k }. Such a

representation is given by a collection of sub–segments of the segments forming M(ai)
and it is uniquely determined by its generators, i.e. the sources of such sub–segments.
Let P ∈ X be the sub-representation of M(ai) generated by

P = 〈v
(1)
3 , v

(2)
4 , · · · , v

(i)
i+2, v

(i+1)
1 , v

(i+2)
2 , v

(i+3)
i+3 , · · · , v(n)n 〉CQ

We define R to be the sub-representation generated by

R = 〈v
(1)
3 , v

(2)
4 , · · · , v

(i−1)
i+1 , v

(i)
n+2, v

(i+1)
1 , v

(i+1)
2 , v

(i+2)
i+2 · · · , v(n)n 〉CQ
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Example 6. In our running example 5 (n=4, i=2), the T–fixed points P and R are
given by

P v
(3)
1

// v
(4)
1

v
(3)
2

// v
(4)
2

v
(1)
3

// v
(2)
3

// v
(3)
3

// v
(4)
3

v
(1)
4

// v
(2)
4

// v
(3)
4

// v
(4)
4

v
(1)
5

// v
(2)
5

// v
(3)
5

// v
(4)
5

v
(1)
6

// v
(2)
6

v
(1)
7

// v
(2)
7

R v
(3)
1

// v
(4)
1

v
(3)
2

// v
(4)
2

v
(1)
3

// v
(2)
3

// v
(3)
3

// v
(4)
3

v
(1)
4

// v
(2)
4

// v
(3)
4

// v
(4)
4

v
(1)
5

// v
(2)
5

// v
(3)
5

// v
(4)
5

v
(1)
6

// v
(2)
6

v
(1)
7

// v
(2)
7

The dimension of C(P ) is computed by counting for each generator of P , the number
of vertices which lie below it and which are not in P: this is 4 + 3 + 2 + 1 = 10.
Similarly the dimension of C(R) is given by 4 + 1 + 2 + 2 + 1 = 10.

Formula (6.8) implies that dim C(P ) = dim C(R) = d and hence both I1 := C(P )

and I1 := C(R) are irreducible components of X. We consider the subrepresentation
Q generated by

Q = 〈v
(1)
3 , v

(2)
4 , · · · , v

(i−1)
i+1 , v

(i)
n+2, v

(i+1)
1 , v

(i+1)
i+2 , v

(i+2)
2 , v

(i+3)
i+3 · · · , v(n)n 〉CQ.

Example 7. In our running example 5, the following is the subrepresentation Q:

Q v
(3)
1

// v
(4)
1

v
(3)
2

// v
(4)
2

v
(1)
3

// v
(2)
3

// v
(3)
3

// v
(4)
3

v
(1)
4

// v
(2)
4

// v
(3)
4

// v
(4)
4

v
(1)
5

// v
(2)
5

// v
(3)
5

// v
(4)
5

v
(1)
6

// v
(2)
6

v
(1)
7

// v
(2)
7

We notice that Q is obtained from P by replacing v
(i)
i+2 7→ v

(i)
n+2 and by keeping

all the other basis elements. Geometrically, this map represents a “positive” T–fixed
vector of the tangent space of X at P , which is the direction of a 1–dimensional
T–fixed subvariety of X whose limit points are precisely P and Q. Notice that by
the tangent space formula, TP (X) ≃ HomQ(P,M(a1)/P ) this vector corresponds to
the (unique up to scalars) non–zero homomorphism from Pi to Ii. Similarly, Q is

obtained from R by v
(i+1)
2 7→ v

(i+1)
i+2 which has the same geometric interpretation (this
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corresponds to a non–zero homomorphism from Pi+1 to Ii+1). In particular, Q and
all its attracting cell lies in I1 ∩ I2.

It remains to show that dim C(Q) = d− 1. From the dimension formula (6.8) we
immediately get dim C(Q) = dim C(P )− (n+ 2− i) + (n+ 1− i) = dim C(P )− 1.

The rest of the proof follows from the fact that normality is preserved under
deformations. In particular, the fiber over a point M such that M(ai)≤degM is not
normal. On the other hand, if M lies in the irreducible flat locus, then it degenerates
to M1. Since the degenerate flag variety (which is the fiber over M1) is normal, it
follows that the fiber over M is normal as well. �

6.6. Geometry of linear degenerations - the flat irreducible locus. Since the

degenerate flag variety Flr
1

(V ) is the special fiber of π : π−1(Uflat,irr) → Uflat,irr, we
can conclude from Theorem 2:

Theorem 14. All linear degenerations of flag varieties over Uflat,irr are reduced ir-
reducible normal local complete intersection varieties.

Moreover, we can alternatively characterize the irreducible flat locus as the open
subset of the flat locus where the fibers are normal varieties; see Theorem 13. We
can also characterize the PBW locus inside the flat irreducible locus.

Theorem 15. Inside Uflat,irr, the locus UPBW consists of those points whose fibers
are Schubert quiver Grassmannians (see Remark 3).

Proof. By the main result of [8], the image of the natural embedding of a quiver
Grassmannian Gre(M) into a flag manifold is a union of Schubert varieties if and
only if M is a catenoid (see [8, Definition 1.1] for the definition). By the explicit
description of orbits in Uflat,irr in Proposition 2, we see that this holds true if and
only if M belongs to UPBW. �

Conjecturally, there is an alternative characterization of the PBW locus inside the
flat irreducible locus:

Conjecture 1. There exists a flat solvable group scheme Γ → Uflat,irr acting on
π−1(Uflat,irr) → Uflat,irr with a dense orbit.

As an example, we consider the case n = 3. We can work over the transversal slice
T , which consists of all pairs (f1, f2) of the form

f1 =







1 0 0 0
0 λ11 λ12 0
0 0 1 0
0 0 0 1







, f2 =







1 0 0 0
0 1 λ12 0
0 0 λ22 0
0 0 0 1







.

It consists of five orbits, given by the following equations:

(1) λ11, λ22 6= 0,
(2) λ11 6= 0, λ22 = 0,
(3) λ11 = 0, λ22 6= 0,
(4) λ11 = λ22 = 0, λ12 6= 0,
(5) λ11 = λ22 = λ12 = 0.

The PBW consists of all orbits except the fourth one.
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The following solvable group scheme verifies the conjecture in this case. It is given
by triples (g1(λ), g2(λ), g3(λ)):







1 0 0 0
x21 1 0 0
x31 λ11x32 1 + 2λ12x32 0
x41 λ11x42 λ22x43 + 2λ12x42 1







,







1 0 0 0
λ11x21 + λ12x31 1 + λ12x32 λ2

12x32 0
x31 x32 1 + λ12x32 0
x41 x42 λ22x43 + λ12x42 1







,







1 0 0 0
λ11x21 + 2λ12x31 1 + 2λ12x32 0 0

λ22x31 λ22x32 1 0
x41 x42 x43 1






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