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Behavioral and cardiopulmonary effects of dexmedetomidine alone and in combination 1 

with butorphanol, methadone, morphine or tramadol in conscious sheep 2 

 3 

Abstract 4 

Objective To compare cardiopulmonary and sedative effects, blood gas values and 5 

temperatures following administration of dexmedetomidine alone or with butorphanol, 6 

methadone, morphine or tramadol in healthy sheep. 7 

 8 

Study design Randomized crossover study. 9 

 10 

Animals Six Santa Inês sheep, five females, one male, aged 12-28 months and weighing 40.1 11 

± 6.2 kg. 12 

 13 

Methods Sheep were assigned treatments of dexmedetomidine (0.005 mg kg
–1

; D); D and 14 

butorphanol (0.15 mg kg
–1

; DB); D and methadone (0.5 mg kg
–1

;
 
DM); D and morphine (0.5 15 

mg kg
–1

;
 

DMO); D and tramadol (5.0 mg kg
–1

;
 

DT). All drugs were administered 16 

intravenously with at least 7 days between each treatment. Rectal temperature, heart rate 17 

(HR), respiratory rate (fR), invasive arterial pressures, blood gases and electrolytes were 18 

measured prior to administration of drugs (baseline or T0) and every 15 minutes following 19 

drug administration for 120 minutes. Sedation was scored by 3 observers blinded to treatment. 20 

 21 

Results HR decreased in all treatments and fR decreased in DM at T30 and DMO at T30 and 22 

T45. PaCO2 was increased in D, DB and DM compared with baseline, and PaO2 decreased in 23 

D at T15 and T45; in DB at T15 to T75; in DM at T15 to T60; in DMO at T15; and in DT at 24 

T15, T30 and T75. Decreased temperature occurred in D, DB and DM. An increased pH was 25 



 

measured in D at all time points and in DT at T30 to T120. HCO3
−
 and base excess were 26 

increased in all treatments compared with baseline. There were no statistical differences in 27 

sedation scores.  28 

 29 

Conclusions and clinical relevance The combination of dexmedetomidine with butorphanol, 30 

methadone, morphine or tramadol promotes similar changes in cardiopulmonary function 31 

compared with dexmedetomidine alone. Sedation was not improved using these combinations 32 

when compared with the administration of dexmedetomidine alone.  33 

 34 

Keywords α2-agonists, cardiorespiratory, opioids, ovine. 35 

 36 

 37 

 38 

39 



 

Introduction 40 

Alpha2-adrenergic agonists (α2-agonists) are used for sedation and premedication prior to 41 

general anesthesia in several species. Racemic medetomidine has a binding ratio of 1620: 1 42 

(α2:α1) (Virtanen et al. 1988) and its d-enantiomer – dexmedetomidine – is even more 43 

selective (Murrell & Hellebrekers 2005). Advantages of α2-agonists include potent, 44 

predictable sedation (Cardoso et al. 2014), analgesia, reduced anesthetic requirement, and 45 

reversibility (Murrell & Hellebrekers 2005).  46 

In sheep, α2-agonists are widely used for provision of analgesia and sedation (Kästner 47 

2006). However, arterial hypoxemia and pulmonary edema have been reported in certain 48 

breeds of sheep following the administration of all α2-agonists including dexmedetomidine 49 

(Celly et al. 1997; Kästner et al. 2001b; Kästner 2006). Congestion and redistribution of blood 50 

flow have been suggested as the cause of impaired oxygenation following the administration 51 

of dexmedetomidine to healthy anesthetised sheep. The hypoxemia is made worse by alveolar 52 

edema as a result of hydrostatic stress (Kästner et al. 2007). Dexmedetomidine has been 53 

compared to medetomidine in sheep, and has similar cardiopulmonary and sedatives effects 54 

(Kastner et al. 2001a), but combinations of dexmedetomidine and opioids have not yet been 55 

described. 56 

The administration of dexmedetomidine with opioids to dogs (Cardoso et al. 2014), 57 

and xylazine with opioids to sheep (Carvalho et al. 2015), improves sedation when compared 58 

with administraion of the α2-agonist alone. Combining dexmedetomidine with opioids in 59 

conscious sheep may facilitate certain procedures, and lower doses might reduce the incidence 60 

and severity of side effects.  61 

The aim of this study was to compare the cardiopulmonary and sedative effects of 62 

dexmedetomidine alone or in combination with butorphanol, methadone, morphine or 63 

tramadol in sheep. Our hypothesis was that these combinations may improve sedation without 64 



 

inducing significant cardiopulmonary depression when compared with administration of 65 

dexmedetomidine alone. 66 

 67 

Materials and methods 68 

This research was conducted following approval from The Animal Ethics Committee of 69 

University of Franca, protocol no. 038/12. The research facility is located 1040 metres above 70 

sea level. The reader is directed to a previous associated study for detailed information 71 

regarding the management and assessment of animals prior to experimentation, and also for 72 

further details of measurement methods (Carvalho et al. 2015). 73 

 74 

Animals 75 

Six Santa Inês sheep, five females and one male, aged 12 - 28 months and weighing 40.1 ± 76 

6.2 kg were used. Catheters were inserted aseptically into a jugular vein (18 gauge, 2.5 cm) 77 

and an auricular artery (20 gauge, 2.5 cm) with the sheep standing. Variables were measured 78 

prior to the administration of drugs (baseline, T0) and then every 15 minutes following the 79 

administration of drugs for 120 minutes (T15 – T120). 80 

 81 

Experimental design 82 

Sheep were administered treatments in random order (by drawing lots) in a crossover design 83 

with a washout period of 7 days between treatments. The treatments were: D 84 

(dexmedetomidine 0.005 mg kg
–1

; Dexdomitor 0.5 mg mL
–1

, Pfizer, UK); DB 85 

(dexmedetomidine 0.005 mg kg
–1 

and butorphanol 0.1 mg kg
–1

; Torbugesic, 10 mg mL
–1

; 86 

Forte Dodge, Iowa, USA); DM (dexmedetomidine 0.005 mg kg
–1

 and 0.5 mg kg
–1

 methadone; 87 

Mytadon, 10 mg mL
–1

; Cristália Produtos Químicos e Farmacêuticos Ltda, SP, Brazil); DMO 88 

(dexmedetomidine 0.005 mg kg
–1

 and 0.5 mg kg
–1

 morphine; Dimorf, 10 mg mL
–1

; Cristália 89 



 

Produtos Químicos e Farmacêuticos Ltda, SP, Brazil) or DT (dexmedetomidine 0.005 mg kg
–1

 90 

and 5.0 mg kg
–1

 tramadol; Tramadon; 50 mg mL
–1

; Cristália Produtos Químicos e 91 

Farmacêuticos Ltda, SP, Brazil). After instrumentation, a 15-minute period of stabilization 92 

prior to data collection elapsed. All drugs administered were mixed in the same syringe with 93 

the final volume adjusted to 10 mL with 0.9% sodium chloride to facilitate blinding and given 94 

intravenously (IV) over 30 seconds into the jugular catheter. 95 

 96 

Degree of sedation 97 

The degree of sedation was assessed using a numerical rating scale of 0-10: 0, no sedation; 1, 98 

standing, alert, reduced head and ear movements; 2, standing, slight head drop; 3, standing, 99 

moderate head drop; 4, standing, severe head drop, ataxia; 5, standing, severe head drop, 100 

severe ataxia; 6, sternal recumbency, head up; 7, sternal recumbency, head down; 8, lateral 101 

recumbency, occasional attempts to attain sternal recumbency; 9, lateral recumbency, 102 

uncoordinated movements; and 10, lateral recumbency, no movements (Kästner et al. 2003; 103 

Carvalho et al. 2015). 104 

 105 

Cardiopulmonary variables and rectal temperature 106 

Heart rate (HR) was counted by thoracic auscultation with a stethoscope and respiratory rate 107 

(fR) by observation of thoracic excursions, each over one minute. Mean arterial pressure 108 

(MAP) was measured from an auricular artery catheter connected to an aneroid manometer 109 

(Indústria Bic de Aperelhos Médicos Ltda, SP, Brazil) by tubing filled with 0.1% heparin 110 

solution (50 IU mL
–1

) and the air-saline junction aligned with the point of the shoulder in 111 

standing and sternally recumbent animals and the xiphoid process in laterally recumbent 112 

animals (Carvalho et al. 2015), hypotension was defined with values < 60 mmHg. Rectal 113 



 

temperature (RT°C) was measured with a mercury-in-glass thermometer (Thermometer BD; 114 

Becton Dickinson Indústrias Cirurgicas SA, MG, Brazil).  115 

 116 

Blood gases and electrolytes 117 

Arterial blood samples were collected for determination of pH, partial pressure of carbon 118 

dioxide (PaCO2), partial pressure of oxygen (PaO2), base excess (BE), arterial hemoglobin 119 

oxygen saturation (SaO2), bicarbonate (HCO3
–
), sodium (Na

+
), potassium (K

+
) and chloride 120 

(Cl
-
) concentrations. Each sample was 0.5 mL withdrawn from the arterial catheter into a 121 

disposable heparinized syringe and sealed with a rubber stopper. Blood samples were 122 

analysed immediately [Cobas b 121; Roche Diagnostics (Schweiz) AG, Switzerland]. 123 

Hypoxemia was defined with values of PaO2 < 60 mmHg. 124 

 125 

Statistical analysis 126 

The results were analyzed using a statistical analysis software program GraphPad PRISM 127 

Version 5.0 (GraphPad Software, Inc., CA, USA). Normality was assessed using the Shapiro-128 

Wilk test. Normally distributed data were analysed using analysis of variance (ANOVA) for 129 

repeated measures. Post hoc analysis within the same treatment group was performed using 130 

Dunnett’s test and between treatment groups using Bonferroni correction.  Non-parametric 131 

data were analysed using the Friedman test followed by post hoc Dunn's test. For all data p < 132 

0.05 were considered to be significant. 133 

 134 

Results 135 

All animals completed the 120 minutes of evaluation. Behavioral effects other than sedation 136 

included salivation, mydriasis, bruxism (teeth grinding), vocalization and facial muscle 137 

tremors (Table 1). The sheep recovered from sedation without further complications. 138 



 

 139 

Sedative effects 140 

Sedation scores were significantly higher compared with baseline at T15 to T60 in D and DT; 141 

at T15 to T75 in DB and DM; at T15 to T90 in DMO (Fig. 1). There was no significant 142 

difference in the comparative analysis between treatments.  Sternal or lateral recumbency 143 

(scores 6-10) occurred in D at 4 time points (T45-T90); DB and DM at 4 time points (T15 to 144 

T60); DMO at five time points (T15 to T75). Recumbency did not occur in any animal in DT 145 

(Fig. 1).  146 

 147 

Cardiopulmonary variables and rectal temperature 148 

There was a significant reduction in HR at all time points compared with baseline in D, DB 149 

and DT; in DM at T45, T75 and T105; DMO at T15 to T60. There were no significant 150 

differences among treatments (Table 2). With the exception of T105 in DT, MAP did not 151 

change significantly from baseline in any treatment, and there were no significant differences 152 

among the treatments. 153 

 Temperature decreased significantly from baseline in D at T60 and T75, in DB at T45 154 

to T120, and in DM at T45, T75 and T90. There were no significant differences in RT among 155 

the treatments. 156 

 Significant decreases were measured in fR compared with baseline in DM at T30 and 157 

in DMO at T30 to T60. There were no significant differences among treatments. 158 

 159 

Blood gas and electrolyte analysis 160 

Mean pH values were higher compared with baseline in D at all time points, in DB at T90 to 161 

T120, in DT at T60 to T120 (Table 3). There was no significant difference in pH among 162 



 

treatments. There was a significant increase in PaCO2 compared with baseline at all time 163 

points in D and DB; in DM at T15 to T90, with no difference among treatments.  164 

 There was a significant increase in [HCO3
–
] compared to baseline in group D, DB and 165 

DM at T15 to T120; in group DMO at T15 to T105; in group DT at T30 to T120 minutes. 166 

Base excess was significantly increased compared to baseline in group D at T45 to T120 167 

minutes; in group DB all time points; in group DM at T30 to T90; in group DMO at T45 and 168 

T60; in group DT at T30 to T120. There was no significant difference between groups in BE 169 

and [HCO3
–
].  170 

 There was a significant decrease in PaO2 compared to baseline in group D at T15 and 171 

T45; in group DB at T15 to T75; in group DM at T15 to T60; in group DMO at T15; in group 172 

DT at T15, T30 and T75. There were no significant differences between groups. Arterial 173 

oxygen saturation was significantly lower at T15 compared to baseline in D, DB, DM and 174 

DMO; in DT at time points T15 and T30. SaO2 was significantly lower in group DM at T15 175 

compared to other treatments.  176 

 Sodium concentration was significantly increased compared to baseline in group 177 

DMO at T105; in group DT at T90 to T120. There was no significant difference between 178 

groups. Potassium was significantly reduced compared to baseline in group DMO and DT at 179 

T90 to T120; [K
+
] was significantly higher in group DB compared to other groups at T120 180 

minutes. Chloride was significantly lower compared to baseline in group DB at T15 and T30. 181 

There was no significant difference between groups (electrolyte data not reported)  182 

 183 

Discussion 184 

Dexmedetomidine has been used in sheep as premedication prior to general anesthesia 185 

(Kastner et al. 2001a, 2001b, 2007; Kästner 2006; Granados et al. 2012; Funes et al. 2014). 186 

Doses administered ranged from 0.0025 mg kg
–1

 to 0.015 mg kg
–1 

in these studies. Concurrent 187 



 

administration of dexmedetomidine and an opioid results in significantly enhanced sedation 188 

without additional cardiopulmonary side effects (Cardoso et al. 2014). A relatively low dose 189 

of dexmedetomidine (0.005 mg kg
–1

) was chosen for this study as it was to be combined with 190 

a variety of opioids. It is possible that our dose of dexmedetomidine in this present study was 191 

not equipotent to the dose of xylazine administered in a previous associated experiment 192 

(Carvalho et al. 2015). This may explain the differing sedative effects. This is reflected in the 193 

fact that sedation scores were higher and recumbency was induced in sheep receiving 194 

dexmedetomidine alone in this present study, whilst sheep receiving xylazine alone in our 195 

previous study (Carvalho et al. 2015), did not become recumbent and median scores were 196 

lower. 197 

 Equipotent doses of opioids are not reported in sheep and, therefore, the dose rates 198 

chosen for this study were based on studies performed in dogs (Mastrocinque & Fantoni 199 

2003; Maiante et al. 2009) and were identical to those used in a previous associated study in 200 

sheep (Carvalho et al. 2015). Superior sedation was expected in sheep administered 201 

dexmedetomidine with an opioid compared with dexmedetomidine alone. However, 202 

methadone, morphine and butorphanol did not increase the sedation score although sedation 203 

was prolonged. In contrast, tramadol administered in combination with dexmedetomidine did 204 

not increase the sedation score or prolong the sedation. This is in contrast to our previous 205 

study in which sedation was enhanced when an opioid was combined with xylazine (Carvalho 206 

et al. 2015). An explanation may be that dexmedetomidine appeared to provide greater 207 

sedation when administered alone and therefore an additional sedative effect of the opioid 208 

might not have been as obvious. 209 

 The duration for collection of data was based on the reported duration of sedative 210 

effects of morphine, methadone and tramadol in combination with dexmedetomidine in dogs 211 



 

(Cardoso et al. 2014), and that most clinical procedures undertaken in sedated sheep will not 212 

exceed 2 hours. 213 

 The central nervous system (CNS) excitatory effects of opioids administered alone or 214 

in combination with α2-agonists in ruminants have been described (Waterman et al. 1990, 215 

1991; Levine et al. 1992; Lin & Riddell 2003; Edmondson et al. 2012; Verbeek et al. 2012; 216 

Carvalho et al. 2015). Lin & Riddell (2003) reported the administration of butorphanol alone 217 

to cattle induced agitation, vocalization, distress and violent kicking for 2 to 3 minutes after 218 

injection. However, administering detomidine in combination with butorphanol appeared to 219 

suppress this excitatory effect. The administration of tramadol IV to alpacas resulted in severe 220 

CNS excitation:  hyperesthesia, tremors, and ataxia (Edmondson et al. 2012). The behavior of 221 

sheep after IV morphine includes an increase of locomotor activity, vocalization and escape 222 

behavior (Verbeek et al. 2012). Signs of CNS excitation were observed in the sheep in the 223 

study presented here following the administration of opioids, similar to those reported in an 224 

associated study in sheep where xylazine was combined with opioids (Carvalho et al. 2015). 225 

The excitation may have influenced the degree of sedation. Furthermore, opioid-induced 226 

behavioral changes, such as bruxism, may mimic pain-related behavior.  227 

 Heart rate in all treatments was significantly reduced at almost all time points when 228 

compared with baseline. This was expected due to the cardiovascular effects of α2-agonists 229 

and in agreement with findings in other species (Murrell & Hellebrekers 2005; Cardoso et al. 230 

2014). Initially hypertension occurs due to peripheral vasoconstriction, followed by an 231 

increase in vagal tone and a fall in HR. Blockade of sympathetic outflow from the CNS leads 232 

to a longer period of bradycardia (Murrell & Hellebrekers 2005). Opioids may potentiate a 233 

reduction in HR by vagomimetic effects (Benyamin et al. 2008). However, in conscious goats, 234 

methadone administration alone (0.2 mg kg
–1 

IV or 0.6 mg kg
–1

 subcutaneously) did not 235 

reduce HR (Olsén et al. 2013). Similarly, butorphanol (0.5 mg kg
–1

 IV) administered alone to 236 



 

conscious sheep did not affect HR (O’Hair et al. 1988). In this present study, when opioids 237 

were combined with dexmedetomidine there was no significant difference among treatments 238 

and the majority of the fall in HR can be attributed to dexmedetomidine alone. Hypotension 239 

following the administration of xylazine to sheep has been reported (Aziz & Carlyle 1978), 240 

but others have not demonstrated this (Grant & Upton 2001; Carvalho et al. 2015). 241 

Medetomidine administered IV to sheep did reduce blood pressure during the second (central) 242 

phase, but the reduction in MAP did not appear to be clinically significant (Bryant et al. 243 

1998).  Dexmedetomidine administered IM (Kastner et al. 2001a) to conscious sheep did not 244 

significantly affect blood pressure. Hypotension was not evident in sheep in the present study. 245 

The changes in HR and MAP reported here are similar to the changes observed after 246 

administration of xylazine and different opioids (Carvalho et al. 2015) 247 

 The respiratory depressant effects of dexmedetomidine have been reported in humans 248 

(Belleville et al. 1992) and horses (Bettschart-Wolfensberger et al. 2005), although this is not 249 

always accompanied by hypercapnia. In humans, opioids exhibit a dose-dependent effect on 250 

the respiratory system (Gutstein & Akil 2006), but in animals this is less apparent (Dugdale 251 

2010). Depression occurs in a dose-dependent manner, with a decrease in rate but overall 252 

minute volume may not change due to compensatory increases in tidal volume (Dugdale 253 

2010). Evidence in ruminants is relatively sparse. Waterman et al. (1991) reported that 254 

butorphanol administered to healthy sheep did not affect respiratory blood gas tensions. More 255 

potent opioids such as fentanyl can induce short periods of respiratory depression (Waterman 256 

et al. 1990). 257 

 Methadone administered IV to pygmy goats induced evidence of hyperventilation 258 

(Neal & Olsen 1980). Kastner et al. (2001a) did not demonstrate significant changes in fR 259 

following intramuscular administration of dexmedetomidine to sheep. In this present study, 260 

PaCO2 increased in sheep administered dexmedetomidine alone or in combination with 261 



 

butorphanol or methadone at all time points compared to baseline, indicating some degree of 262 

hypoventilation, although alterations were relatively minor and were not deemed clinically 263 

significant. This is similar to our findings in a previous study in which sheep administered 264 

xylazine, in combination with methadone or morphine, had significant (but minor) elevations 265 

in PaCO2 (Carvalho et al. 2015). 266 

Hypoxemia is often observed in sheep following the administration of low doses of 267 

dexmedetomidine (Kästner et al. 2007), and there may be significant variation between 268 

individual sheep (Kästner 2006). Several mechanisms have been proposed for α2-agonist 269 

induced hypoxemia in sheep:  intense venous spasm mediated via adrenoreceptor agonism, 270 

pulmonary congestion, increased microvascular pressure and alveolar capillary rupture, 271 

resulting in an inflammatory response (Bacon et al. 1998; Kästner et al. 2007). In this present 272 

study, there were significant reductions in PaO2, but the magnitude of the changes differed 273 

between animals. Recumbency following drug administration occured in all treatments except 274 

DT and therefore a positional influence on gas exchange may have occurred. Lateral 275 

recumbency induces a fall in arterial oxygenation when compared to standing sheep (Mitchell 276 

& Williams 1977). In the present study, clinically relevant reductions in PaO2 values were 277 

observed in individual animals, therefore oxygen supplementation might be required in some 278 

sheep.  279 

In this study, pH, [HCO3
–
] and BE tended to increase over time. Significant increases 280 

in pH mainly occurred in sheep treated with dexmedetomidine alone. This may be because 281 

some sheep had relatively high pH values at baseline and therefore further increases were not 282 

statistically significant. Epidural xylazine in sheep has been associated with increases in pH 283 

and bicarbonate, indicative of a metabolic alkalosis; the authors did not speculate as to why 284 

this may have occurred (Aminkov & Hubenov 1995). Ringer et al. (2013) identified increases 285 

in pH, bicarbonate and BE in horses receiving a 3 hour infusion of xylazine or romifidine due 286 



 

to a urinary loss of chloride. In our study there were no significant chloride changes and we 287 

cannot corroborate this hypothesis in sheep and the cause remains uncertain. Increased pH 288 

may explain the rise in PaCO2 observed in some sheep in this study – if hydrogen ion content 289 

falls, compensation occurs by hypoventilation and an increase in carbon dioxide attenuating 290 

the alkalosis. However, it is likely that sheep had a mixed acid base disturbance with 291 

concurrent metabolic alkalosis and respiratory acidosis. 292 

In conclusion, the degree of sedation resulting from combinations of IV 293 

dexmedetomidine (0.005 mg kg
–1

) and either butorphanol, methadone, morphine or tramadol 294 

was similar to that from the administration of dexmedetomidine alone. Changes in 295 

cardiopulmonary variables were not clinically significant. However, oxygenation should be 296 

monitored, and oxygen supplementation provided if necessary. As the number of animals and 297 

drugs doses used in this study were limited, further investigations of different dose rates may 298 

identify a more effective combination for clinical use.  299 

 300 

301 
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