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Abstract. Context-aware Collaborative Filtering (CF) techniques such
as Factorization Machines (FM) have been proven to yield high precision
for rating prediction. However, the goal of recommender systems is of-
ten referred to as a top-N item recommendation task, and item ranking
is a better formulation for the recommendation problem. In this paper,
we present two collaborative rankers, namely, Ranking Factorization Ma-
chines (RankingFM) and Lambda Factorization Machines (LambdaFM),
which optimize the FM model for the item recommendation task. Specifi-
cally, instead of fitting the preference of individual items, we first propose
a RankingF'M algorithm that applies the cross-entropy loss function to
the FM model to estimate the pairwise preference between individual
item pairs. Second, by considering the ranking bias in the item rec-
ommendation task, we design two effective lambda-motivated learning
schemes for RankingFM to optimize desired ranking metrics, referred to
as LambdaFM. The two models we propose can work with any types of
context, and are capable of estimating latent interactions between the
context features under sparsity. Experimental results show its superior-
ity over several state-of-the-art methods on three public CF datasets in
terms of two standard ranking metrics.

Keywords: Context-aware; Learning to rank; Factorization Machines;
RankingF'M; LambdaFM

1 Introduction

Commonly used recommendation techniques such as collaborative filtering (CF)
have gained much attention in recent years. However, typical collaborative filter-
ing (CF) methods mainly focus on mining interactions between users and items
without considering the additional context which the users or items are associ-
ated with [21]. For example, in a music recommender system, the location of the
user and the time of the user-item interaction may be important contextual fac-
tors when the user listened to a song. Ignoring the contextual information may
result in considerable degradation in recommendation performance. Currently,



there are some hybrid approaches performing pre- or post-filtering of the input
data to make standard methods context-aware. Although such ad-hoc strategies
may work in practice, they suffer from two drawbacks [10,21]: (1) pre- or post-
filtering the data based on the context can potentially lead to information loss
about the interactions between different contextual variables; (2) all steps in the
process need supervision and manual tuning. On the other hand, a variety of
specialized models designed for specific tasks, such as TimeSVD [11] and Tensor
Factorization [18], are able to leverage contextual information, but they rely on
very strict assumptions, which make them cumbersome to incorporate different
types of context and usually require complicated inference algorithms. There-
fore, the models capable of integrating any types of context are more practical,
as well as more elegant in theory. So far, two of the most flexible and effec-
tive methods for context modelling are Multiverse Recommendation [10] and
Factorization Machines (FM) [17]. Unfortunately, Multiverse Recommendation
relies on Tucker decomposition, which leads to O(k™) computational complexity,
where k is the dimensionality of factorization and m is the number of predictor
variables involved [21]. In contrast, FM enjoys linear complexity (both in k and
m), which gives fast learning and prediction with contextual features.

It has been recognized that both Multiverse Recommendation and FM were
originally designed for the rating prediction task based on explicit user feed-
back [6,21]. However, it is a commonplace that in real-world scenarios most
observed feedback is not explicit but implicit [20]. Typical implicit feedback in-
cludes the number of purchases, clicks, played songs, etc., and thus it is much
more accessible, because the user does not have to express his feelings explicitly
[19]. As a result, implicit feedback is often one-class, i.e., only positive class is
available. In addition, for item recommendation task, the recommendation ac-
curacy near the top of the ranked list is usually more important than that at
the end of the list, known as the top-N (item) ranking task. Some recent work
has shown that rating prediction algorithms optimized for error metrics such
as RMSE (root mean squared error) empirically do not guarantee accuracy in
terms of top-N item recommendations [6].

To address the above drawbacks, we propose to optimize FM for the item rec-
ommendation task based on implicit feedback, which is also knowns as One-Class
Collaborative Filtering (OCCF). More specifically: Firstly, we present Rank-
ingFM, which adopts FM as a ranking function to model the interactions be-
tween context features, and apply it to the Learning-to-Rank (LtR) approach
by using pairwise cross-entropy (CE) loss. We propose to optimize the Rank-
ingFM by widely used stochastic gradient descent method. Secondly, inspired
by LambdaRank [15], we explore to further improve the top-N recommendation
performance of RankingFM by adapting the original lambda weighting function
with two alternative sampling schemes, referred to as LambdaFM!. Lastly, we
carry out a set of experiments on three public datasets. The results indicate that
our proposed methods (i.e., RankingFM and LambdaFM) achieve superior rec-
ommendation quality in terms of two standard ranking metrics. In particular,

LA full version of LambdaFM has been published at CIKM’16 [26].



LambdaFM largely outperforms a bunch of strong baselines for top-N recom-
mendations.

2 Related Work

Learning-to-Rank. Recently, Learning-to-Rank (LtR) has been attracting broad
attention due to its effectiveness and importance in machine learning commu-
nity. There are two major approaches, namely, pairwise [1, 18] and listwise ap-
proaches [3,15]. Specifically, the pairwise ranking usually treats an objective
pair as an ‘instance’ in learning. For example, Herbrich et al. [8] employed the
approach and utilized the SVM technology to build a classifier, referred to as
Ranking SVM; Burges et al. [1] adopted cross-entropy and gradient descent
to train a Neural Network model, known as RankNet. Empirically, pairwise
methods perform better than traditional pointwise methods. However, typical
pairwise objective functions are devised to maximize the AUC metric, which
is clearly position-independent. But for item recommendation, the recommen-
dation quality is highly position-biased because the accuracy near the top of
the ranked list is usually more important. In this regard, pairwise loss functions
might still be a suboptimal scheme for the top-N item ranking task. In contrast,
listwise approaches address the problem more directly because the models are
usually formalized to optimize a specific ranking measure. Generally, it is dif-
ficult to directly optimize the ranking metrics because they are either flat or
non-differentiable. One way to solve this problem is to propose smooth approxi-
mations of the target measures. For example, Shi et al. proposed smooth variants
of MAP [24] and Mean Reciprocal Rank (MRR) [25] to optimize ranking perfor-
mance. The other way is the lambda-based approach, such as LambdaRank|[15]
and LambdaMart [2], which is designed to add listwise information into pairwise
implementation to bypass the major challenges of traditional listwise methods.

Factorization models. Recommender systems (RS) have two characteristics
that distinguish themselves from conventional LtR (e.g., Ranking SVM, RankNet)
in web search: (1) The user-item matrix is usually highly sparse e.g., > 95% in
most scenarios where the conventional LtR is likely to fail [16,21]; (2) RS aim
at personalization, which means each user should receive one personalized rank-
ing, whereas the conventional LtR learns only one ranking for a query, which,
in effect, is non-personalization [20]. To tackle the above problems, researchers
have proposed factorization models for recommendation tasks. Specifically, a
series of matrix factorization (MF) based algorithms have been devised in the
literature, e.g., Singular Value Decomposition (SVD) [11], Tensor Factorization
(TF) [22], Probability Matrix Factorization (PMF) [23]. In particular, Rendle
[16] unified factorization based models by developing a general predictor called
Factorization Machines (FM), and showed that FM worked in linear time and
can mimic several state-of-the-art MF models by feature engineering. Further-
more, FM demonstrates high recommendation accuracy for rating prediction by
mining the latent interactions between pairwise features in sparse settings [16].
However, it has been pointed out that the least square based loss for rating pre-
diction is suboptimal for item recommendation task [6, 18]. Accordingly, a variety



of ranking-based MF models have been proposed, e.g., WRMF [9] (pointwise),
PITF [22] & RTF [18] (pairwise) and CLiMF [25] (listwise), which, however,
were designed for specific tasks (e.g., tag recommendation) and cannot handle
general scenarios of context-aware recommendations.

In our work, we adapt FM to RankingFM by applying the pairwise cross-
entropy loss, and then explore to improve the way of pairwise learning by op-
timizing a rank biased performance measure. In contrast to the previous work,
our proposed method is a general context-aware algorithm that is capable of
effectively optimizing item ranking performance.

3 Ranking Factorization Machines

In this section, we first briefly review Factorization Machines (FM), and then
elaborate our RankingFM algorithm. Lastly, the stochastic gradient descent
(SGD) is applied to train the RankingFM model.

3.1 Factorization Machines

FM is a state-of-the-art pointwise prediction model, which is capable of captur-
ing all nested interactions up to order d among n input variables in & with a
factorized representation. For a detailed description, please refer to Rendle [17].
The FM model of order d = 2 is definied as:

n n n
§lo) =wo+ > wiwi+ Y Y (vi,v;)mim, (1)
i=1 i=1 j=i+1
linear polynomial

where the model parameters @ = {wg, w1, ..., Wn, V1,1, ..., Unk} t0 be estimated
are: wy € R,w € R", V € R"** and (-, -} denotes the dot product of two vectors
of size k:

k
Tig ~ (0, 0) = Y ip vy (2)
=1

A row vector v; of V is the i-th variable with k factors. The linear term of
the FM model is identical to a linear regression model. The polynomial term
models the interaction between the i-th and j-th variables by using a factorized
parametrization (v;,v;) instead of an independent parameter 7; ;. In [16], it
shows that FM can be computed in linear runtime O(kn) because Eq. (1) can
be reformulated as:

n k n n
Q((B) = Wo +Zw1xz + %Z ((Zvi,fxi)Q _Z'Uifgj?> (3)
i=1 f=1 i=1 i=1

3.2 RankingFM Framework

FM is recognized as being very successful for a variety of prediction problems
with variables each of which may have interactions with one another. Specifically,
pointwise error loss functions are adopted in the latent factor model for rating



prediction. However, as previously mentioned, the pointwise optimization results
in a suboptimal solution for the item recommendation task, which is known as a
ranking task. Thus we aim to extend FM to a Ranking FM approach by applying
pairwise LtR techniques.

Consider that the learning algorithm is given a set of pairs of samples (a, b),
with known probabilities P, that sample a will be ranked higher than sam-
ple b. Also, there exists an input vector @ € R", where n is the number of
features. Meanwhile there is an output space of ranks represented by label
y = {y1,92,...,yr} with the number of ranks L. We denote the modeled pos-
terior P(x® > %) by P,. Then s, = §(x®) (i.e., Eq. (1)) and s4 = 8¢ — 5p =
9(z®) — 9(x®). Finally, the deviation between P,; and P, can be formulated by
cross-entropy (CE) loss [1]:

Cab = C (Sab) = *ﬁab log Pab — (1 — ?ab) log (1 — Pab) (4)

where the two outputs s,, s, of the models are mapped into a probability using

. . . . 1
sigmoid function, i.e., Py = ———.
g ) y Lab 1+e*(5a*3b)

In the case of Recommender Systems (RS)?, for a given user u € U, let
Sap € {0,£1} be defined as 1 if u prefers item a over item b, -1 if opposite, and
0 if u has the same preference of them. Py, is assumed to be deterministically
known from the ground truth, so that P, = %(1 +Sup). By combining the above

equations, Cy;, becomes:
1 —(sa—s

Cop = 5(1—Sab) (Sa — sp) + log (1+e (sa b>) (5)
The difference of s, and s, can be computed with the computational complexity
of O(kn) by applying Eq. (3):
2
sav=)_wilaf —a))=5 > (Y vlpai® =D visal’)
i=1 1=1

f=1 i=1
1 k n ) n )
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f=1 =1 i=1

The objective of CE is to train the scoriﬁg function (i.e., FM) so that the loss
of ordering probability estimation can be minimized by:

C= > Cap+ Y wllol? (7)

a,beDg 6O

(6)

where D, represents all the pair collections, || - ||? is the Frobernius norm and

7o is a hyper-parameter for the L2 regularization term.

3.3 Optimization Methods

We adopt the stochastic gradient descent (SGD) to optimize the loss function.
By differentiating Eq. (17), the parameter 6 can be updated:

0« 0—n (aacgb + 790> (8)

2 User-item pairs function similarly as query-url pairs in the conventional LtR task.



Algorithm 1 RankingFM Learning

1: Input: Training dataset, regularization parameters ~, learning rate 7
2: Output: © = (w, V)

3: Initialize ©: w + (0,...,0); V ~ N(0,0.1);

4: repeat

5 for a, b with different labels given by u do
6 sa = 9(*), sp = §(2°)

7 for f € {1,...,k} do

8 for i€ {1,..,n} Az; #0 do

9: Update v;,  according to Eq. (13)
10: end for

11: end for

12 forie {1,...,n} Az; #0 do

13 Update w; according to Eq. (14)

14 end for

15: end for
16: until convergence
17: return ©

Algorithm 2 RankingFM Learning for OCCF

1: Uniformly draw u from U
2: Uniformly draw a from A
3: Uniformly draw b from Z\.A

where 0Cu  OCap Dy  0Cud
ab _ ab OSq + ab ﬁ (9)
00 Ods, 00 Osp, 00
%CT‘?’ and 8(%;17 are the learning weights (i.e., the strength for updating ), defined
as:
ICup (1= Sab 1 . 780115
8sa < 2 1 +e<5a*5b)> T 9sp (10)
According to Eq.(8)-(10), we obtain:
1—Su 1 O(sq — 8p)
— — 11
0+ 0 n(( 5 1+e(sa_sb))( Gg ) el (11)

According to the property of Multilinearity [17], the gradient of FM can be
derived:

o 1 if 6 is wo
8ygg ) =< x} if 0 is w; (12)
TF Y VT — v;, pxd? if 0 is v; ¢
By combining Egs. (11)-(12), we have:
1—Sauw 1
Vi, f Vi f 77(( 2 1+ e(sa—sb))
n (13)
(D" vyt — abah) —ves(@i® = al) + 30 01)
j=1
wimwi—n (2 - ) @ = ah) + ) (14)



We show the general learning process of RankingFM in Algorithm 1, which
can handle multi-class ranking tasks, e.g., Trec Contextual Suggestion® and con-
ventional LtR scenarios. Nevertheless, as explained in Section 1, in most real-
world scenarios of CF, negative examples and unknown positive examples are
mixed together and hardly to be distinguished [14], known as one-class collabo-
rative filtering (OCCF). It can be seen the algorithm has O(|U||.A||B]) training
triples, where |.A| and |B| represent the size of observed and unobserved actions
by the user u € U, so we have AUB = Z, AN B = & , where |Z| represents
the number of items. That is, we need to compute all the full gradient in each
update step, which is infeasible because |B]| is usually huge in practice. To solve
this problem, it is natural to propose a sampling scheme (e.g., bootstrapping
[20]), which, on one hand, can make the best use of unobserved feedback for the
learning; on the other hand, helps to reduce the runtime of the algorithm. The
slightly revised RankingFM for OCCF is shown in Algorithm 2, i.e., Line 5 in
Algorithm 1 is replaced by Line 1-3 of Algorithm 2. In this case, ® denotes the
observed positive sample vector, while ¥ denotes the unobserved sample vector.

In terms of the computational complexity, it can be seen that the complexity
of Eq. (13) and Eq. (14) is O(kn) and O(n) respectively. Thus RankingFM also
has a linear computational complexity for each training pair. Moreover, for a CF
scenario, most elements x; in a vector x are zero. For example, let N(x) be the
number of non-zero elements in the feature vector & and N(x) be the average
number of non-zero elements in all vectors. We can see that N(x) < n under
huge sparsity, i.e., the complexity becomes O(kN(x)) in the CF settings.

4 Efficient Lambda Samplers
4.1 Sampling Analysis

RankingFM is made to work quite well due to the design of the pairwise CE
loss function, which is fine if that is the desired loss. However, typical pair-
wise loss functions are devised to maximize the AUC metric, which is clearly
position-independent. For item recommendations, the recommendation quality
is highly position-biased because high accuracy near the top of a ranked list
is more important to users. To solve this challenge, lambda-based approaches
(e.g., LambdaRank [7,15]) have been presented by incorporating ranking bias
into pairwise comparison. Inspired by this idea, we may design a similar weight-
ing term &, for further optimization of RankingFM, which is hereafter called
Lambda Factorization Machines (LambdaFM for short). &, ,* is designed to in-
corporate the size of change of a specific ranking measure by swapping two items
(i.e., a and b) of this pair with different relevance levels, the way of which is called
lambda (or A\). The new learning weight is defined as:

(1= S 1 )
Aot = ( 2 T4 etaay ) St (15)

3 https://sites.google.com/site/treccontext/

4 The work in [26] only adopted NDCG for the analysis of lambda whereas we here consider multiple
measures.



where £,;, can be the difference of any ranking measure, e.g., NDCG, Reciprocal
Rank (RR), or Average Precision (AP), computed by:

la _ ol 1 1 : .
IN(2 — 2 b)(logum) _ log(1+%))| if €0 is |ANDCGlp|
— n m Ta— l . .
Co= R[5 - B[R s [AAR
% —-1 if €ap i8S |[ARRas| and rp <7 <74

(16)
where N is the reciprocal of maximum DCG for a user; [, and [, are levels of
relevance for item a and b, respectively; r, and r, are the rank positions of a
and b, respectively; n and m are the number of relevant items at the top r, and
the top r, positions, respectively; i is the binary relevance label of the item at
rank position k, i.e., 1 for relevance and 0 otherwise, R is the number of relevant
items; r is the rank of the top relevant item in the ranking list. Note that the
above equation of RR,; holds only when 7, < r < r,, otherwise there is no
RR gain. We find that the above implementation is reasonable for multi-class
scenarios in typical LtR tasks but impractical in OCCF settings. The reason is
that to calculate £, it requires to compute scores of all items using Eq. (3) to
obtain the rank, i.e., r, and 7, in Eq. (16). For typical IR tasks, the candidate
documents for a query in training datasets have usually been limited to a small
size (e.g., 1000) because of query filtering [27]. However, for recommendation
with implicit feedback, the size of candidate items is usually very huge (e.g., 10
million) as all unobserved items should be considered as candidates. Thus, the
computational complexity before the update of each training pair has becomes
O(kn|Z|). In other words, the original lambda implementation for LambdaRank
is not suitable for OCCF settings [26].

To bypass this complexity issue, we devise two efficient lambda-based sam-
pling schemes in the followings. Assume we have an ideal lambda function Ay,
if we have a sampling scheme that generates the training item pairs with the
probability proportional to /\ab/(kQS“” — 1+(3(51a*5b)) (Just like &4p), then we can
have almost equivalent training models. Further, we give an example of a ranked
list (with implicit feedback) to show which item pairs should be assigned with
higher sampling weights, where +1 and -1 are positive and unobserved items,
respectively.

&s1
Rank Order : —1, —1, +1, —-1,-1,-1, -1, +1,—1,—1
—_———

£86

According to Eq. (16), we calculate that &g is 0.42, 0.54 and 0.67 when gy is
ANDCG, AAP and ARR respectively, and that £gg is 0.02, 0.04 and 0 when &g
is ANDCG, ANAP and ARR respectively. Obviously, £g1 is always larger than
&6 regardless of the ranking of the positive item and which ranking measure
we employ. This implies &g; is likely to be a more informative® training pair
(compared with £gg) if the unobserved item b has a higher ranking position.

5 In the followings, we refer to a training pair (a,b) as an informative pair if £, is larger after
swapping a and b, the unobserved item b is called a good or informative item.



Algorithm 3 Lambda Learning Scheme I (LFM-I)

1: Uniformly draw u from U

2: Uniformly draw a from A

3: repeat

4: Uniformly draw b from T\ A

5: Generate a random variable prand(u, a,b) € [0, 1]
6: Calculate the utility function p(u,a,b) = 1i;iiib
7

: until prana < p(u, a,b)

Algorithm 4 Lambda Learning Scheme IT (LFM-II)

1: Require: Unobserved item set Z\.A, parameter p and m, scoring function §(-)

2: Sample a rank r from the power law distribution pr(r(b)) o (W)%, p € [0,1], where r(b)
(starting from 0) is the rank of item b, and p is a coefficient that can be tuned for the optimal
results. Note that LFM-II will reduce to RankingFM when p = 0.

: Uniformly draw bq,...,b,, from Z\ A

: Compute §(x®1),...,5(x*™), and then sort by,...,b,, by descending order of g(x’1),...,5(x"™)

. Return one item b, which is currently ranked on the r-th position.

(AN

Based on this insightful finding, we believe the item pairs whose unobserved
item has a higher rank should be drawn with higher probability. This is because
the top ranked unobserved items hurt the ranking performance more than those
with lower ranked positions [27,28]. With the intuitive observation and above
analysis, we devise two simple yet effective sampling schemes to further optimize
RankingF'M for top-N item ranking.

4.2 Lambda-based Learning Schemes

Scheme I According to the above analysis, we argue that the item pair (8, 1) is
supposed to be sampled with higher probability than the (8, 6) pair. In addition,
we observe that the value of sg; is smaller than that of sgg because

581 = (ws) - ?J(wl)
586 = 33(338) - ?7(336) (17)
§(x') > 4(x°)

<<

The above observation suggests that we should sample more item pairs with
small preference difference, such as sg;. We thus propose an intuitive learning
scheme with a dynamic utility function p(u,a,b) to judge whether a (u,a,b)
triple contains an informative training pair (or a good negative item) such that
swapping the positions of a and b could lead to a larger change of a desired rank-
ing loss. The lambda-motivated learning scheme is shown in Algorithm 3, where
p is a sigmoid function. Hereafter we denote the new algorithm (replacing Line 5
of Algorithm 1 with Algorithm 3) as LEM-I. It can be clearly seen that a smaller
Sqp Will contribute to a larger utility p(u,a,b). In terms of the computational
complexity, the complexity to calculate the original £, is O(kN(x)|Z]), while
the complexity of Algorithm 3 is O(kN (x)T'), where T is the size of sampling
trials. In general, we have T' < |Z| in the beginning of the training and T' < |Z|
when the training reaches convergence. The reason is because in the beginning,
the elements of matrix V are initialized by a standard normal distribution with
mean 0 and variance 0.1 (see Algorithm 1), and thus the distribution of s, also




follows an approximate normal distribution with mean 0. In this case, it is quick
to find an unobserved item that meets the condition (i.e., prana < p(u,a, b)) as
most possible values of p(u,a,b) are around 0.5. After several training round,
most observed items are likely to ranked higher than the unobserved items (i.e.,
Sqp > 0), and thus p(u, a, b) is likely to be smaller than 0.5, which will lead to a bit
larger T'. However, it is impossible that all positive items are ranked higher than
unobserved items, so in general we still have T' < |Z| with prana(u,a,b) € [0,1].

Scheme II According to Section 4.1, a straightforward sampling scheme with
the same training effect of the original lambda can be implemented by calculat-
ing scores of all items to obtain the possible ranks, and then oversample higher
ranked unobserved items. Unfortunately, this learning scheme has the same com-
putational complexity with the original lambda strategy, which is clearly infea-
sible in practice. To overcome this issue, we first employ a uniform sampling
to select m candidates. Then we compute the scores of these candidate items
to achieve possible rank orders, and sample the rank by a power-law distribu-
tion pr(r) (In practice, pr(r) can be replaced with other distributions, such as
exponential and linear distributions as long as pr(r) meets the condition that
assigns larger sampling weight to top ranked unobserved items.). Because the
first sampling is uniform, the sampling probability density for each item has al-
most equivalent effect with that from the original (expensive) global sampling.
The proposed sampler is shown in Algorithm 4. We refer to RankingFM with
the seconding learning scheme as LFM-II. The complexity before performing
each pairwise comparison reduces to O(mkn + mlogm), where m is often set
to a small value (e.g., m = 20,50). Therefore, by implementing scheme II, we
are also able to find an efficient way to bypasses the expensive computational
complexity.

5 Experiments

We conduct a set of experiments to evaluate the top-N recommendation accuracy
of RankingFM and LambdaFM, compared to several state-of-the-art methods.

5.1 Settings

We use three real-world CF datasets to verify the performance of our proposed
methods, namely Libimseti.cz® (user-user pairs, where the users recommended
as daters are regarded as items here), Lastfm” (user-music-artist tuples) and
Yahoo® (user-music-artist-album tuples). In order to speed up the experiments,
we follow the common practice as in [5] by randomly sampling a subset of users
from the Libimseti and Yahoo datasets, and a subset of items from the Lastfm
dataset. Table 1 summarizes the statistics of the three datasets used in this
work. We evaluate the results of top-N item recommendations by two standard
metrics, namely, Precision@N and Recall@N (denoted by Pre@N and Rec@N,

6 http://www.occamslab.com/petricek/data/
7 dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
8 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2



Table 1: Basic Statistics of Datasets.

DataSets #Users #ltems #Records Density Rsize Csize #Artists #Albums
Libimseti 5000 82444 642454  0.16% 128.49 7.79 -
Lastfm 983 60000 246853  0.42% 251.12 4.11 25147 -
Yahoo 2450 124346 911466  0.29% 372.03 7.33 9040 19851

The “Rsize” and “Csize” columns are the average number of records (e.g., ratings) for
each user and for each item respectively.

respectively) [12], where N is the number of recommended items. Details about
the two metrics are omitted for saving space.

In our experiments, we compare our methods with four powerful baseline
methods: Most Popular(MP) [20], Factorization Machines(FM) [17], Bayesian
Personalized Ranking with matrix factorization (BPR) [20], Pairwise Interac-
tion Tensor Factorization (PITF)? [22]. Note we adapt FM for the top-N rec-
ommendation task by binarizing rating values'® (denoted as FMB). Since the
frequency of a user listening to a song (i.e., relevance feedback) can be obtained
from the Lastfm dataset, we also recommend songs by leveraging such informa-
tion (denoted as FMF!!). Note that the frequency information has a large range
compared with ratings (e.g., [1, 5] interval). For example, a user may listen to a
song in hundreds of times. In this paper, we employ a trivial function # to
map the frequency into [0.5,1), where f represents the frequency. Besides, for
a fair comparison, we also exploit the same bootstrap sampling as in BPR to
make use of the large number of unobserved items.

All factorization models use a factorization dimension of k=30. Results for
k=10, 50, 100 give consistent conclusion but are omitted due to space limitations.
In terms of i and 9, we apply the 5-fold cross-validation to find optimal values
for BPR. For PITF, our results show that it performs best with the same n and
~v9 of BPR. For FM (FMB and FMF), we apply the same method to tune 7
and 7y individually; For RankingFM and LambdaFM, we use the same n and
9 with BPR for comparison. Specifically, 1 is set to 0.01 on the Libimseti and
Yahoo datasets, and 0.08 on the Lastfm dataset; 7o (including vu,, 7o, ;) is set
to 0.01 on Libimseti dataset, and 0.05 on Lastfm and Yahoo datasets. Note that
we find that all FM based models perform well enough by just using polynomial
term (see Eq. (1)). p € [0,1] is specific for LFM-II, which is discussed later.

5.2 Results

Accuracy Analysis Figure 1(a-f) shows the top-N recommendation accuracy
of all algorithms on the three datasets. First, we clearly observe that our proposed
RankingFM (RFM) largely outperforms the original FM model (i.e., FMB),
which empirically indicates the pairwise approach outperforms the pointwise
approach with the common 0/1 interpretation [20]. The reason is because the
two algorithms have the same scoring function but only differ in loss functions:

9 Due to lack of contexts, PITF is not applicable to the Libimseti dataset.
10 1t is a standard way to solve the one-class problem in CF [14].
1 pME is identical to FMB in the other datasets, since the frequency of all observed actions is 1.
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Fig. 1: Performance comparison w.r.t. top-N values, i.e., Pre@N (P) and Rec@N (R).
p is fixed to 0.8 for LFM-II, and m is fixed to 50.

FMB applies the pointwise square loss, while RFM uses the pairwise CE loss for
optimization. Second, the proposed LambdaFM (LFM-I, LEM-II) consistently
outperforms other methods in terms of both ranking metrics. This is because
LambdaFM (1) directly optimizes the ranking metrics by the design of two
lambda-based sampling schemes (vs. BPR, PITF, FMB, FMF and RFM); (2)
estimates more accurate ordering relations between candidate items by incorpo-
rating additional contextual variables (e.g., artists and albums) (vs. BPR and
PITF). Third, we find that RFM achieves almost the same results with BPR
and PITF on the Libimseti and Lastfm datasets. The reason is because all the
three approaches exploit the pairwise loss function but with different predic-
tion functions. FM (from RFM) is identical to matrix factorization (from BPR)
with user-item feature vector and tensor factorization (from PITF) with user-
item-artist feature vector. In other words, RFM is able to mimic state-of-the-art
ranking algorithms (i.e., BPR and PITF) by feature engineering. Fourth, FMF
performs much better than FMB on the Lastfm dataset. This indicates that a
user’s preference to a song can be inferred more accurately by leveraging play-
ing times information. The intuition is that the more times she played a music
track, the higher preference she expresses implicitly. Several other insights can
be obtained in Figure 1 but are omitted for space reasons.

Tuning p Figure 2 illustrates the impact of p for learning scheme II in terms
of Pre@5 and Rec@5'2. First, by assigning a larger p, it is easy to find LFM-
IT noticeably outperforms RFM. The better results indicate that the lambda-
motivated sampler (scheme II) works effectively to deal with the suboptimal

12 The results w.r.t. other top-N values are consistent, but are omitted for saving space.
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Fig. 2: Parameter tuning for LFM-II w.r.t. Pre@5 (P) and Rec@5 (R). p € {0, 0.2,
0.4, 0.6, 0.8, 1.0}, m = 50.

results of pairwise ranking. Note LEFM-II is equivalent to RFM when p = 0 ac-
cording to Algorithm 4. Second, the performance of LEM-II on all three datasets
increases with the growth of p. In particular, on the Libimseti dataset, the per-
formance achieves the optimal value when p = 0.8, and starts to decrease when
p = 1.0. The reason is because only several top ranked items have the chance to
be selected as candidates for the pairwise comparison when p = 1.0, and in this
case, many unobserved items will not be seen by the learning algorithm, which
probably leads to relatively worse performance because of insufficient training
samples. On the other side, its performance has not obviously decreased when p
is set to 1.0 on the Lastfm and Yahoo datasets, which suggests that (1) LFM-II
may work well even by picking the top from m randomly selected items; (2) the

performance is expected to be improved further by setting a larger sampling size
(i.e., m)'3.

Impact of Context We compare the performance changes of RankingFM and
LambdaFM by gradually adding additional contextual variables. First, Figure
3(a-d) indicates that both RankingFM and LambdaFM with (u, 4, a) noticeably
outperform that with (u,4) tuples on both datasets. Second, we can see Rank-
ingFM and LambdaFM with (u,4,a,a) tuples outperform that with (u,,a) tu-
ples from Figure 3(c-d). The intuition behind is that a use’s preference to a music
track can be inferred more accurately by taking into account of the artist and
album information. Hence, we argue that in general by adding useful context fea-
tures, our models are able to obtain significant recommendation improvements.

13 Note that a larger sampling size m will result in a larger computational complexity.



Pre@5
Pre@s
Rec@s

HRFM HRFM WRFM 0.021- RFM
0.175- ELFM WLFv | [RgVE] | [V
| [Z'N) 0.025] | [V 0425+ | [RCYET | [V
0.018-
0.150-
g)o 020- 0.100- 0.015-
0.125- -4
0.012-
0.100- 0.015- 0.075-
0.009-
0.075-
wi a)

) ia) (ui (i) (uia) (uiaa)
context) context context Sien

(a) P-Lastfm (b) R-Lastfm (¢) P-Yahoo (d) R-Yahoo

Fig. 3: Performance comparison w.r.t. Pre@5 (P) & Rec@5 (R) by adding context. p
is fixed to 0.8, and m is fixed to 50 for LEM-IL. (u, ) is a user-item (i.e., music) pair
and (u,i,a) is a user-item-artist tuple in (a-d); (u,i,a,a) is a user-item-artist-album
tuple in (¢) and (d).

6 Conclusion and Future Work

In this paper, we have introduced two ranking predictors, namely RankingF'M
and LambdaFM. In contrast to other CF algorithms, RankingFM and LambdaFM
are general context-aware recommendation algorithms that are able to incorpo-
rate any types of context information. Besides, we design two intuitive sampling
schemes for LambdaFM, with which LambdaFM is made more reasonable for
optimizing item ranking in OCCF settings. Our experiments on three public
CF datasets show that RankingF'M and LambdaFM performs better than sev-
eral state-of-the-art CF methods. In particular, LambdaFM (with two proposed
sampling schemes) demonstrates superior ranking performance in the top-N item
recommendation task, reflected in two standard ranking metrics.

For future work!4, we plan to (i) develop more advanced samplers to im-
prove LambdaFM without negative effects on efficiency; (ii) investigate the gen-
eralization of the suggested lambda strategies on other well-known pairwise loss
functions, e.g., hinge Loss [8], exponential loss [4] as well as fidelity loss [13] (iii)
investigate the performance of both RankingFM and LambdaFM for traditional
multi-class ranking tasks, such as web search and Trec Contextual Suggestion.
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