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Abstract. We describe how the notion of optical beam shifts (including the
spatial and angular Goos–Hänchen shift and Imbert–Federov shift) can be
understood as a classical analogue of a quantum measurement of the polarization
state of a paraxial beam by its transverse amplitude distribution. Under this
scheme, complex quantum weak values are interpreted as spatial and angular
shifts of polarized scalar components of the reflected beam. This connection
leads us to predict an extra spatial shift for beams with a radially-varying phase
dependance.
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1. Introduction

There are many analogies between phenomena in quantum theory and in classical wave
optics, including the connection between Heisenberg’s uncertainty principle and the bandwidth
theorem [1], transverse optical polarization and spin half as two-state systems [2], and the
Schrödinger equation and paraxial equation of light [3], connecting the time propagation of
quantum wavepackets and the propagation of narrow, coherent light beams. Although the
underlying physics differs in these cases, the similarity in the underlying mathematics gives
rise to analogous phenomena.

Our aim in this paper is to describe and explore the strong analogy between the spatial and
angular shifts that light beams experience on reflection from a planar interface, and the notion
of weak quantum measurement, incorporating quantum weak values of operators [4–6]. Such a
connection was identified by Hosten and Kwiat [7] in the experimental measurement of the spin
Hall effect of refracted light beams via quantum weak values. Here, we generalize this approach,
and show that the shift of a paraxial light beam, and its polarized components, is determined by
the appropriate average value of an ‘Artmann operator’ related to the reflection matrix for the
beam.

Spatial beam shifts are usually small: they are typically comparable to an optical
wavelength, which is much smaller than the physical width of the paraxial beam, even when
focused on the reflecting interface. Angular shifts of the direction of the beam, when they exist,
are also small, of the order of the (narrow) spectral width of the beam in Fourier space. The
effect originates physically from the Fresnel coefficients’ dependence on incidence angle: as the
plane wave components making up the beam deviate from their mean, the complex amplitude
and possibly polarization of the reflected plane wave components varies. The magnitude and
direction of the beam shift thus depends on the incidence angle of the beam and its incident
polarization, and while we concentrate in this paper on reflection, the case of transmission is
very similar. We will not derive all beam shift formulas here, as they involve some technical
details unimportant to the connection to quantum measurements. For these details (in an
explicitly optical approach), we refer the reader to a companion paper [8].

Historically, the first beam shift to be discovered was for light beams polarized linearly
in, or perpendicular to, the plane of incidence (p- and s-polarizations respectively), by Goos
and Hänchen in 1943 [9]. In this case, the shift is in the plane of incidence (referred to as
‘longitudinal’), given by the famous Artmann formula [10]. If the incident beam has circular
polarization (or, more generally, has any polarization not linear in or perpendicular to the plane
of incidence), there is an ‘Imbert–Federov shift’ transverse to the plane of incidence, which has
been explained in terms of spin–orbit coupling [11]. Goos–Hänchen and Imbert–Federov shifts
are largest in the regime of total reflection, close to the critical angle; when reflection is partial
(reflection by a denser medium, or inside the critical angle), Fourier filtering of the spectrum
leads to an angular shift of the propagation direction of the light beam [12–14], which has been
the subject of much recent experimental attention [15, 16].

A schematic illustration of the geometry of a longitudinal shift, both spatial and angular,
is shown in figure 1. It is natural to introduce the concept of a ‘virtual beam’, represented in
red in the figure. Inspired by the method of images, this is an ideal, unphysical reflected beam
whose position and direction is that if the reflection were purely specular. Rather than refer to
spatial and angular shifts with respect to the incident beam, we instead denote the shifts with
respect to the expected position and direction of the virtual beam. It therefore suffices to work
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Figure 1. Schematic illustration of a spatial shift Dx and angular shift 1x of
a reflected beam in the plane of incidence. If the reflection of the incident
beam (green) were purely specular, one would observe the ‘virtual beam’ (red).
However, due to angle-dependence of the reflection coefficients, the real beam is
displaced both in position and propagation direction (blue).

in coordinates based on the virtual beam, which propagates in the z-direction, and the plane of
incidence is the xz-plane, as shown in the figure. This avoids introducing complicated three-
dimensional (3D) geometry for the reflection with respect to the incident beam.

Of course, the usual Goos–Hänchen and Imbert–Federov shifts apply to the centroid of
the intensity of the light. Since the reflected beam also acquires a weakly inhomogeneous
polarization, analysing the reflected beam with a polarizer reveals further shifts of polarized
components, such as the transverse spin Hall effect of light [7, 11] of circular components when
linear polarization is incident; in this case, each circular component undergoes a shift even when
there is no net transverse shift to the overall beam.

A characteristic of beam shifts is that the nature and functional form of the resulting
shifts are independent of the spatial profile of the light beam, provided the incident beam is
axisymmetric and focused on the interface. When this condition is relaxed, for instance with a
beam with an azimuth-dependent phase vortex exp(i`φ) [17, 18], there is an additional ‘vortex-
induced shift,’ where the total spatial shift involves a combination of the Artmann expressions
for the spatial and angular shifts of a beam without a vortex [16, 19].

Each of the notions above corresponds to a similar notion in quantum measurement via
a weak von Neumann interaction, and our purpose in this paper is to make these explicit.
In the optical reflection case, the interaction is between the polarization and spatial structure
of the beam, and the weakness follows from paraxiality (i.e. localization in Fourier space).
Before describing the details of the analogy, we review the relevant notions from quantum
measurements, largely following the description and notation of the very clear exposition of
the quantum case by Jozsa [20].
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2. Weak quantum measurement

The weak quantum measurement of an observable A of a quantum system in initial state |ψi〉

is achieved by considering the entire system in a product state of the system to be measured,
together with the state of the measurement pointer |ϕ〉, i.e. |ψi〉|ϕ〉. The interaction between
the measured system and the pointer is weak, in the sense that the interaction Hamiltonian
Hint ≡ g Ap, acting at a single instant in time, where g � 1 is a small coupling constant, and p
is the momentum operator generating translations of the pointer state |ϕ〉. The unitary evolution
operator corresponding to the interaction, in units with h̄ = 1, is

exp(−iHint)≈ 1 − ig Ap, (1)

following from the fact that the coupling constant is small, i.e. the interaction is weak.
Now, the measurement may be made in the usual von Neumann sense, where the measured

system’s freedoms are ‘traced over’, by taking the (sub-)inner product with |ψi〉, giving rise to
the expectation value

〈A〉 ≡
〈ψi|A|ψi〉

〈ψi|ψi〉
. (2)

Alternatively, the projection of the measured system in a certain postselected final state |ψf〉

may be considered, giving rise to the so-called ‘weak value’ of the operator [4, 5]

Aw ≡
〈ψf|A|ψi〉

〈ψf|ψi〉
. (3)

When A is Hermitian, 〈A〉 is necessarily real, although it is not for more general A. However,
for any A, the weak value Aw is usually complex-valued, and depends on both the pre- and
postselected states.

Furthermore, the weak value may take on very large values (‘superweak’ [21]), particularly
when |ψi〉 and |ψf〉 are almost orthogonal (so the denominator of equation (3) becomes
vanishingly small). We will denote the average value of A, whether the expectation or weak
value, by the generally complex

a ≡
〈ψ |A|ψi〉

〈ψ |ψi〉
, (4)

where 〈ψ | is 〈ψi| or 〈ψf|.
The final pointer state, after the weak interaction and possibly postselection, is therefore

〈ψ | exp(−iHint)|ψi〉|ϕ〉 ≈ 〈ψ |ψi〉 (1 − i gap) |ϕ〉 ≈ 〈ψ |ψi〉 exp(−i gap)|ϕ〉. (5)

The result of the measurement is a shift in the mean position of the pointer wavefunction
〈q|ϕ〉 = ϕ(q)≡ |ϕ(q)|eiχ(q), in the position representation, where χ is the wavefunction’s
phase. When a is real, this simply corresponds to a translation of ϕ(q) by the small amount
ga; when a is complex, the expectation value of q is shifted by

D = g Re(a)− g Im(a)
∫

dq q2 J ′(q)= g Re(a)+ 2 g Im(a)〈qχ ′(q)〉, (6)

where the second term is nonzero when the pointer wavefunction ϕ(q) at the moment of
interaction has a varying phase (so the probability current J (q)= |ϕ|

2χ ′ is nonzero), and we
have assumed the unshifted expectation of position 〈q〉 = 0. The second line here follows from
integration by parts, assuming χ is sufficiently well behaved; in [20], the term proportional to
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g Im(b) was found to be m∂t〈q2
〉 by the continuity equation for probability and Schrödinger’s

equation. In Fourier space, the pointer’s conjugate wavefunction ϕ̃(p) also undergoes a shift to
its mean position [6, 22], by

1= g〈p2
〉Im(a), (7)

proportional to the imaginary part of a and the width (variance) of the Fourier transform
ϕ̃(p). We note that it is common in the quantum mechanical literature to refer to the weak
interaction between measured and pointer systems as a ‘weak measurement’, referring to the
small magnitude of the coupling constant g; the measurement is weak regardless of whether the
weak or expectation value of the operator is being measured.

3. The analogy between beam shifts and quantum measurement

We are now in a position to draw the analogy between beam shifts and quantum weak
measurements. As previously in classical optics analogies with weak values [7, 23], the
polarization of the beam, represented by the constant transverse vector E, is identified with
the measured system, and the complex amplitude of the beam corresponds to the pointer.
The measured system is therefore effectively a two-state system (i.e. a 2D Jones vector), and
the pointer wavefunction (a normalized, position-dependent complex amplitude) ϕ(r) depends
on r = (x, y) in the plane transverse to the propagation in z. A homogeneously polarized
light beam, in the quantum language, therefore corresponds to the product state. Free paraxial
propagation is analogous to free quantum time evolution according to the Schrödinger equation.
The paraxial approximation applied to the beam follows from its strong localization around a
mean propagation direction in direction (Fourier) space. A regular or weak measurement of the
beam is made depending on whether the centroid of the total intensity of the final reflected
beam, or a polarized component of it are considered.

When a plane wave encounters a planar dielectric interface, it is reflected [24]: it changes
direction according to the law of specular reflection, and its polarization E undergoes reflection
according to the appropriate Fresnel coefficients rs and rp (evaluated at the incidence angle):
the p-direction parallel to the plane of incidence, and the s-direction perpendicular to it, are
distinguished as eigenpolarizations of the incident polarization E. The resulting polarization is
therefore R · E, where R is a reflection matrix, diagonal in the s, p basis with entries given by
the appropriate reflection coefficients. It is therefore natural to choose the beam coordinates to
correspond to these eigenpolarization directions: x corresponding to p, in the plane of reflection,
and y perpendicular to it (s polarization), as in figure 1.

When the homogeneously polarized beam—rather than simply a plane wave—encounters
a planar dielectric interface, it approximately undergoes the same change: it is specularly
reflected, and its polarization changes according to its central wavevector component. However,
the small variation of wavevector directions about the propagation direction gives rise to a small
variation in the incidence angle and plane of incidence of each Fourier component, and it is this
small variation, ignored in the approximation of the beam as a plane wave, that corresponds to
weak quantum interaction.

This is made explicit by the introduction of the virtual beam, that is, the imaginary beam
propagating in the z-direction (i.e. after specular reflection) as discussed above. The virtual
beam is simply specularly reflected, and its polarization is constant; the ‘weak interaction’ is
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then the residual small correction (to first order) from the angle dependence. It is convenient to
perform the analysis in the coordinates of the virtual beam.

Spherical angles for beam coordinates will be denoted by azimuth α and colatitude δ,
i.e. the transverse wavevector (whose length k is fixed)

K = (Kx , K y)= k sin δ (cosα, sinα)≈ kδ (cosα, sinα), (8)

since we assume the spread of the beam in Fourier space is small: paraxiality implies that the
variance 〈δ2

〉 ≡
1
k2

∫
d2 K |K |

2
|̃ϕ(K )|2 � 1. The polarization of the virtual beam is assumed

to be uniform, and determined by R, the reflection matrix of the mean wavevector. R is the
reflection matrix for a plane wave incident at θ0, the incidence angle of the centre of the beam.

The virtual beam is therefore in a product state, whose amplitude distribution is the same as
the initial beam, and whose homogeneous polarization is given by Ei ≡ R · E. It is this virtual
beam which plays the role of the preselected quantum product state. The main change to the
beam on reflection is its specular change in direction and plane wave reflection-like change
to its polarization, and the smaller shifts in mean position and direction follow from the weak
K -dependent variation in R.

The physically reflected beam, in its Fourier representation, is found by multiplication of
the virtual beam Fourier transform with the appropriate K-dependent reflection matrix R. Each
K has its own particular plane of incidence, and R applies the appropriate reflection coefficients
in the local s, p basis. Since the spread of K-directions around the propagation direction is small,
the beam is sensitive only to a low-order Taylor expansion of this matrix R with respect to δ,
that is

R ≈ R + δ (cosα, sinα) · (Rx ,Ry), (9)

where Rx and Ry represent the mean derivatives of R in the longitudinal and transverse
directions respectively, evaluated at the mean wavevector. In this paper, we will not perform
the extra geometrical calculations required to find explicit forms of Rx and Ry; we derive these
in the companion paper [8] in detail.

It should be clear by analogy with the exposition in section 2 above that in this
approximation, the reflection operator may be rewritten directly as the action of the mean
R followed by an interaction operator entangling the position and polarization. This can be
represented by the mean reflection R left-multiplied by a weak interaction operator (as described
above in section 2),

R ≈
(
1 − iK · (Ax ,Ay)

)
R ≈ exp

(
−iK · (Ax ,Ay)

)
R, (10)

where (Ax ,Ay) is a vector of 2 × 2 matrices we call ‘Artmann operators’,

A j ≡
i

k
R j R

−1
, j = x, y. (11)

If the reflection is total (i.e. the reflection coefficients are unimodular), it is straightforward to see
(but omitted here) that each A j matrix is Hermitian. However, if the reflection is partial, some of
the incident light is lost through transmission, resulting in the A j matrices being non-Hermitian.
The corresponding evolution operator is nonunitary as it does not preserve normalization, as
some light is refracted.

In Fourier space, the reflection operator acts as an impulsive evolution of the virtual beam
under the ‘interaction Hamiltonian’ K · (Ax ,Ay), which is weak since the transverse momentum
K is necessarily small for the paraxial beam. Apart from the generalization to two dimensions
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(which is straightforward unless ϕ(r) is complex, for which see section 4), the connection with
the quantum measurement described above is immediate: the centre of the physical beam in real
space, and its direction in Fourier space, are effectively a weak measurement-like shift to the
pointer ϕ(r), and its Fourier transform ϕ̃(K ) by the real and imaginary parts of the (possibly
complex-valued) average of the Artmann operators Ax ,Ay.

In the case of optical polarization, ‘tracing out’ the polarization degrees of freedom is
simply considering the overall intensity of the beam ignoring the polarization; in this case, the
spatial shift in j = x, y is given by the general shift (for a real ϕ(r))

D j = Re
E∗

i · A j · Ei

E∗

i · Ei
= Re

(
i

k

E∗
· R

†
R j R

−1
R · E

E∗

i · Ei

)

= − Im

(
1

k

E∗
· R

†
R j · E

E∗
· R

†
R · E

)
. (12)

When E is linearly polarized in the x- or y-directions (p- and s-polarized respectively),
the corresponding longitudinal Goos–Hänchen shift Dx is given by the famous Artmann
formulas −

1
k Im r ′

p/rp,−
1
k Im r ′

s/rs [10], which follow directly from the spatial shift formula
in equation (12), and Dy = 0 in this case. When E is circularly polarized (right- (+) or
left- (−) handed), there is a transverse Imbert–Federov shift Dy given by ±

1
k |rs + rp|

2 cot θ0

[8, 11, 25–27]. It can be shown that Ry, originating from spin–orbit coupling, is a constant
times the Pauli matrix σ 1 in the s, p basis, so in fact Dy is zero if E is linearly
polarized.

If the reflection is total, so the A j are Hermitian, these spatial shifts are the only shifts which
occur. However, if reflection is partial, there is a shift to the Fourier transform ϕ̃(K ), which is
k times an angular shift 1 j to the direction of the beam in the x- and y-directions. From above,
this is proportional to the variance of the beam’s Fourier distribution 〈|K |

2
〉 = k2

〈δ2
〉, where

〈δ2
〉 is the variation of the beam in direction space. Thus

1 j =
〈|K |

2
〉

k
Im

E∗

i · A j · Ei

E∗

i · Ei

= 〈δ2
〉Re

(
E∗

· R
†
R j · E

E∗
· R

†
R · E

)
. (13)

This equation is derived purely from the optical viewpoint in [8]. Despite the recent interest
in the angular shift, the simple form here in terms of the variance in direction space has not
previously been emphasized. The universality, coming from the relation with weak interactions
(although the value of the non-Hermitian Artmann operator is not weak here) is one of the main
new statements about optical beam shifts in this paper.

What of weak values themselves? As discussed above, postselection is here clearly
represented by the presence of a polarizing analyser F, which projects the beam onto a ‘final’
polarization state. In terms of optical physics, the analogue of the entanglement between
measured system and pointer is a position-dependent polarization pattern: the mean position
of different final polarization states varies (figure 2), depending on the details of the incident
polarization and reflection matrix. The component shift, or ‘weak’ shift, can therefore be written
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Figure 2. Examples of shifted, reflected beams with weakly varying polarization,
in units of k−1. In each case, the incident beam has polarization E =

1
√

2
(1, 1),

with an incident Gaussian profile with width 100k−1 at incidence angle θ0 =

arcsin 3/4. Reflection is between air and glass, with (a) total reflection (n = 2/3),
(b) partial reflection (n = 3/2). The plots, in virtual beam coordinates, show
contours of overall intensity (grey), and (a) magnitude of components in p-
and s-polarization (purple and green respectively); (b) magnitude of right-hand
and left-hand circular components (cyan and turquoise respectively). Despite the
beam shifts being different, the variation in polarization from the virtual beam
polarization E0 is imperceptible at this scale (blue ellipses and lines).

as follows: the component spatial shift is

Dw j = Re
F∗

· A j · Ei

F∗
· Ei

= −
1

k
Im

(
F∗

· R j · E

F∗
· R · E

)
, (14)

again for j = x, y, and the component angular shift is

1w j =
〈|K |

2
〉

k
Im

F∗
· A j · Ei

F∗
· Ei

= 〈δ2
〉Re

(
F∗

· R j · E

F∗
· R · E

)
. (15)

Of course, the weak shift typically has an angular contribution even when the A j are Hermitian,
representing the inhomogeneity of the polarization pattern in direction space, and weak shifts
can be rather different directions to their strong counterparts (or exist when these are zero, as is
the case of the spin Hall effect for light [7]).

An illustration of optical beam shifts, including component shifts, is shown in figure 2.
In each case, on the lengthscale of k−1, the inhomogeneous polarization is extremely weak,
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although both longitudinal and transverse shifts are present. A systematic theoretical study of
the component and beam shifts for different choices of E and F is made in [8].

For certain choices of F, the component shift may be very large, with a rather small
overall amplitude. However, it is important to note that such superweak shifts occur when
F∗

· Ei = F∗
· R · E is small, and the inner product between initial and final polarizations F∗

· E
does not directly play a role. This is of course because the analogue of the prepared quantum
state is the virtual beam.

These optical shifts completely mirror quantum mechanical pointer shifts, and the 2D
nature does not change any of the essential description. However, if the complex pointer
amplitude ϕ(r) has radial- and azimuthal-varying complex phase, the situation is more
complicated than the 1D case described in [20], and we describe this in the next section.

4. The case of radial and azimuthally varying pointer phase

In this section, we will represent the weak or expectation value of the Artmann operator by the
complex 2D vector a = (ax , ay), which is defined by one of the following:

a j =
i

k

E∗
· R

†
R j · E

E∗
· R

†
R · E

or
i

k

F∗
· R j · E

F∗
· R · E

, j = x, y. (16)

Although our main example is optical beams, the discussion applies to any weakly interacting
quantum system with two noncommuting operators Ax , Ay multiplying the two components of
pointer momentum, and our aim is to generalize the contribution of Im(a) to the spatial pointer
shift.

Following Jozsa [20], we consider the modulus squared (intensity or probability
distribution) of the reflected wave after tracing out or postselecting the polarization state,

|(1 − iK · a)ϕ(r)|2 ≈ |e−Re(a)·∇ϕ|
2
− i Im(a) · (ϕ∗

∇ϕ−ϕ∇ϕ∗), (17)

where K , as the momentum, corresponds to the generator of translations −i∇, and only terms
up to the first order in a are kept as usual. The first term represents the intensity pattern shifted
by Re(a), and the second term represents additional interference caused between the differently-
weighted Fourier components with varying incident phases.

This second term generalizes the second term on the rhs of (6) to 2D pointer wavefunctions;
the first term here—a pure translation—is just the usual spatial shift. The shift is the mean of r
with respect to this distribution, and we assume that the mean position of the unshifted (virtual)
beam is the origin.

We begin our analysis of the second term of equation (17) by rewriting it as the (optical or
probability) current vector J ≡ −

i
2(ϕ

∗
∇ϕ−ϕ∇ϕ∗),

−i Im(a) · (ϕ∗
∇ϕ−ϕ∇ϕ∗)= 2 Im(a) · J . (18)

Its contribution to the x-component of the spatial shift is therefore

Dextra
x ≡ 2

∫
d2r x Im(a) · J = −

∫
d2r x2∂x [Im(a) · J] , (19)

with the equality following from Green’s theorem. An equivalent expression holds for the shift
in the y-direction.
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In the 1D case [20], this is related through conservation of current and the Schrödinger
equation to the rate of change of the variance of the wavefunction as in equation (6). This is not
possible in two or higher dimensions since the integral does not involve the divergence of J ,
and the general situation appears rather more complicated.

However, in most optical fields of interest, any varying phase factor factorizes into an
azimuthal part (say with a vortex with quantum number `) and a radial part, i.e. for azimuthal
angle φ and radius r,

ϕ(r)=

√
I (r) exp(−i`φ + i f (r)), (20)

for intensity I (r)= |ϕ|
2, and f (r) some radius-dependent phase function. It should be noted

that, for optical reflection, the azimuthal index ` reverses sign on reflection [28, 29]. Our
convention here is that equation (20) refers to the virtual beam, so the azimuthal dependence of
the incident beam is exp(i`φ).

It is easy to see that, for the virtual beam (20) on returning to Cartesian coordinates,

J = I (r)

[
`

r 2
(y,−x)+

f ′(r)

r
(x, y)

]
. (21)

Using this form in the formula for the extra shift in equation (19) in x , and after integrating out
the azimuth φ, we have

Dextra
x = −

1

8
Im(a) ·

∫
∞

0
dr r

(
r I (r)[ f ′(r)+ 3r f ′′(r)] + 3r 2 f ′(r)I ′(r), `[2I (r)− 3r I ′(r)]

)
= Im(a) · (〈r f ′(r)〉,−`), (22)

where the second line follows from normalization and integration by parts, assuming f (r) is
reasonably well-behaved. An identical argument for y gives

Dextra
y = Im(a) · (`, 〈r f ′(r)〉), (23)

so the net total shift in two dimensions, analogous to (6) for a pointer with the assumed form, is

D = Re(a)+ (〈r f ′(r)〉 − i`σ 2) · Im(a), (24)

where σ 2 is the second Pauli matrix.
This is the form of the spatial shift for complex a and complex ϕ(r). The `-dependent parts

correspond the ‘vortex-induced shift’ [16, 19, 28, 30]: the `-fold twisting of the phasefronts
results in Im(ay), usually determining the angular shift in y, contributing to the real shift in x
weighted by ` and similarly (in a sense preserving the sense of circulation), ` Im(ax) contributes
to the shift in y. Apart from the azimuthal quantum number `, no other features of the incident
beam contribute to this part of the shift.

The other part, given by Im(a)〈r f ′(r)〉, directly generalizes the corresponding term
in (6). In optical beams, a radially-varying phase is interpreted as a curve to the phasefronts
(and at its focus the beam’s phasefronts are flat and f (r)= 0), due, for instance, to the Gouy
phase [31, 32]. This radial phase variation leads to a term proportional to the expectation value
of phasefront gradient 〈r f ′(r)〉 times the usual angular shift.

A simple example to consider is a Gaussian light beam (Gaussian wavepacket) of width
w propagating according to the paraxial equation, ϕ(r, z)= exp(−r 2/[w2(1 + iz/zR)])/(1 +
iz/zR), where zR = kw2/2, the Rayleigh distance. In this case, 〈r f ′(r)〉 = z/zR, implying
the radial part of the extra shift is small when the beam is focused close to the
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interface; this result is similar to the 1D [20] constant related to the rate of expansion
of the transverse waveform. To our knowledge, this additional ‘defocusing-induced shift’
has not been experimentally measured, but is present as an additional feature of a more
complicated amplitude pattern, corresponding to a more complicated quantum mechanical
pointer wavefunction [21, 33]. In particular, it is different to a focal shift, that is a shift of
the focus along the propagation axis of the beam as discussed in [34].

5. Discussion

We have shown how the reflection of a narrow optical beam is a classical wave analogue to
a quantum weak measurement. Although the experiment could be done for an ensemble of
single photons, nothing in our analysis relies strictly on the quantum nature of the light: the
Hilbert space is completely classical, describing polarization and (transverse) position of the
optical beam, with entanglement of the degrees of freedom interpreted as a position-dependent
polarization pattern [35].

As such, this phenomenon adds to many well-known classical optical analogues of
quantum phenomena involving polarization and complex optical amplitudes. Although our
paper highlights the analogy between the weak values and optical beam shifts of polarization
components, the discussion applies to the whole beam without a polarizing analyser, which is
itself analogous to a usual expectation value. In particular, the effect of the weak measurement
on the imaginary part of an operator’s average value is independent of the kind of average (weak
or expectation); the shift to the momentum wavefunction and possibly extra spatial shift always
occurs for average values of non-Hermitian operators, realized here in partial reflection.

The main effect of reflection, of course, is to change a beam’s propagation direction and
polarization, giving what we call the virtual beam. It is the virtual beam which is analogous to
the quantum prepared system, whose position and polarization weakly interact, causing it to be
shifted in both position and direction. Rather than coming from a small coupling constant, the
weakness comes from paraxiality, that is narrowness of the beam about its mean propagation
direction in Fourier space. In this case, as we have seen, the main change to a beam on reflection
is the small shift in position and possibly direction; for nonparaxial beams (such as the dipole
radiation field considered in [36]), the shifts are present, but the reflected field is much more
complicated.

The effects described here are only to first order, as are most phenomena studied in
the physics of weak measurement. Second-order effects become important for superweak
values, whenever the analyser is almost orthogonal to the polarization of the virtual beam. The
magnitude of the spatial and angular shifts corresponding to superweak values is explored in
an optical setting elsewhere [37]. With the exception of the extra shift coming from the pointer
wavefunction’s varying phase, all of the shifts are independent of the spatial distribution of the
amplitude of the beam (assuming its modulus is radially symmetric). This simplifies previous
descriptions of the angular shift in optics, as the shift has a universal form when measured in
units of the angular spread 〈δ2

〉. Higher-order effects involve changes to the shape of the beam,
and these will reveal more subtle structures associated with the entanglement between position
and polarization.

It should be stressed that the shift of a beam on reflection does not require polarization, only
an incidence angle-dependent reflection coefficient r(θ0). This might be achieved with acoustic
waves at an absorbing wall (similar to the partial reflection case), or Robin boundary conditions
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(similar to total reflection) [38]. From the discussion above, it is clear that even in this case there
is a complex scalar shift a = (i/k)(r ′/r), whose real and imaginary parts contribute in the ways
described above: the real part gives rise to a longitudinal spatial shift, the imaginary part to a
longitudinal angular shift, and possibly to an additional longitudinal spatial shift (if the wave
has a radius-dependent phase) and a transverse shift (if there is an azimuthal phase). Most of the
transverse shifts described above are absent as they require spin (polarization) interacting with
azimuthal (orbital) terms.

The fact that weak values generalize so simply to classical wave physics cements their
significance as physical quantities. Furthermore, the generality of the beam shift framework as
we have outlined suggests generalization to other kinds of waves, not only acoustic waves as
suggested above, but also elastic waves and shifts to matter waves [39, 40]. This suggests that
further analysis of such simple physical phenomena as the reflection of a beam at a dielectric
might reveal new insights into quantum physics.
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