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MARKED CHAIN-ORDER POLYTOPES

XIN FANG, GHISLAIN FOURIER

Abstract. We introduce in this paper the marked chain-order polytopes associ-
ated to a marked poset, generalizing the marked chain polytopes and marked order
polytopes by putting them as extremal cases in an Ehrhart equivalent family. Some
combinatorial properties of these polytopes are studied. This work is motivated by
the framework of PBW degenerations in representation theory of Lie algebras.

Introduction

Marked chain and order polytopes. For a finite poset (P,≺), Stanley [26] in-
troduced two polytopes associated to P , the chain polytope and the order polytope,

both defined in R
|P |
≥0. The order polytope is defined along the order relations in P : for

p ≺ q the coordinates xp and xq corresponding to p and q satisfy xp ≤ xq. One may
think of the cover relations of the poset as defining hyperplanes of a cone and the
order polytope is the restriction of the cone to the |P |-dimensional cube of volume 1.
The chain polytope is defined by the chains in the poset, e.g. a chain p1 ≺ . . . ≺ ps
in P gives rise to the relation xp1 + . . . + xps ≤ 1. Both are interesting examples
for 0-1 polytopes and gained, especially recently, some attention (see for example
[21, 22, 24]).

These notions have been generalized by Ardila-Bliem-Salazar [1] to marked posets.
Let A ⊂ P be a subset containing at least all minimal and all maximal elements, and

λ ∈ Z
|A|
≥0 be a marking vector. The marked order polytope OP,A(λ) is the restriction

of the cone to a cuboid defined by λ, while for the marked chain polytope CP,A(λ) the
defining hyperplanes (given by chains) are translated via λ. In both cases, the chain
and the order polytopes are obtained as special cases by adding a smallest and largest
element to P , marked by 0 and 1.

It has been shown in [1] that the marked order and the marked chain polytope
are Ehrhart equivalent for a fixed triple (P,A, λ). Further, necessary and sufficient
conditions on the poset have been provided for order and chain polytopes (resp.
marked order and marked chain polytopes) to be unimodular equivalent [21, 17].

Motivations from representation theory. We are in particular interested in poly-
topes, whose lattice points parametrize (monomial) bases for representations of semi-
simple Lie algebras. Therefore our main and motivating example is the poset Pn,
where the vertices are {pi,j | 0 ≤ i ≤ j ≤ n} and the cover relations for any
1 ≤ i ≤ j ≤ n are: pi−1,j ≺ pi,j ≺ pi−1,j−1 (see Example 6.1 for the n = 4 case). We fix
the linearly ordered marking set An = {p0,0, p0,1, . . . , p0,n}, with marking λk = λp0,k ,
so λ = (λ0 ≥ λ1 ≥ . . . ≥ λn) is a partition.

The order polytope OPn,An
(λ) is known as the Gelfand-Tsetlin polytope ([20]),

whose lattice points parametrize a monomial basis of the simple sln+1-module V (λ)

Key words and phrases. Marked order polytopes, Marked chain polytopes, Marked chain-order
polytopes, Ehrhart equivalence.
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of highest weight λ. It has been shown [12] that the lattice points in CPn,An
(λ) pa-

rametrize a monomial basis in the PBW-graded module grV (λ). This module is the
associated graded module for the natural PBW-degree filtration on the universal en-
veloping algebra of sln+1. Similar results on marked poset polytopes are known for
the symplectic Lie algebra [13], certain Demazure modules for sln [16, 2].

Considering the corresponding associated graded algebras and modules provides an
interesting bridge between Lie theory and commutative algebra (see [9] for another
point of view via quantum groups on this), and further induces (toric) degenerations
of the complete flag variety (for more details see [11, 10, 15]).

An attempt to generalize these PBW-degenerations has been taken recently in [3],
where linear degenerations of the complete flag variety are studied and it turns out
that the space of global sections of line bundles on certain of these degenerations
(the PBW locus) can be considered as associated graded modules V i(λ) (with an
appropriate filtration on the universal enveloping algebra) of V (λ). It is natural to
ask for parametrizations of bases in V i(λ) via polytopes.

Marked chain-order polytopes. In this paper we introduce a new family of poly-
topes associated to a marked poset (P,A, λ), which in the special case of Pn conjec-
turally parametrize a monomial basis of V i(λ).

For this let U1 ∪ U2 = P \ A,U1 ∩ U2 = ∅ be a decomposition of the non-marked
elements of P , we call the decomposition admissible if there is no element in U1

covered by an element in U2.
For such an admissible decomposition we define the marked chain-order polytope

COU1,U2
(λ) by considering order conditions for U1 and then regard A ∪ U1 as the

marked subset for the chain part U2, (for details see Definition 1.5).
We restrict ourselves here for the sake of representation theory to admissible decom-

positions. Polytopes associated to an arbitrary decomposition (called layered marked

chain-order polytopes) will be studied in a forthcoming publication [6]. It should be
pointed out that these polytopes are fundamentally different from the order-chain
polytopes defined in [23], see Remark 1.9 for details.

Let us assume that (P,A, λ) is regular (see Definition 4.1), e.g. there are no non-
trivial redundancies among the defining inequalities. We call p ∈ P \A a star element

if there are at least two elements in P covering p and there are at least two maximal
chains in P having p as their largest element. The set of all star elements is denoted
by St(P ). The first main result is

Theorem. Let (U1, U2) and (V1, V2) be two admissible decompositions with U1 ⊂ V1.
Then the polytopes COU1,U2

(λ) and COV1,V2
(λ) are unimodular equivalent if and only

if
U1 ∩ St(P ) = V1 ∩ St(P ).

If moreover U1 ∩ St(P ) = (V1 ∩ St(P ))∪ {p} for p ∈ St(P ), then the number of facets
in COV1,V2

(λ) is strictly less than the number of facets in COU1,U2
(λ).

We would like to state the following conjecture, a generalization of a conjecture
by Stanley, Hibi and Li for chain and order polytopes and by the second author for
marked chain and marked order polytopes [26, 21, 17]:

Conjecture. Let (U1, U2) and (V1, V2) be two admissible decompositions such that
U1 ∩ St(P ) = (V1 ∩ St(P )) ∪ {p} for p ∈ St(P ). Then for any 0 ≤ i ≤ |P \ A|,
the number of i-dimensional faces in COV1,V2

(λ) is greater or equal to the number of
i-dimensional faces in COU1,U2

(λ).
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We prove parts of the conjecture, namely we show the conjectured inequality for
the number of facets (Corollary 4.6).

We denote

SU1,U2
(λ) = COU1,U2

(λ) ∩ Z
|P\A|
≥0

the lattice points in the marked chain-order polytope.

Theorem. Let (P,A, λ) be a marked poset and (U1, U2) an admissible decomposi-
tion. Then the marked chain-order polytope COU1,U2

(λ) is a normal lattice polytope.
Moreover, if A is linearly ordered, then SU1,U2

(λ1 + λ2) = SU1,U2
(λ1) + SU1,U2

(λ2) for
any markings λ1 and λ2.

Since COU1,U2
(λ) is a lattice polytope, there exists a counting polynomial, the

Ehrhart polynomial, whose value at N ∈ N gives the number of lattice points in
COU1,U2

(Nλ).

Theorem. Let (P,A, λ) be a marked poset. Then all marked chain-order polytopes
associated to admissible decompositions are Ehrhart equivalent, i.e. they have the
same Ehrhart polynomial.

Applications and conjectures. We turn back to the representation theory and the
poset Pn. Starting from the marked order polytope, we have a poset of degenerations
of this polytope, whose most degenerated element is the marked chain polytope. This
poset of degenerations conjecturally corresponds to the poset of linearly degenerate
flag varieties in the PBW locus and lattice points in the marked chain-order polytope
parametrize a monomial basis of the degenerated module. This is shown to be true for
the marked order polytope ([20]) and the marked chain polytope ([12, 14]). It would
be very interesting to understand how this fits into the more general framework of
toric degenerations in [7, 8]. For more details on the linear degenerations of the flag
varieties we refer to [3].

In loc.cit and [4, 5], the modules V i(λ) have been identified with Demazure modules
Vwi(λi) of a certain slk, where wi ∈ Sk is an element in the Weyl group and λi is a
weight obtained from λ. Using the crystal graph and Kashiwara’s root operators, Lit-
telmann [25] has provided for any reduced expression wi in terms of simple reflections
and any highest weight λi a convex polytope Qwi(λi), the string polytope associated

to the Demazure module Vwi(λi), whose lattice points parametrize a monomial basis
of the Demazure module.

The marked order polytope is known to be a string polytope [25]; the marked chain
polytope is also proved to be a string polytope [18]. We conjecture that any marked
chain-order polytope (of the fixed poset Pn) is a string polytope corresponding to
certain reduced expression and highest weight. This conjecture is true for n ≤ 5 by
direct verification using polymake ([19]).

Organization of paper. The paper is organized as follows: in Section 1 we fix no-
tations, introduce marked chain-order polytopes and recall results on marked chain
and marked order polytopes. In Section 2 we provide the proofs on the normality and
Minkowski property, while in Section 3 we prove the Ehrhart equivalence. Section 4
is on the number of facets and equivalent classes of polytopes; Section 5 gives the
refinement of the Stanley-Hibi-Li conjecture. Finally, Section 6 gives the example of
the Gelfand-Tsetlin poset.
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1. Definition

We recall here the definition of a marked poset, due to [1], but set into a wider
context. Throughout this paper, all posets are assumed to be finite. For a finite set
S, we let #S or |S| denote its cardinal.

For the convenience of the reader, we recall some definitions on polytopes.

1.1. Polytopes. A polytope is the convex hull of a finite number of points in some
Rd. Let P be a polytope in Rd. We recall several definitions around a polytope:

(1) P is called a lattice polytope if its vertices have integral coordinates.
(2) For c ∈ R, the dilation of the polytope by c is cP := {cx | x ∈ P}.
(3) The lattice points in P are defined by S(P ) := P ∩ Zd.
(4) Let P , Q be two polytopes in Rd, the Minkowski sum of P and Q is defined

by

P +Q = {p+ q | p ∈ P, q ∈ Q}.

(5) A lattice polytope P is said to be normal, if for any n ∈ N, S(nP ) is the n-fold
Minkowski sum of S(P ).

For any lattice polytope P there exists a polynomial EP (t), the Ehrhart polynomial

of P , satisfying: #S(nP ) = EP (n). Two lattice polytopes P and Q are called Ehrhart

equivalent if they have the same Ehrhart polynomial, consequently Ehrhart equivalent
polytopes have the same number of lattice points.

1.2. Notations on posets. Let (P,≺) be a poset. For p, q ∈ P , we say p covers q,
denoted by q → p, if q ≺ p and for any r ∈ P satisfying q ≺ r ≺ p we have q = r
or r = p. We denote → p = {q ∈ P | q → p} the set of elements covered by p and
p →= {q ∈ P | p → q} the set of elements covering p.

For p ≺ q ∈ P , a (p, q)-chain is a sequence q1, q2, . . . , qs ∈ P such that p ≺ q1 ≺
q2 ≺ . . . ≺ qs ≺ q; it is called a maximal (p, q)-chain if p → q1 → q2 → . . . → qs → q.
We denote p  (resp.  p) the set of maximal chains starting in p (resp. ending in
p).

Definition 1.1. An element p ∈ P is called a star element if #p →≥ 2 and #  
p ≥ 2. That is to say, there exist at least two distinct elements covering p and two
distinct maximal chains ending in p. The set of all star elements in P is denoted by
St(P ).

Example 1.2. Consider the following poset P where 1 and 2 are minimal elements:
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1 2

3

4

56

7 8 9

Then St(P ) = {3}, → 3 = {1, 2}, 3 →= {4} and

3 = {3 ≺ 4 ≺ 5 ≺ 9, 3 ≺ 4 ≺ 6 ≺ 7, 3 ≺ 4 ≺ 6 ≺ 8}.

1.3. Admissible decompositions.

Definition 1.3. A decomposition of P is a pair of subsets (U1, U2) of P such that
U1 ∩U2 = ∅ and U1 ∪U2 = P ; it is called admissible if furthermore there do not exist
u1 ∈ U1 and u2 ∈ U2 such that u1 ≺ u2.

Example 1.4. Here are some examples:

(1) U1 = P, U2 = ∅ or U1 = ∅, U2 = P are the both extremal cases.
(2) In the example above, U1 = {4, 7, 8, 9}, U2 = {1, 2, 3, 6, 5}, is a decomposition

but it is not admissible, since 4 ≺ 5.

For a linearly ordered poset P , the number of different admissible decompositions is
#P + 1.

We can associate to any decomposition (U1, U2) a polyhedral cone Cone(U1, U2):










(xp) ∈ R
|P | |











xp ≥ 0, for p ∈ U2;

xp ≤ xq, for all p ≺ q ∈ U1;

xp1 + . . .+ xps ≤ xq, for all p1 ≺ . . . ≺ ps ≺ q, q ∈ U1, pi ∈ U2.











1.4. Marked posets and associated polytopes. An element in P is called ex-

tremal if it is either a maximal or a minimal element. Let A be a subset of P
containing at least all extremal elements of P . A marking of A is a map λ : A → Z≥0,

it can be looked as a vector in Z
|A|
≥0; for a ∈ A, we will denote λa := λ(a). A marked

poset ([1]) is such a triple (P,A, λ).
A decomposition (resp. an admissible decomposition) of the marked poset (P,A, λ)

is a decomposition (resp. an admissible decomposition) of the subposet P\A.
A U2-chain in P is a set c = {a, p1, . . . , pn, b} with n ≥ 1, a, b ∈ A∪U1 and pi ∈ U2

such that

b ≺ pn ≺ . . . ≺ p1 ≺ a.

We denote by DU2
the set of all U2-chains. For a U2-chain p ∈ DU2

, we denote
pa the maximal element in the chain and pb the minimal element in the chain, so
pa,pb ∈ A ∪ U1.

Although some definitions and results in this paper remain to be true for an ar-
bitrary decomposition (U1, U2) of (P,A, λ), we restrict ourselves to the admissible
case.
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Definition 1.5. Let (P,A, λ) be a marked poset and (U1, U2) be an admissible de-
composition. We associate to it the marked chain-order polytope COU1,U2

(λ):































(xp) ∈ Cone(U1, U2) |































for p ≺ a, p ∈ U1, a ∈ A : xp ≤ λa;

for b ≺ q, q ∈ U1, b ∈ A : λb ≤ xq;

for p ≺ q ∈ U1 : xp ≤ xq;

for p ∈ U2 : xp ≥ 0;

for any p ∈ DU2
:

∑

q∈p∩U2
xq ≤ λpa − λpb

,































where λq := xq if q ∈ U1 in the last inequality. We further denote the set of lattice points
in this polytope

SU1,U2
(λ) := COU1,U2

(λ) ∩ Z
|P\A|
≥0 .

Example 1.6. Consider the following poset P and A = {p0,0, p0,1, p0,2}. We fix a
marking λ : A → Z≥0 by: λ(p0,0) = λ0, λ(p0,1) = λ1, λ(p0,2) = λ2.

p0,0

p0,1

p0,2

p1,1

p1,2

p2,2

Suppose U1 = {p1,1} and U2 = {p1,2, p2,2}, then the marked chain-order polytope
COU1,U2

(λ) is defined by the following inequalities (we set xi,j := xpi,j ):

x1,2 ≥ 0, x2,2 ≥ 0,

λ0 ≥ x1,1 ≥ λ1, λ1 − λ2 ≥ x1,2, x1,1 − λ2 ≥ x2,2 + x1,2.

Remark 1.7. These are special cases of layered marked poset polytopes which will be
studied in a forthcoming publication [6], where the condition that the decomposition
(U1, U2) has to be admissible will be dropped.

Remark 1.8. Since λ ∈ Z
|A|
≥0, the polytope COU1,U2

(λ) is defined by inequalities with
integer coefficients. It implies that its vertices have rational coordinates.

Remark 1.9. These are not order-chain polytopes introduced by Hibi et al. [23].
The main difference is in the definition, we are considering decompositions of the set
of vertices in the Hasse diagram while in [23], the authors considered a decomposition
of the set of edges. Here is an example to see the difference; consider the following
marked poset:
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1

p

q

r

0

For the chain-order polytope one has to fix a decomposition of the vertices, for example
U1 = {p}, U2 = {q, r}. Then the chain-order polytope is defined by the inequalities

xq ≥ 0, xr ≥ 0, xp ≤ 1, xq + xr ≤ xp.

Then there is no order-chain polytope that is defined by the same hyperplanes. For
example if we decompose cE = {(q, r)} and oE = {(p, q)}. Then the order-chain
polytope is defined by the inequalities

xq ≥ 0, xr ≥ 0, xp ≤ 1, xq + xr ≤ 1, xq ≤ xp.

In fact, these two polytopes are fundamentally differently defined, so there is no easy
way to compare those. But important to notice here is, that our results are not valid
for the order-chain polytopes, for example, they are not Ehrhart equivalent in general.

Example 1.10. We consider in this example two extremal cases:

(1) (U1, U2) = (P \ A, ∅): the corresponding marked chain-order polytope is the
marked order polytope ([1]) and we will denote it by OP,A(λ).

(2) (U1, U2) = (∅, P \ A): the corresponding marked chain-order polytope is the
marked chain polytope ([1]) and we will denote it by CP,A(λ).

These polytopes were defined and studied in [1] generalizing the order and chain
polytopes, defined in [26]. Order and chain polytopes are considered as the special
case where vertices in A are marked only by 0 and 1.

The marked order and marked chain polytopes were originally introduced in the
context of representation theory of semi-simple Lie algebras. We will see how the
marked chain-order polytopes fit into this context and how again, representation
theory motivates most of the questions we are answering in this paper.

1.5. Properties of order and chain polytopes. Let (P,A, λ) be a marked poset,
OP,A(λ) be the associated marked order polytope and CP,A(λ) be the marked chain
polytope. Notice that by Example 1.10,

S(OP,A(λ)) = SP\A,∅(λ) and S(CP,A(λ)) = S∅,P\A(λ).

We list some combinatorial properties of these polytopes.

Theorem 1.11. The following statements hold.

(1) ([1]) The marked order polytope OP,A(λ) and the marked chain polytope
CP,A(λ) are Ehrhart equivalent.

(2) ([17]) Let λ, µ ∈ Z
|A|
≥0 be two markings. Then we have the following Minkowski

sum property for the marked chain polytope:

S∅,P\A(λ) + S∅,P\A(µ) = S∅,P\A(λ+ µ).
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1.6. Basic properties of chain-order polytopes. We suppose in this subsection
that (P,A, λ) is a marked poset with an admissible decomposition (U1, U2).

Proposition 1.12. For n ∈ N, we have n COU1,U2
(λ) = COU1,U2

(nλ).

Proof. It suffices to notice that in the definition of a chain-order polytope, all inequal-
ities contain only linear terms on λa for a ∈ A. �

We consider two projections of a chain-order polytope, e.g. the following diagram:

R|P\A|

π1

zz✈✈
✈✈
✈✈
✈✈
✈

π2

$$
❍❍

❍❍
❍❍

❍❍
❍

R|U1| R|U2|

where π1 and π2 are linear projections onto the coordinates in U1 and U2, respectively.
Given a polytope Q ⊂ R|P\A|, we consider its set of lattice points S(Q). For every
p ∈ S(Q), we can associate to it the set π2 ◦ π

−1
1 ◦ π1(p) (i.e., the π2 image of the π1

fiber of π1(p)).

Definition 1.13. The polytope Q is said to have the decomposition property with
respect to (U1, U2) if

S(Q) =
⋃

p∈S(Q)

{(π1(p),q) ∈ R
|U1| × R

|U2| | q ∈ π2 ◦ π
−1
1 ◦ π1(p)}

We apply these projections to the marked order, marked chain and marked chain-
order polytopes. If we denote A1 := A∪U1 and A2 := A∪U2, then the order polytope
OA1,A(λ) is a polytope in R|U1|.

Lemma 1.14. We have

π1(OP,A(λ)) = OA1,A(λ) = π1(COU1,U2
(λ)).

Proof. We first show that π1(OP,A(λ)) = π1(COU1,U2
(λ)). By definition, π1(COU1,U2

(λ))
is the set











(xp) ∈ R
|U1| |











for p ≺ a, p ∈ U1, a ∈ A : xp ≤ λa

for b ≺ q, q ∈ U1, b ∈ A : λb ≤ xq

for p ≺ q ∈ U1 : xp ≤ xq











.

We see by the defining relations that π1(OP,A(λ)) is also contained in the set above.
It is left to prove the equality here, for this we provide a face in π1(OP,A(λ)) which
is the preimage of π1(COU1,U2

(λ)). For this, we consider the set F of OP,A(λ) defined
by setting for all p ∈ U2:

xp = max {λa | a ∈ A such that a ≺ p}.

Since the decomposition (U1, U2) is admissible, the set F is non-empty and hence a
face. Then we have π1(F) = π1(COU1,U2

(λ)), which shows the equality.
The identity OA1,A(λ) = π1(COU1,U2

(λ)) is clear by definition. �

We turn to study the projection π2. Let s ∈ OP,A(λ) be a lattice point. It provides
another marked poset (P,A1, λ

s) where

λs(p) =

{

λp, if p ∈ A;

sp, if p ∈ U1.
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Notice that if s, t ∈ OP,A(λ) such that π1(s) = π1(t), then λs = λt.
Let OP,A1

(λs) and CP,A1
(λs) be the marked order and marked chain polytopes as-

sociated to (P,A1, λ
s). The following lemma is clear by definition.

Lemma 1.15. The following identities hold:

(1) for s ∈ OP,A(λ),

π2 ◦ π
−1
1 ◦ π1(s) = OP,A1

(λs);

(2) for s ∈ COU1,U2
(λ),

π2 ◦ π
−1
1 ◦ π1(s) = CP,A1

(λs).

Remark 1.16. Let (V1, V2) be another admissible decomposition of the marked poset
(P,A, λ) with U1 ⊆ V1. Then it is easy to see that the polytope COV1,V2

(λ) has the
decomposition property with respect to (U1, U2).

Remark 1.17. From Lemma 1.15, OP,A(λ) and COU1,U2
(λ) have the decomposition

property with respect to (U1, U2):

(1) for any lattice point s ∈ OP,A(λ), there exists a unique lattice point t ∈
OP,A1

(λs) such that s = (π1(s), t) ∈ R|U1| × R|U2|;
(2) for any lattice point s ∈ COU1,U2

(λ), there exists a unique lattice point t ∈
CP,A1

(λs) such that s = (π1(s), t) ∈ R|U1| × R|U2|.

We show in the following example that projections of a marked chain polytope do
not satisfy the decomposition property in general.

Example 1.18. Consider the linear poset

P = {b ≺ x3 ≺ x2 ≺ x1 ≺ a}

with marked points A = {a, b}. We fix a marking λ = (λa, λb) = (6, 0). Let U1 = {x1}
and U2 = {x2, x3}.

It is clear that t = (x1, x2, x3) = (0, 3, 2) is in CP,A(λ). If we consider the marked
poset (P,A2, µ) with A2 = A ∪ U2 = {a, x2, x3, b} and the marking

µ = (µa, µx2
, µx3

, µb) = (6, 3, 2, 0),

the point x1 = 3 is a lattice point in the marked chain polytope associated to
(P,A2, µ), but (3, 3, 2) /∈ CP,A(λ).

2. Normality and Minkowski sum property

2.1. Normality of marked chain-order polytopes. Notice that by Proposition
1.12, for any n ∈ N, we have:

S(n COU1,U2
(λ)) = SU1,U2

(nλ).

We start with the following property:

Theorem 2.1. Let (P,A, λ) be a marked poset and (U1, U2) be an admissible decom-
position of it. Then for any N ∈ N, SU1,U2

(Nλ) = SU1,U2
(λ) + . . . + SU1,U2

(λ) is the
N -fold Minkowski sum.

Note that Proposition 1.12 deals with all points of the polytope, while here we
would like to decompose the lattice points as a sum of lattice points.
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Proof. For λ ∈ Z
|A|
≥0 and N ≥ 2, it suffices to show that

(2.1) SU1,U2
(Nλ) = SU1,U2

(⌈N/2⌉λ) + SU1,U2
(⌊N/2⌋λ).

We first prove that (2.1) holds when projected onto coordinates in U1, i.e. for A1 =
U1 ∪A:

(2.2) SA1,A(Nλ) = SA1,A(⌈N/2⌉λ) + SA1,A(⌊N/2⌋λ).

Let s ∈ SA1,A(Nλ), for any x ∈ U1, we write

sx = Nrx + vx for some rx ∈ N and 0 ≤ vx < N .

We define for x ∈ U1,

(s1)x = ⌈N/2⌉rx +min{vx, ⌈N/2⌉} and (s2)x = ⌊N/2⌋rx +max{0, vx − ⌈N/2⌉}.

Claim. s1 ∈ SA1,A(⌈N/2⌉λ) and s2 ∈ SA1,A(⌊N/2⌋λ).

Proof of the claim. (1) For any a ≺ x ≺ b with a, b ∈ A and x ∈ U1, we have to
show

⌈N/2⌉λa ≤ (s1)x ≤ ⌈N/2⌉λb and ⌊N/2⌋λa ≤ (s2)x ≤ ⌊N/2⌋λb.

Indeed, by definition we have

(2.3) rx⌈N/2⌉ ≤ (s1)x ≤ (rx + 1)⌈N/2⌉ and rx⌊N/2⌋ ≤ (s2)x ≤ (rx + 1)⌊N/2⌋.

By assumption:

Nλa ≤ sx = Nrx + vx ≤ Nλb,

which implies that λa ≤ rx ≤ λb. By studying two cases rx = λb and rx < λb

and applying 2.3, we obtain the desired inequalities.
(2) For any x, y ∈ U1 with x ≺ y we have to show

(s1)x ≤ (s1)y, (s2)x ≤ (s2)y.

The assumption sx ≤ sy implies rx ≤ ry. By considering two cases rx = ry
and rx < ry, it is easy to deduce the inequalities.

�

We turn to the proof of (2.1). Let s ∈ SU1,U2
(Nλ). Then by (2.2) there exists

s1 ∈ SA1,A(⌈N/2⌉λ) and s2 ∈ SA1,A(⌊N/2⌋λ) such that π1(s) = s1 + s2. By Lemma
1.15, there exists a unique t ∈ CP,A1

((Nλ)π1(s)) such that s = (π1(s), t).
By Theorem 1.11 (2),

CP,A1
((Nλ)π1(s)) = CP,A1

((⌈N/2⌉λ)s
1

) + CP,A1
((⌊N/2⌋λ)s

2

).

We let t = t1 + t2 a corresponding decomposition of t. Again by Lemma 1.15,
(s1, t1) ∈ SU1,U2

(⌈N/2⌉λ) and (s2, t2) ∈ SU1,U2
(⌊N/2⌋λ), therefore s = (s1, t1)+(s2, t2)

is the required decomposition. The other inclusion is clear. �

Corollary 2.2. The marked chain-order polytope COU1,U2
(λ) is a lattice polytope,

so it is a normal polytope.

Proof. The proof of Lemma 11.7 in [15] can be applied here.
Pick a point p ∈ COU1,U2

(λ) with rational coordinates. Let n ∈ N such that
np has integral coordinates. Then np ∈ SU1,U2

(nλ). By Theorem 2.1, there exists
p1, p2, . . . , pn ∈ SU1,U2

(λ) such that

np = p1 + p2 + . . .+ pn.

Hence p = 1
n
p1 +

1
n
p2 + . . .+ 1

n
pn is in the convex hull of SU1,U2

(λ).
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By Remark 1.8, all vertices of COU1,U2
(λ) have rational coordinates. This implies

that COU1,U2
(λ) is contained in the convex hull of SU1,U2

(nλ). Hence COU1,U2
(λ) is a

lattice polytope and by Theorem 2.1, it is normal. �

We obtain the normality of the marked order and marked chain polytopes as special
cases.

Corollary 2.3. The marked order polytope OP,A(λ) and the marked chain polytope
CP,A(λ) are both normal.

Remark 2.4. Up to our knowledge, there is no proof in the literature for the nor-
mality of the marked order and marked chain polytopes. For the order polytope,
the normality is proved by Stanley [26] by showing the existence of a unimodular
triangulation.

2.2. Minkowski sum property. We generalize the Minkowski sum property for
marked chain polytopes (Theorem 1.11 (2)) to marked chain-order polytopes with
linearly ordered markings.

Theorem 2.5. Suppose that A is linearly ordered and λ, µ ∈ Z
|A|
≥0 are two markings

of A. Then the Minkowski sum property holds:

SU1,U2
(λ) + SU1,U2

(µ) = SU1,U2
(λ+ µ).

Proof. Since A is linearly ordered, we may suppose A = {a1 ≺ a2 ≺ . . . ≺ as}. For
1 ≤ i ≤ s, let ωi denote the marking of A satisfying:

(ωi)aj =

{

0, if 1 ≤ j < i;

1, if i ≤ j ≤ s.

It suffices to prove the theorem for µ = ωi and we can moreover assume that for any
1 ≤ j < i, λaj = 0.

We prove the Minkowski sum property under this assumption. Let s ∈ SU1,U2
(λ +

ωi). The partial order on P induces a partial (lexicographic) order on nS(OA1,A(ω
i))

and let m ∈ S(OA1,A(ω
i)) be a maximal element such that for any x ∈ U1: mx ≤ sx.

Claim: π1(s)−m ∈ OA1,A(λ).

Proof of the claim. We check that π1(s)−m satisfies all relations in OA1,A(λ).

(1) For x ≺ y ∈ U1, we need to show that sx − mx ≤ sy − my. Since sx ≤ sy,
we claim that it suffices to consider the case mx < my. Indeed, if my ≤ mx,
then sx − sy ≤ mx −my is always true.
Suppose that mx < my. In this case mx = 0 and my = 1 since m ∈

OA1,A(ω
i); by the maximality of m, sx = 0, hence sx ≤ sy.

(2) For x ≺ ak and aj ≺ y where x, y ∈ U1 and ak, aj ∈ A. We need to show that
sx − mx ≤ λak and λaj ≤ sy − my. We prove the first inequality, a similar
proof works for the second one.
Since sx ≤ λak + (ωi)ak , we study two cases:
• the case k < i: in this case sx −λak ≤ 0, so sx −mx ≤ λak is always true;
• the case k ≥ i: in this case sx − λak ≤ 1. If sx = 0, then sx − λak ≤ mx

is always true. If sx ≥ 1, then mx = 1 and sx − λak ≤ mx holds.

�
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By Lemma 1.15, it remains to show that

CP,A1
((λ+ ωi)π1(s)) = CP,A1

(λπ1(s)−m) + CP,A1
((ωi)m),

but this follows from Theorem 1.11 (2). �

Corollary 2.6. If A is linearly ordered, then the polyhedral cone Cone(U1, U2) is
finitely generated.

Remark 2.7. The condition linearly ordered secures that one can subtract the in-
decomposable marking ωi ([17]). For non-linearly ordered subset A this is more
complicated as the indecomposable markings depend on the decomposition (U1, U2).

3. Ehrhart equivalence

After proving that the marked chain-order polytopes are lattice polytopes, we study
the Ehrhart polynomials.

Theorem 3.1. Let (P,A, λ) be a marked poset. Then all marked chain-order poly-
topes associated to admissible decompositions are Ehrhart equivalent.

That is equivalent to: for any admissible decomposition (U1, U2) of the marked
poset (P,A, λ) and n ∈ N:

|SU1,U2
(nλ)| = |SP\A,∅(nλ)|.

Remark 3.2. The theorem holds for the special case of marked order and marked
chain polytopes (see Theorem 1.11 (1)), i.e., for the datum (U1, U2) = (∅, P \A). This
has been shown in [1] by constructing an explicit piecewise linear, affine bijection
that respects integral points. This map ϕ : R|P\A| −→ R|P\A| defined for any point
(xp) ∈ OP,A(λ) by

ϕ(x)p = min{xp − xq | p > q, q /∈ A} ∪ {xp − λq | p > q, q ∈ A}.

Then ϕ(x)p ∈ CP,A(λ) and in fact this is a bijection.

Proof of the theorem. It suffices to show that for any n ∈ N,

|SU1,U2
(nλ)| = |SP\A,∅(nλ)|.

Denote as before A1 = A ∪ U1. By Lemma 1.14 and 1.15, for any marking µ ∈ Z
|A|
≥0

of A,

|SU1,U2
(µ)| =

∑

s∈OA1,A
(µ)

|S(CP,A1
(µs))|,

and

|SP\A,∅(µ)| =
∑

s∈OA1,A
(µ)

|S(OP,A1
(µs))|.

Then the theorem holds by Theorem 1.11 (1), since

|S(CP,A1
(µs))| = |S(OP,A1

(µs))|.

�

Remark 3.3. In fact this theorem is true for layered marked poset polytopes as will
be shown in [6].



MARKED CHAIN-ORDER POLYTOPES 13

4. Isomorphic polytopes

Let (P,A, λ) be a marked poset and (U1, U2), (V1, V2) be two different admissible de-
compositions. It is natural to ask whether COU1,U2

(λ) and COV1,V2
(λ) are unimodular

equivalent. We will answer this question in this section.

4.1. Regular marked poset. We recall the concept of regular marked posets in [17].

Definition 4.1. A marked poset (P,A, λ) is called regular if

(1) there does not exist a, b ∈ A such that a → b;
(2) for any a 6= b ∈ A, λa 6= λb;
(3) if for a ∈ A and x ∈ P \ A, a → x, then there does not exist b ∈ A such that

b ≺ x and λa < λb;
(4) if for a ∈ A and x ∈ P \ A, x → a, then there does not exist b ∈ A such that

x ≺ b and λb < λa.

The following proposition is proved in Section 3 of [17].

Proposition 4.2 ([17]). For any marked poset (P,A, λ) there exists a regular marked
poset (P r, Ar, λr) such that:

(1) OP,A(λ) is unimodular equivalent to OP r ,Ar(λr).
(2) CP,A(λ) is unimodular equivalent to CP r ,Ar(λr).

In particular, the number of facets of these polytopes coincides.

Remark 4.3. In the proof of the proposition, to obtain the regular marked poset,
we either retract a chain between two marked vertices having the same marking or
retract some marked vertices.

Let (U1, U2) be an admissible decomposition of the marked poset (P,A, λ). The
following proposition is clear by the remark above.

Proposition 4.4. There exists a regular marked poset (P r, Ar, λr) with an admissible
decomposition (U r

1 , U
r
2 ) such that COU1,U2

(λ) is unimodular equivalent to COUr
1
,Ur

2
(λr).

4.2. Facets of marked chain-order polytopes. By Proposition 4.4, in aim of
counting facets, we may suppose that the marked poset (P,A, λ) is regular. We keep
this hypothesis in this paragraph.

Proposition 4.5. The number of facets in COU1,U2
(λ) is

#{p → q | p, q ∈ A1}

+ #U2

+ #{maximal chains q → p1 → . . . → ps → r where s ≥ 1, q, r ∈ A1 and pi ∈ U2}.

Suppose that (V1, V2) is another admissible decomposition of (P,A, λ) such that

V2 ∩ St(P ) = (U2 ∩ St(P )) ∪ {q},

Corollary 4.6. The difference of the number of the facets in COV1,V2
(λ) and the

number of facets in COU1,U2
(λ) is (|q → | − 1)(| q| − 1) .

4.3. Unimodular equivalence. The following theorem answers the question in the
beginning of this section.

Theorem 4.7. Let (U1, U2) and (V1, V2) be two different admissible decompositions
of the marked poset (P,A, λ). If U1 ∩ St(P ) = V1 ∩ St(P ), then the chain-order
polytopes COU1,U2

(λ) and COV1,V2
(λ) are unimodular equivalent.
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Proof. Notice that U1 ∩ St(P ) = V1 ∩ St(P ) is equivalent to U2 ∩ St(P ) = V2 ∩ St(P ).
By the hypothesis U1 ∩ St(P ) = V1 ∩ St(P ), we may assume that U1 = V1 ∪ {p},

where p /∈ St(P ). Since p /∈ St(P ), there are exactly two cases to be considered:

(1) There is exactly one maximal chain ending in p, say a ≺ qt ≺ . . . ≺ q1 ≺ p,
with qi ∈ V1 and a ∈ A. Then we define a map

Ψ : COV1,U2∪{p}(λ) −→ COU1,U2
(λ)

by

Ψ(x)q :=

{

xq, if q 6= p;

xp − xq1 − . . .− xqt − λa, else.

This is certainly a unimodular equivalence once we have checked its bijectivity.
For this we will see that facets are mapped to facets. For this let p ≺ q, then
the facet xp ≤ xq is mapped to the facet xq1 + . . .+ xqt + xp ≤ xq − λa (since
Ψ(x)q1 + . . .+Ψ(x)qt +Ψ(x)p = xp−λa ≤ xq −λa). The facet xq1 + . . .+xqt ≤
xq − λa is mapped to the facet xq ≥ 0.

(2) There is exactly one element r ∈ U1 covering p. Then we define a map

Ψ : COV1,U2∪{p}(λ) −→ COU1,U2
(λ)

by

Ψ(x)q :=

{

xq, if q 6= p;

xr − xp, else.

Again, as before, it remains to check that we have a bijection on facets. Let
a ≺ qs ≺ . . . ≺ q1 ≺ p be a maximal chain ending in p, then the facet
xq1 + . . . + xqs ≤ xp − λa is mapped to xq1 + . . . + xqs + xp ≤ xr − λa, while
the facet xp ≤ xr is mapped to the facet xp ≥ 0.

Thus in both cases we have defined a unimodular equivalence. �

Corollary 4.8. Let (U1, U2) and (V1, V2) be two different admissible decompositions of
the marked poset (P,A, λ) such that U1 ⊂ V1. The chain-order polytopes COU1,U2

(λ)
and COV1,V2

(λ) are unimodular equivalent if and only if

U1 ∩ St(P ) = V1 ∩ St(P ).

Proof. The if-part is proved in Theorem 4.7; under the assumption U1 ⊂ V1, the only
if-part holds by Proposition 4.5. �

5. The Stanley-Hibi-Li conjecture

We recall here a conjecture by Stanley, Hibi and Li for chain and order polytopes,
[26, 21] (see the generalization for marked chain and marked order polytopes in [17]).
For a given N -dimensional polytope P , we denote

fi(P ) = #{i – dimensional faces of P}

and define the f -vector of P to be f(P ) := (f0(P ), . . . , fN(P )).

Conjecture 5.1 (Stanley, Hibi-Li). Let (P,A, λ) be a marked poset. Then for all
i = 0, 1, . . . , |P \ A|:

fi(CP,A(λ)) ≥ fi(OP,A(λ)).

Remark 5.2. Here are some remarks around the history and the known cases of the
conjecture.
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(1) The original conjecture was stated for chain and order polytopes only ([26,
21]). The conjecture has been stated for marked chain and marked order
polytopes in [17].

(2) The (|P \ A| − 1)-dimensional case (the number of facets) has been shown
for chain and order polytopes in [21] and for marked chain and marked order
polytopes in [17].

(3) The 0-dimensional case for chain and order polytopes has been shown in [26],
where in fact is was shown that the number of vertices for both polytopes is
the same. The 0-dimensional case for marked chain and order polytopes is
still open.

We would like to state a refinement of the conjecture above.

Conjecture 5.3. Let (P,A, λ) be a marked poset, (U1, U2) and (V1, V2) be two dif-
ferent admissible decompositions with U1 ⊂ V1. Then for any i = 0, 1, . . . , |P \ A|:

fi(COV1,V2
(λ)) ≤ fi(COU1,U2

(λ)).

Remark 5.4. (1) The case (U1, U2) = (∅, P \ A) and (V1, V2) = (P \ A, ∅) is
precisely Conjecture 5.1.

(2) The conjecture in the case i = |P \A| − 1, i.e., the number of facets, holds by
Corollary 4.6.

6. Example

In this section we apply the construction of marked chain-order polytopes to the
following poset Pn, called the Gelfand-Tsetlin poset:

• the set of vertices of Pn is {pi,j | 0 ≤ i ≤ j ≤ n};
• the set of cover relations in Pn (i.e., the edges in the corresponding Hasse
diagram) is: for any 1 ≤ i ≤ j ≤ n,

pi−1,j → pi,j → pi−1,j−1.

The marking subset An is the linearly ordered set

An = {p0,0 ≺ p0,1 ≺ . . . ≺ p0,n}.

We fix a marking λ = (λ0, λ1, . . . , λn) where λk := λ(p0,k), satisfying

(6.1) λ0 ≥ λ1 ≥ . . . ≥ λn.

Example 6.1. We consider the case n = 4: the poset P4 is the following:
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λ0 = p0,0

λ1 = p0,1

λ2 = p0,2

λ3 = p0,3

λ4 = p0,4

p1,1

p1,2

p1,3

p1,4

p2,2

p2,3

p2,4

p3,3

p3,4

p4,4

In the following lemma we list some basic properties of this marked poset (Pn, An, λ).

Lemma 6.2. (1) If λ0 > λ1 > . . . > λn, then (Pn, An, λ) is a regular marked
poset.

(2) The star elements in (Pn, An, λ) are St(P ) = {pi,j | 1 ≤ i < j < n}.

By this lemma, results in the previous sections can be applied to the polytopes
associated to this marked poset. Let (U1, U2) be an admissible decomposition of
(Pn, An, λ).

Corollary 6.3. (1) The chain-order polytope COU1,U2
(λ) is a normal polytope.

(2) For any two markings λ, µ of An satisfying (6.1), the lattice points in the
chain-order polytope satisfy the Minkowski property:

SU1,U2
(λ) + SU1,U2

(µ) = SU1,U2
(λ+ µ).

(3) The polyhedral cone Cone(U1, U2) is finitely generated.

We turn to count the number of lattice points.

Corollary 6.4. Let λ = (λ0, . . . , λn) be a marking satisfying (6.1). Then for any
admissible decomposition (U1, U2), the number of lattice points in the marked chain-
order polytope COU1,U2

(λ) is given by

∏

0≤i≤j≤n

(λi − λj + j − i+ 1)

j − i+ 1
.

Proof. By Theorem 3.1, it suffices to count the lattice points in the marked order
polytope OPn,An

(λ), which is shown in [1] to be the dimension of the irreducible
representation V (λ) of sln+1 associated to λ. Then Weyl’s dimension formula applies.

�

We estimate the number of non-isomorphic chain-order polytopes. We define

MPn,An
(λ) = {COU1,U2

(λ) | (U1, U2) is an admissible decomposition }/ ∼,

where two polytopes Q1 ∼ Q2 if and only if they are unimodular equivalent.
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Proposition 6.5. Suppose λ is regular, then we have #MPn,An
(λ) ≤ 2n−2.

Proof. By Theorem 4.7, the cardinality of MPn,An
(λ) is no more than the number of

partitions of St(Pn) into two subsets S1 and S2 such that there does not exist s1 ∈ S1

and s2 ∈ S2 satisfying s1 ≺ s2, which will be proved to be 2n−2. We call such a
partition admissible.

We argue by induction on n. The difference between the star elements St(Pn) and
St(Pn−1) is

R = {p1,n−1, p1,n−2, . . . , pn−2,n−1}.

Let S1, S2 be an admissible partition of St(Pn). Since the set R is linearly ordered,
there exists 0 ≤ k ≤ n− 2 such that

S1 ∩ R = {pk+1,n−1, . . . , pn−2,n−1}, S2 ∩R = {p1,n−1, . . . , pk,n−1}.

We count the numbers of admissible partitions S1, S2 of St(Pn) satisfying this prop-
erty. Suppose that k ≥ 2.

The hypothesis on S1 and S2 ensures that

{pk+1,n−1, pk,n−2, . . . , p1,n−k−1, pk+2,n−1, . . . , p1,n−k−2, . . . , pn−2,n−1, . . . , p2,1} ⊂ S1.

It suffices to consider the admissible partitions of

T = {p1,n−2, p2,n−2, p1,n−3, . . . , pk−1,n−2, . . . , p1,n−k},

which can be looked as the star elements in Pk+1. By induction hypothesis, there are
2k−1 such admissible partitions.

When k = 0 or k = 1, there exists a unique partition of T . Therefore the number
of different admissible partitions of St(Pn) is

1 +
n−3
∑

k=0

2k = 2n−2.

�
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