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Abstract: Free-space optical communication with spatial modes of light has become topical
due to the possibility of dramatically increasing communication bandwidth via Mode Division
Multiplexing (MDM). While both scalar and vector vortex modes have been used as transmission
bases, it has been suggested that the latter is more robust in turbulence. Using orbital angular
momentum as an example, we demonstrate theoretically and experimentally that the crosstalk
due to turbulence is the same in the scalar and vector basis sets of such modes. This work
brings new insights about the behaviour of vector and scalar modes in turbulence, but more
importantly it demonstrates that when considering optimal modes for MDM, the choice should
not necessarily be based on their vectorial nature.
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1. Introduction

Mode Division Multiplexing (MDM) was first suggested more than three decades ago as a
technique to increase the bandwidth in fibre-based optical communications [1]. The realisation
in recent years that current optical fibre communication systems will undergo a “capacity crunch”
in the near future has renewed interest in the research [2]. Along this line, Orbital Angular
Momentum (OAM) stands out as the mode of choice due to its topical nature and ease of
measurement [3–6]. Successful demonstrations in both optical fibres and free space [3, 7–11]
suggest the viability of OAM-based optical communication systems, even though its capacity
limits still remain controversial [12, 13].

A limiting factor to the deployment of free-space optical communications is turbulent atmo-
spheric conditions which lead to aberrations of the optical wave-front of a propagating beam.
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These aberrations arise from localised changes in temperature and pressure, causing spatial
variations in the refractive index of the atmosphere [14–17]. In MDM, turbulence causes degra-
dation of the orthogonal spatial modes which results in the spreading of power into neighbouring
modes. In the case of an MDM communication system, this so-called crosstalk imposes limits
on the achievable channel capacity [18–21]. Investigation into the mitigation of the effects of
atmospheric turbulence on beams carrying OAM have shown very promising results, where
techniques employing specific modal selection, adaptive optics and digital signal processing
have been demonstrated [22–24].

Vector vortex modes are non-separable states of light in which polarisation and OAM are
coupled, which results in an inhomogeneous polarisation distribution [25]. Recently, the use of
vector modes was proposed as an alternative to scalar modes to encode information [26]. It has
been shown numerically that non-uniformly polarised beams such as a vector vortex beams are
analogous to partially coherent beams, in as far as their resilience to atmospheric turbulence is
concerned [27, 28]. Another study has postulated that the polarisation distribution of a vector
vortex beam is maintained even after its intensity distribution has degraded and thus a portion
of the information encoded in polarisation is still present [29]. From these studies it has been
inferred that vector vortex beams are more resilient to turbulence as compared to their scalar
counterparts [27–29].

Here we show that Cylindrical Vector Vortex (CVV) modes are not more resilient to atmo-
spheric turbulence than their scalar (OAM) counterparts. We confirm this experimentally by
measuring the crosstalk between basis elements of both mode sets, perturbed by Kolmogorov,
thin phase screens encoded on a polarisation invariant Spatial Light Modulator (SLM). In compar-
ing the modal crosstalk induced in each case, it is determined that although the crosstalk between
modes within the scalar vortex and CVV bases is distributed differently, the total crosstalk is in
fact identical within experimental error. The coupling between OAM and polarization in CVV
beams is not sufficient to make their phase variation less susceptible to atmospheric turbulence
when compared to circularly polarized scalar vortex beams.

2. Theory

A scalar basis set can be constructed by combining the degree of freedom provided by circular
polarisation with the degrees of freedom given by the infinite set of OAM modes, illustrated in
Fig. 1. These modes can be written, using Dirac notation for brevity, as:

|R+〉 = |`〉 |R〉 , (1a)
|L+〉 = |`〉 |L〉 , (1b)

|R−〉 = |−`〉 |R〉 , (1c)
|L−〉 = |−`〉 |L〉 , (1d)

where, R and L denotes right and left circular polarization, respectively, and ` ∈ Z relates to
the amount of orbital angular momentum, `~, per photon [30]. The elements of this set are
orthogonal to each other.

CVV modes are non-separable states of light where polarization and OAM modes are coupled.
A basis set of four orthogonal CVV modes can be constructed as linear combinations of the
scalar mode set in Eq. (1). The resulting modes carry no overall angular momentum and their
transverse polarization state is not constant, illustrated in the bottom row of Fig. 1. Akin to the
scalar case, these modes can be represented in the circular polarization basis using Dirac notation
as:

|T M〉 = 2−1/2(|`〉 |R〉 + |−`〉 |L〉), (2a)

|T E〉 = 2−1/2( |`〉 |R〉 − |−`〉 |L〉), (2b)

|HEe〉 = 2−1/2(|`〉 |L〉 + |−`〉 |R〉), (2c)

|HEo〉 = 2−1/2( |`〉 |L〉 − |−`〉 |R〉). (2d)

Each mode in a given set (vector and scalar) is orthogonal with the others in the set, and
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Fig. 1. Illustration of the scalar (top) and CVV (bottom) modes described in Eq. (1) and
Eq. (2) respectively, with arrows indicating polarisation distribution which is constant for
scalar and variable for CVV modes, for ` = ±1. The phase of the four scalar modes in the
transverse plane increases from −π (red) to π (blue) for positive `’s and decreases in the
opposite direction for negative `’s whereas the phase for CVV modes is a superposition of
both.

mutually unbiased across the sets. Moreover, each of the modes described by Eq. (1) and (2) can
be represented on a high order Poincaré sphere [25, 31].

2.1. Inter-mode crosstalk

In the presence of atmospheric turbulence, the polarisation of a beam is not affected because
the atmosphere is not birefringent, which can readily be validated by tilting ones head (e.g.,
Kolmogorov turbulence assumes a homogeneous and isotropic atmosphere) [32]. The spatial
degree of freedom, however, experiences aberrations which result in the coupling of modes into
neighbouring modes, degrading their orthogonality. The amount of mode coupling or crosstalk is
dependent on the strength of the turbulence in the channel, which can be expressed, in general,
by:

|`〉
turb.
−−−−→

∑
`′

p`−`′ |`′〉, (3)

where p`−`′ are the mode coupling weightings described by some distribution (e.g., p0 would
represent the modal power in the original OAM mode). This is used to find general expressions
for what a given mode propagating through turbulence will transform into. For instance, the final
state of the scalar mode |R+〉 will be given by:

|R+〉
turb.
−−−−→ p0 |`〉 |R〉 + p2` |−`〉 |R〉 = |R+

turb.〉 (4)

Analogous expressions can be found for |R−〉, |L+〉 and |L−〉. Similarly, applying Equation 3 to
a vector mode |T M〉:

|T M〉
turb.
−−−−→ p0 |`〉 |R〉 + p0 |−`〉 |L〉 + p−2` |`〉 |L〉 + p2` |−`〉 |R〉 = |T Mturb〉 . (5)

Analogous relations for |T E〉, |HEe〉 and |HEo〉 can also be found.
The crosstalk for each input mode is the magnitude of the inner product between each input

mode and all the expected output modes after turbulence. By way of example, the inner product
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of the scalar mode |R+〉 with the mode |R+
turb
〉, will be:

| | 〈R+ |R+
turb〉 | |

2 = | | 〈` | 〈R| (p0 |`〉 |R〉 + p2` |−`〉 |R〉) | |2 = | |p0 | |
2. (6)

Similarly, the inner product of the vector mode |T M〉 with the mode |T Mturb〉 will be:

| | 〈T M |T Mturb〉 | |
2 = | |(

1
√

2
(〈` | 〈R| + 〈−` | 〈L |)(p0 |`〉 |R〉 p0 |−`〉 |L〉 + p−2` |`〉 |L〉

+ p2` |−`〉 |R〉) | |2 = | |p0 | |
2

(7)

The crosstalk terms for all of the modes can be summarised in the form of a matrix as:

Mscalar =


| |p0 | |

2 0 | |p−2` | |
2 0

0 | |p0 | |
2 0 | |p−2` | |

2

| |p2` | |
2 0 | |p0 | |

2 0
0 | |p2` | |

2 0 | |p0 | |
2

 , (8)

Mvector =


| |p0 | |

2 | |p−2`+p2` | |
2

4 0 | |p−2`−p2` | |
2

4
| |p−2`+p2` | |

2

4 | |p0 | |
2 | | (p−2`−p2` | |

2

4 0
0 | |p−2`−P2` | |

2

4 | |p0 | |
2 | |p−2`+P2` | |

2

4
| |p−2`−p2` | |

2

4 0 | |p−2`+p2` | |
2

4 | |p0 | |
2

 . (9)

Notice that the terms in the diagonal are identical both cases. Under zero turbulence, where the
mode coupling weightings for the crosstalk terms can be assumed to be zero (p2` = p−2` = 0),
only the terms in the diagonal remain. This is consistent with the notion that when propagating
in free-space with no aberrations induced by atmospheric turbulence, the output mode equals the
input mode.

The total crosstalk, N , in each case can be computed by adding the off-diagonal elements as:

Nvector =
∑
i, j

Mvector = ( | |p2` + p−2` | |
2 + | |p2` − p−2` | |

2) = 2(| |p−2` | |
2 + | |p2` | |

2) (10)

Nscalar =
∑
i, j

Mscalar = 2( | |p−2` | |
2 + | |p2` | |

2) (11)

which therefore leads to our claim that the total crosstalk in each case is in fact identical:

Nscalar = Nvector = 2(| |p−2` | |
2 + | |p2` | |

2) (12)

3. Experiment

Figure 2 shows the experimental setup used to corroborate our theoretical findings. It consisted
of three main stages: generation of scalar and CVV modes, turbulence using a Spatial Light
Modulator (SLM) and finally, detection. In the first stage, both scalar and CVV modes were
generated using a q-plate (q = 1/2) in conjunction with polarisers and wave plates [33]. The
configuration of each element is detailed in the Appendix. For the second stage, a HoloEye Pluto
SLM was used (PLUTO-VIS, 1920 × 1080 pixels with 8 µm pitch, calibrated for a 2π maximum
phase shift at 633 nm) to simulate atmospheric turbulence. Random Kolmogorov phase screens
were used, specified by their Strehl Ratio (SR) [34]. Since this SLM is only able to modulate
horizontally polarised light, a polarisation invariant arrangement was implemented, as illustrated
in Fig. 2, following the approach in [35]. In the last stage, the perturbed modes were detected
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Fig. 2. Simplified schematic diagram of the experimental setup showing the three main parts.
The configuration of the half- and quarter-wave plates (HWP and QWP) and polarisers
for different modes is summarised in the Appendix. The polarisation invariant SLM is
made up by a polarising beam splitter (PBS), mirror and half wave plate rotated to 45◦ so
that arbitrarily polarised scalar and vector beams can be modulated by the SLM, which is
encoded with random Kolmogorov turbulence screens. The perturbed beams which return
along the same path as the incoming beams are directed by a beam splitter (BS) to the
detection part of the setup which performs modal decomposition.

by inverting the creation stage (exploiting the reciprocity of light) followed by an inner product
measurement to quantitatively infer the mode coupling weightings by using a technique known
as modal decomposition [4, 36].

Each input mode was perturbed by one hundred discrete instances of thin phase atmospheric
turbulence of a specific strength. The strength of turbulence was increased in increments of 0.1
from SR = 0.1 to 1.0. The channel matrices, Mscalar and Mvector , described in Section 2 were
then generated for each turbulence strength using the averaged and normalised intensity data for
comparison to the theoretical calculations in Eq. (8) and (9).

4. Results and discussion

The experimental setup was verified by encoding the SLM with SR = 1.0 turbulence, which is
simply a grating. This is the control measurement for the experiment and the crosstalk was zero,
as expected, shown in Fig. 3.

Figure 3 also shows the channel matrix comparison for SR = 0.6 and 0.2 of scalar and vector
cases. These two Strehl Ratio’s are arbitrary but were chosen because they demonstrate cases for
medium and strong turbulence and the clear effect of stronger turbulence, where power is spread
from the signal on the diagonal into the crosstalk elements.

The distribution of crosstalk visible in Fig. 3 is very similar to the theory presented in Eqs. (8)
and (9). However, according to the theory and the assumption that crosstalk does not occur across
polarisation states, some elements in the matrices shown in Fig. 3 should be dark blue (zero)
when in fact they show a small amount of signal. This is attributed to the normalisation of the
low dynamic range signal in strong turbulence and the efficiency of the PBS.

In order to compare the scalar and vector cases against each other, the crosstalk elements
for each input mode were added to each other according to Eq. (13), similar to the theory in
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Fig. 3. Comparison of vector and scalar crosstalk for SR = 1.0 (top) for experimental setup
validation and SR = 0.6 (middle) and SR = 0.2 (bottom).

Section 2.1. Since each row of the crosstalk matrix is already normalised, the sum must be re-
normalised to a percentage, resulting in a total average crosstalk percentage for each turbulence
strength for each mode set, visible in Fig. 4.

C =
1
4
×
∑
i, j

M × 100%, (13)

where M is the measured scalar or vector channel matrix and C is the associated crosstalk
percentage. The crosstalk performance for both scalar and vector modes is identical within
the measurement error for all turbulence strengths. These results agree well with the theory
presented in Section 2 and indicate that there is no performance benefit to using CVV modes over
scalar vortex modes in a thin phase turbulence regime with no birefringence. It should be noted
that a similar approach may be used for other basis sets of vector and scalar modes, however,
the results in this paper cannot be extended to modes with asymmetric spatial indices such as
|`〉 |R〉 + |p〉 |L〉, for example, as their resilience to turbulence cannot be assumed to be equal.
Additionally, while it is expected that scalar and CVV modes with higher topological charge will
continue to have identical overall crosstalk performance as the theory is general, the absolute
values of the crosstalk percentage will vary [37].
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the beam with increasing turbulence. Both mode sets have the same crosstalk performance.
Error bars are the standard error of the mean.

Although the overall crosstalk performance for scalar and CVV beams is identical, the crosstalk
distribution across modes within the bases are different. It is clearly visible in Fig. 3 that the
polarisation component of the scalar basis strongly limits crosstalk between certain modes,
however in the vector basis this is not the case. Consequently, the use of CVV modes may in fact
limit the possible information capacity of a communication system.

5. Conclusion

It has been inferred in the literature that vector vortex modes are more resilient to atmospheric
turbulence than their scalar counterparts. Here we define two similar scalar and cylindrical
vector vortex mode bases and theoretically show that their crosstalk in turbulence is the same.
This result was then verified experimentally in the thin phase, Kolmogorov regime with various
turbulence strengths. The experimental results show identical crosstalk performance within the
experimental error.

Appendix

A. Generation of scalar and CVV modes

The generation of both scalar and CVV modes was accomplished using a q-plate (q = 1/2)
in combination with quarter- and half- wave plates according to the unitary operation Q̂ of a
q-plate:

Q̂
[
|R〉
|L〉

]
=

[
|+2q〉 |L〉
|−2q〉 |R〉

]
, (14a)

Q̂
[
|H〉
|V 〉

]
=

[
|+2q〉 |R〉 + |−2q〉 |L〉
|+2q〉 |R〉 − |−2q〉 |L〉

]
, (14b)

where q is the charge of the topological singularity of the q-plate, related to the OAM by
` = 2q. When the input beam is circularly polarized, the output is a scalar beam of the opposite
polarization embedded with an OAM of ±`. Alternatively, when the input is linearly polarised
(horizontal or vertical) the output is a CVV, in which, polarization and OAM are coupled.
Experimentally, both sets of modes were generated using a q-plate, linear polarisers, half- and
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quarter- wave plates orientated at angles as summarized in Tab. 1. The detection of the modes
was achieve by reversing the generation process using a similar configuration an similar optical
elements, the orientation angles of the same are also summarised in this table.

Table 1. Configuration of the various components of the experimental setup, depending on
the required mode to be generated or decomposed.

Mode Polariser 1 & 2 HWP 1 & 2 QWP 1 & 2
|1〉 |R〉 H 0◦ 45◦

|1〉 |L〉 H - 45◦

|−1〉 |R〉 V - 45◦

|−1〉 |L〉 H 0◦ 45◦

|T M〉 H - -
|T E〉 V - -
|HEe〉 H 0◦ -
|HEo〉 V 0◦ -
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