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BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial

depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on

the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction,

and are associated with increased risk of heart failure and death.

OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass.

METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of

European ancestry, followed by extensive biological and functional assessment.

RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS

phenotypes at p < 1� 10�8. These loci are enriched in regions of open chromatin, histone modifications, and transcription

factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart.

Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted

67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac

abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in

the SCN5A/SCN10A locus in vitro and in vivo.

CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling

myocardial mass and may help identify novel therapeutic targets. (J Am Coll Cardiol 2016;68:1435–48)

© 2016 by the American College of Cardiology Foundation.
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diseases, such as cardiac hypertrophy, heart
failure, and various cardiomyopathies; in
addition, they can predict cardiovascularmor-
tality (3–6).
SEE PAGE 1449
Identification of specific genes influencing
the QRS complex may thus enhance our un-
derstanding of the human heart and ulti-
mately lead to the prevention of
cardiovascular disease and death. To further
our understanding of the genetic factors
influencing the QRS complex, we carried out a
large-scale genome-wide association study
(GWAS) and replication study of 4 related and
clinically used QRS traits: the Sokolow-Lyon, Cornell,
and 12-lead-voltage duration products (12-leadsum),
and QRS duration. We identified 52 loci that were
subsequently interrogated using bioinformatics and
experimental approaches to gain more insights into
the biologicalmechanisms regulating cardiacmass and
QRS parameters.

METHODS

Additional details about the methods of our study can
be found in the Online Appendix.
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Our study design is summarized in Online Figure 1.
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into the Hsp68-LacZ reporter vector. DNAwas injected
into the pronucleus of a fertilized Friend virus B-type
strain egg, and approximately 200 injections/
construct were performed. Embryos were harvested
and stained with X-gal to detect LacZ activity.

H10 cells, grown in 12-well plates in Dulbecco’s
Modified Eagle’s medium supplemented with 10%
fetal calf serum and glutamine, were transfected us-
ing polyethylenimine 25 kDa (PEI) at a 1:3 ratio
(DNA:PEI). Transfections were carried out at least 3
times and measured in triplicate. Luciferase mea-
surements were performed using a Modulus Multi-
mode Reader luminometer (Promega Corporation,
Madison, Wisconsin).

IDENTIFICATION OF CANDIDATE GENES. We
considered genes to be causal candidates on the basis
of: 1) the nearest gene and any other gene located
within 10 kb of the sentinel SNP; 2) genes containing
coding variants in linkage disequilibrium (LD) with
the ST-T wave SNPs at r2 > 0.8; 3) GRAIL (Gene
Relationships Across Implicated Loci) analyses using
the 2006 dataset to avoid confounding by subsequent
GWAS discovery; and 4) genes with an expression
quantitative trait locus (eQTL) analysis in cis using 4
independent sets of cardiac left ventricle and blood
tissues. Ingenuity Pathway Analysis Knowledge Base
March 2015 (Ingenuity Systems, Redwood City, Cali-
fornia) was used to explore molecular pathways
between proteins encoded by the 67 candidate genes
from the 52 genome-wide significant loci.

We queried a D. melanogaster dataset containing a
genome-wide phenotypic screen of cardiac-specific
ribonucleic acid interference (RNAi) silencing of
evolutionarily conserved genes under conditions of
stress. We also queried the international database
resource for the laboratory mouse (MGI [Mouse
Genome Informatics]) and manually curated
mammalian phenotype (MP) identifiers related to
cardiac phenotypes. To illustrate that prioritized
genes may play a critical role in heart development,
we tested CG4743/SLC25A26, Fhos/FHOD3, Cka/
STRN, NACa/NACA, EcR/NR1H, and Hand/HAND1 by
performing heart-specific RNAi knockdown with the
cardiac Hand4.2-Gal4 driver line.

We collected 43,278 raw Human Genome U133 Plus
2.0 Arrays (Affymetrix, Santa Clara, California) from
the Gene Expression Omnibus (GEO) containing hu-
man gene expression data. A robust multichip
average was used for normalization, and we subse-
quently conducted stringent quality control and
processing of the data, which resulted in a tissue-
expression matrix. After quality control, 37,427 sam-
ples remained, and we assigned 54,675 different
probe sets to 19,997 different Ensembl genes used for
human tissue expression profiling. To explore gene-
expression of our candidate genes during cardiac
differentiation, we performed ribonucleic acid
sequencing using E14 Tg (Nkx2-5-EmGFP) mouse
embryonic stem cells that were cultured in feeder-
free conditions and subsequently differentiated.

STATISTICAL ANALYSIS. Our choice of the statistical
threshold (p < 1� 10�8) for the GWAS was grounded on
the guidelines derived from studies of the ENCODE
(Encyclopedia of DNA Elements) regions which sug-
gests that p < 5 � 10�8 is the appropriate threshold for
genome-wide significance in Europeans, but was also
designed to provide us with additional adjustment for
the multiple phenotypes tested. This threshold is
conservative, considering that our 4 QRS phenotypes
are also inter-related: correlation coefficients between
the phenotype pairs range from r ¼ 0.22 to 0.80.
Additional details on our statistical analysis can be
found in the Online Appendix.

RESULTS

Characteristics of studies, participants, genotyping
arrays, and imputation are summarized in Online
Tables 1 and 2. Together, our studies comprised
60,255 individuals of European ancestry ascertained
in North America and Europe, with maximum sample
sizes as follows: Sokolow-Lyon (n ¼ 54,993), Cornell
(n ¼ 58,862), 12-leadsum (n ¼ 48,632), and QRS
duration (n ¼ 60,255). Across the genome, 52 inde-
pendent loci, 32 of which are novel, reached genome-
wide significance for association with 1 or more QRS
phenotypes (Figure 1, Online Figure 2, Online Table 3,
Online Appendix). At each locus, we defined a single
“sentinel” SNP with the lowest p value against any of
the 4 phenotypes; regional association plots for the 52
loci are shown in Online Figure 3. Among the 52 loci,
32 were associated with only 1 QRS phenotype, and 20
with at least 2 phenotypes (Online Figure 4). The total
number of locus-phenotype associations at p < 10�8

was 79 (72 SNPs), of which 59 are novel (Online
Table 3). Full lists of the sentinel SNPs and the SNPs
associated with any phenotype at p < 10�6 are pro-
vided in Online Tables 4 and 5. All previously known
QRS duration loci showed evidence for association
(p < 10�6) (Online Table 6). Among the 32 novel loci, 8
demonstrated genome-wide significant association
with Sokolow-Lyon, 9 with Cornell, 20 with
12-leadsum, and 9 with QRS duration (Online Table 5).
Collectively, the total variance explained by the 52
sentinel SNPs for the QRS traits was between 2.7%
(Sokolow-Lyon) and 5.0% (QRS duration) (Online
Table 7). At some loci, we found evidence for
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FIGURE 1 Genome-Wide Associations and Candidate Genes

This overlay Manhattan plot shows the results for the genome-wide associations with QRS traits among Europeans. Single nucleotide polymorphisms (SNPs) reaching

genome-wide significance (p < 1 � 10�8) are colored red (novel loci) or blue (previously reported loci). Candidate genes have been identified by 1 or multiple strategies:

n ¼ nearest; c ¼ coding nonsynonymous variant; g ¼ GRAIL (Gene Relationships Across Implicated Loci) tool; e ¼ expression quantitative trait loci (eQTL); and d ¼
DEPICT (Data-Driven Expression-Prioritized Integration for Complex Traits) tool. The presence of associated eQTL, coding SNPs, deoxyribonuclease (DNAse) hyper-

sensitivity sites, chromatin states, or transcription factor binding sites are indicated for lead SNPs (light blue) or those in high (r2 > 0.8) linkage disequilibrium

(dark blue). 12LS ¼ 12-lead sum product; Cor ¼ Cornell voltage product; Dur ¼ QRS duration; MAF ¼ minor allele frequency; Sok ¼ Sokolow-Lyon product.
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multiple independent associations with QRS pheno-
types at p < 10�8 in conditional analyses (7) (Online
Table 8, Online Appendix). Among the 52 loci iden-
tified, 8 have been associated previously with PR
(reflecting atrial and atrioventricular node function),
5 with QT duration (ventricular repolarization), and 2
with heart rate (sinus node function) (Online Table 6),
indicating genetic overlap among the 4 cardiac mea-
sures studied. We further demonstrated that there
was directional consistency of the association of
common variants identified in this study with QRS
phenotypes in other ethnic groups (Online Figure 1,
Online Table 9, Online Appendix).

FUNCTIONAL ANNOTATION OF THE QRS ASSOCIATIONS.

To better capture common sequence variants at the
52 loci, we queried the 1000 Genomes Project dataset
(8), and identified 41 nonsynonymous SNPs in 17
genes that are in high LD (r2 > 0.8) with 12 of the
sentinel SNPs (Online Table 10), representing an
initial set of candidate variants that may have a
functional effect on the QRS phenotypes through
changes in protein structure and function.

To assess the potential role of gene expression
regulation, we tested the 52 loci for enrichment of
DHS (9). In an analysis across 349 diverse cell lines,
cultured primary cells, and fetal tissues (10) mapped
by the ENCODE project (11) and the National Institute
of Health Roadmap Epigenomics Program (12), the
majority (42 of 52) of sentinel SNPs were located in
DHS. In human fetal heart tissue, we found that less
than one-half (22 of 52) overlapped DHS, which still
represents a w3.5-fold enrichment compared with the
null expectation (p ¼ 7.7 � 10�12) (Figure 2A). Further,
the enrichment of genome-wide significant SNPs
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FIGURE 2 Functional Annotations
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(A) The 52 sentinel SNPs are significantly enriched in deoxyribonuclease hypersensitivity sites (DHS) of the human fetal heart compared with the matched random

distribution of HapMap SNPs. (B) The effect of physical distance between SNPs that meet genome-wide significance (p < 1 � 10�8) on enrichment of fetal heart relative

to all other tissues at DHS. The enrichment is strongest at the SNP’s location and decreases after 100 base pairs from the SNP sites. (C) SNPs associated with QRS traits

are enriched for the activating histone modifications H3K27ac, H3K4me3, H3K4me1, and H3K36me3 in the human left ventricle, which increased at more stringent

genome-wide association study (GWAS) p value thresholds. The repressive mark H3K27me3 is not enriched, whereas H3K9me3 is significantly reduced, suggesting that

QRS-trait loci are predominantly expressed in the left ventricle. (D) To capture greater complexity, we performed an integrative analysis in an 18-state “expanded”

ChromHMM model representative of different functional regions of the genome. The 52 loci for the 18-state model were enriched using the 6 core histone marks (left);

the total number of the 52 loci overlapped by each feature is shown (right). (E) SNPs (p < 1 � 10�8) were also significantly enriched for various factors in the human

heart, mouse heart, and the HL-1 cell line. CI ¼ confidence interval; TSS ¼ transcription start site; other abbreviations as in Figure 1.
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(p < 10�8) in DHS was strongest within the first 100
base pairs around the sentinel variants (Figure 2B).
Additionally, there was a strong enrichment for his-
tone marks and chromatin states (13) associated with
active enhancers, promoters, and transcription in the
human heart; by contrast, no enrichment was
observed for transcriptionally repressive histone
marks or states (Figures 2C and 2D, Online Figure 5).
Strikingly, we observed increasing enrichment of
activating histone marks at the identified QRS loci
during the process of differentiating mouse embry-
onic stem cells into cardiomyocytes (Online Figure 6).
Altogether, these findings are consistent with earlier
observations of selective enrichment of trait-
associated variants within DHS of specific cells of
tissue types (10), and they point to a regulatory role of
the QRS-associated loci during cardiac development.

We next surveyed our genome-wide significant
SNPs in DHS for perturbation of transcription factor
(TF) recognition sequences, because these sites can
point directly to binding events (Online Appendix). Of
the 22 sentinel SNPs in human fetal heart DHS, 11 are
predicted to alter TF recognition sequences (Online
Table 11). When considering all genome-wide signifi-
cant SNPs (p < 10�8) as well as those in high LD
(r2 > 0.8), 402 SNPs in the colocalizing DHS perturb
transcription recognition sequences, including those
of important cardiac and muscle developmental regu-
lators like TBX, GATA-4, and MEF2. When we inter-
sected the GWAS results with ChIP-seq data from
mouse and human cardiac tissue (14–16), we found
enrichment in enhancers marked by p300, sites bound
by RNA polymerase II, and the transcription factors
NKX2-5, GATA-4, TBX3, TBX5, and SRF (Figure 2E). A
total of 9 of our 52 loci contained not only fetal heart
DHS but also ChIP-seq-validated TF binding sites. SNPs
overlapping TF binding sites were 5.65-fold enriched
within DHS (p ¼ 9.0� 10�10) but not outside of the DHS
(p¼0.20). The associations of the 52 sentinel SNPswith
all tested functional elements are summarized in
Figure 1. We validated several candidate regulatory
regions identified earlier as heart enhancers in vivo.
Activity of 4 exemplar novel human cardiac enhancers
in embryonic transgenic mice stained for LacZ
enhancer reporter activity are shown in Figure 3A.
Recently, rs6801957 (Figure 1) in the SCN5A/SCN10A
locus was reported to influence the activity of a regu-
latory element affecting SCN5A expression (16,17).
Conditional analysis (Online Table 8) revealed that
rs6781009 (at 180 kb from the sentinel) is an additional
novel independent signal at this locus. Our follow-up
in silico and experimental results (Figure 3) indicate
the presence of in vivo heart enhancers in genome
regions associated with QRS traits.
IDENTIFICATION OF CANDIDATE GENES. Across the
52 loci, 974 annotated genes are located within 1
megabase of all sentinel SNPs. Among these genes,
we prioritized potential candidates using an estab-
lished complementary strategy (18,19) by choosing: 1)
genes nearest to the sentinel SNP and any other genes
within 10 kb (56 genes) (Figure 1); 2) genes containing
a nonsynonymous SNP in high LD (r2 > 0.8) with the
sentinel SNP (11 genes) (Online Table 10); 3) protein-
coding genes with cis-eQTL associated with sentinel
SNP (14 genes) (Online Table 12); and 4) GRAIL anal-
ysis of the published data (20) (16 genes) (Online
Table 13) with “cardiac,” “muscle,” and “heart” as
the top 3 keywords describing the observed func-
tional connections. In total, this strategy identified 67
candidate genes at the 52 loci (Figure 1). Pathway
analysis confirmed that the list of 67 candidate genes
is strongly enriched for genes known to be involved
in cardiovascular and muscular system development
and function (p ¼ 1 � 10�56) (Online Tables 14 and 15).
We have summarized the available functional anno-
tations for all 67 candidates in Online Table 16,
including established links from the Online Mende-
lian Inheritance in Man between candidate genes and
familial cardiomyopathies (TNNT2, TTN, PLN, and
MYBPC3) and cardiac arrhythmias (CASQ2). We also
identified genes that are associated with atrial septal
defects (TBX20) and more complex syndromes
involving cardiac abnormalities such as the Schinzel-
Giedion midface retraction syndrome (SETBP1) (21)
and the ulnar-mammary syndrome (TBX3) (22).

INSIGHTS FROM GENE EXPRESSION PROFILING AND

MODEL ORGANISMS. We explored gene expression
profiles of our candidate genes in data derived from
37,427 U133 Plus 2.0 arrays (Affymetrix) across 40
annotated tissues. We could reliably assign a probe
for 63 of our 67 candidate genes. On average,
expression levels for these transcripts were higher in
cardiac-derived samples compared with other tran-
scripts in the same sample (p ¼ 9.8 � 10�6 for heart
tissue; Wilcoxon test) (Online Figure 7) and also when
compared to the same transcripts in other tissues
(p ¼ 0.005 after Bonferroni correction) (Online
Figure 8). To further investigate the potential role of
these candidate genes in cardiac development, we
assessed temporal gene expression patterns during
in vitro differentiation of mouse embryonic stem cells
via mesoderm and cardiac precursor cells to car-
diomyocytes. A total of 7% of genes are mainly
expressed during the embryonic stem cell stage, 22%
during the mesoderm stage, 7% in the cardiac pre-
cursor stage, and 64% in the cardiomyocyte stage.
Compared with other genes, the candidate genes
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FIGURE 3 Functional Follow-Up of rs6781009 in the SCN5A Locus
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(A) In vivo activity of 4 exemplar human cardiac enhancers in embryonic transgenic mice stained for LacZ enhancer reporter activity (dark blue) are shown. (For additional

examples of previously described enhancers near lead SNPs, see Online Figure 13.) (B)Position of the regulatory element containing rs6781009on the SCN5A-SCN10A locus.

GWAS signals are plotted on a�log(p) scale indark blue. The regulatory element is boundbyTBX3, TBX5, andP300 (lower black traces) inmice, and the contact profile of the

SCN5A promoter obtained by 4C-seq human cardiac ventricular tissue revealed an interaction between this regulatory element and the SCN5A promoter (upper black trace

and contact profile). Normalized contact intensities (gray dots) and their running median trends (black line) are depicted for the SCN5A promoter viewpoint. Medians are

computed for 4-kb windows, and the gray band displays the 20% to 80% percentiles for these windows. Below the profile, statistical enrichment across differently scaled

window sizes (from 2 kb [top row] to 50 kb [bottom rom]) is depicted of the observed number of sequenced ligation products over the expected total coverage of captured

products, with the latter being estimated on the basis of a probabilistic background model. Local changes in color codes indicate regions that are statistically enriched for

captured sequences. The lowest box shows the linkage disequilibrium pattern for the HapMap CEU population. (C) Luciferase assay performed in H10 cells showing a high

constitutive activity for the enhancer core element (0.6 kb) containing themajor allele for rs6781009,which is reduced for theminor allele in both a large enhancer construct

(1.5 kb), aswell as in the core enhancer element (0.6 kb). *p<0.01. (D)Dorsal views of hearts containing the human regulatory elementwith themajor versusminor allele for

rs6781009 in a LacZ reporter vector, showing specific expression of the enhancer in the interventricular septum (ivs) for themajor allele, which is absent for theminor allele.

*p < 0.05. la ¼ left atrium; lv ¼ left ventricle; ra ¼ right atrium; rv ¼ right ventricle; other abbreviations as in Figure 1.
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were more highly expressed in cardiomyocytes
(p ¼ 5.4 � 10�8; Wilcoxon test) (Online Figure 9).
These results suggest that our candidate gene set was
enriched for genes that were differentially expressed
in cardiac tissue and increasingly expressed during
cardiac development.

Next, we analyzed data from model organisms to
explore the function of the selected candidate genes.
From cardiac tissue-specific RNAi knockdown data
collected in D. melanogaster, we found that the 67
candidate genes were 2.3-fold enriched for stress-
induced cardiac death (9 genes; p ¼ 1.84 � 10�2)
(Online Figure 10). To illustrate that prioritized genes
may play a critical role in heart development, we
tested 4 (CG4743/SLC25A26, Fhos/FHOD3, Cka/STRN,
and NACa/NACA) of these 9 genes with unknown
cardiac function by performing heart-specific RNAi
knockdown with the cardiac Hand4.2-Gal4 driver
line. We also retested EcR/NR1H, which has multiple
homologous genes in mammals, as well as Hand/
HAND1, as this gene was only tested as a full-
knockout in early development but not in the adult
D. melanogaster heart using cardiac-specific knock-
down. Adult hearts of Cka/STRN, NACa/NACA, and
EcR/NR1H RNAi showed severe cardiac defects
(Figure 4). Knockdown of Hand/HAND1 and Cka/STRN
both had a reduced cardiac heart rate. We also
expanded on gene-by-gene analysis and identified 6
further genes causing cardiac abnormalities (Online
Appendix, Online Table 17). From the Mouse
Genome Informatics database, knockout models were
annotated for 45 orthologues of the 67 candidate
genes, of which 18 (40%) revealed a cardiac pheno-
type (Online Table 16). This represents a 5.2-fold
enrichment compared with randomly matched sets
of 67 genes (p ¼ 3.4 � 10�14) (Online Figure 10). Given
the evolutionary conservation, the observed heart
phenotypes in these model organisms suggest
potentially important roles for the significant GWAS
loci in electrical and contractile properties of the
human heart.

Interestingly, the 11p11.2 locus harbors multiple
candidate genes (Figure 1), including MYBPC3, ACP2,
MADD, and NR1H3. MYBPC3 deficiency is well estab-
lished to cause hypertrophic and dilated cardiomy-
opathies in both human and mouse models and, thus,
represents a plausible candidate gene (Online
Table 16). In addition to MYBPC3, eQTL and histone
modification data also suggest a potential role for
NR1H3 (Online Figure 11), as decreased expression of
NR1H3 was associated with higher QRS voltages.
However, NR1H3-deficient mice do not spontane-
ously develop a cardiac hypertrophic phenotype
(MGI: 1352462). To study the potential cardiac effects
of NR1H3, we created a transgenic mouse with
cardiac-specific overexpression of NR1H3 under the
control of the Myh6 promoter and found a diminished
susceptibility to perturbations such as transverse
aortic constriction and angiotensin II infusion that
provoke cardiac hypertrophy (23). This observation is
in line with protective effects due to treatment with
T0901317, a synthetic NR1H3 agonist, in mice chal-
lenged with aortic constriction (24). These data
highlight the importance of systematic approaches to
identify causal genes beyond well-known candidates.

INSIGHTS FROM DEPICT. As a complementary
approach, we employed the newly developed
computational tool DEPICT (Data-Driven Expression-
Prioritized Integration for Complex Traits) (25) to
analyze functional connections among associated loci
(Online Appendix). Enrichment of expression in 209
particular tissues and cell types identified heart and
heart ventricles as the most relevant tissue for our
association findings (Figure 5A, Online Table 18) and
identified 404 significantly (false discovery rate <5%)
enriched gene sets (Online Table 19). Comparing the
names of these sets with those of the remaining
14,057 gene sets showed an over-representation of
the common key words “abnormal,” “muscle,”
“heart,” “cardiac,” and “morphology” (Online
Table 20). We investigated similarities among gene
sets by clustering them on the basis of the correlation
between scores for all genes (Online Appendix). Many
of the resulting 43 meta-gene sets were correlated
and relevant to cardiac biology (Figure 5B). As an
example, we showed the correlation structure within
the second most significant meta-gene set “dilated
heart left ventricle” (Online Figure 12). When priori-
tizing genes on the basis of functional similarities
among genes from different associated regions,
DEPICT identified 35 genes (false discovery rate <5%)
at 27 of the 52 loci (Figure 1, Online Table 21).

DISCUSSION

In this study, we performed a meta-analysis of GWAS
in 73,518 individuals for 4 quantitative QRS pheno-
types and identified 52 independent genetic loci
influencing these traits with 79 locus-phenotype
associations; the majority of these discoveries are
novel. Our loci were colocalized with open chromatin,
histone modification, and TF binding sites, specif-
ically in cardiac tissue, and contain in vivo functional
enhancers. We also provided direct evidence that
rs6781009, located in a cardiac enhancer, interacts
with the promoter of SCN5A to modify expression
levels. On the basis of multiple criteria, we defined a
core set of 67 candidate genes that we believe are
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FIGURE 4 Heart-Specific RNAi Knockdown in Drosophila

Cardiac defects upon heart-specific ribonucleic acid interference (RNAi) knockdown are seen in Drosophila. (A) Wild-type dorsal heart tube

stained with the F-actin stain phalloidin. The magnified region (right) is highlighted. Arrowheads point to ostia (inflow tracks), and the arrow

shows the circumferential orientation of myofibrils. (B) Cka/Striatin RNAi induces myofibrillar disarrangement. Myofibrils are oriented in a

disorganized, mainly anterior-posterior orientation with gaps in between (arrow). (C) Knockdown of NACa/NACA causes severe cardiac tissue

disintegration. Adult cardiomyocyte tissue may be completely absent (asterisk), whereas some heart-associated longitudinal muscles are still

present (arrowheads). At larval stages, the heart is much less affected, suggesting a maturation or remodeling defect. (D) Knockdown of EcR/

NR1H blocks cardiac remodeling and causes myofibrillar disarray (arrow). Ventral longitudinal muscles are also abnormal (arrowhead).
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likely to influence cardiac mass and function. We
have provided several exemplar experiments to
further support this hypothesis.

We identified a number of loci containing genes
that are directly or indirectly key to the function of
cardiomyocytes and cardiac function (Central
Illustration). TTN, MYBPC3, TNNT2, SYNPO2L, and
MYH7B are essential components of the cardiac
sarcomere; PLN, CTNNA3, PRKCA, CASQ2, and STRN
are also examples of genes essential for cardiac
myocyte function; whereas several key cardiac tran-
scription factors are prominently involved in cardiac
muscle and tissue development, such as MEF2D,
HAND1, TBX20, TBX3, and NACA. The abundance of



FIGURE 5 Functional Connections of Gene Expression Networks

0 1 2 3 4 5
–log10 P Value

Ph
ys

io
lo

gi
ca

l S
ys

te
m

Card
iova

scu
lar

Digest
ive

Endocri
ne

Hem
ic a

nd Im
mune

Integ
umen

tar
y

Muscu
loske

let
al

Nerv
ous

Resp
ira

tory

Stomato
gnath

ic

Urogen
ita

l

Heart
Heart ventricles

Heart Atria
Atrial Appendage

Arteries
Blood Vessels
Veins

Umbilical Veins
Portal System
Aortic Valve
Heart Valves

LEGEND
Gene set P values Gene set overlap (Pearson’s r)

P < 10 -2 r > 0.3
r > 0.6
r > 0.8

P < 10 -3

P < 10 -4

P < 10 -5

Trabecula Morphogenesis
Heart Process

SORBS3 protein complex

Cardiac Muscle Tissue Growth

Ventricular Cardiac Muscle Tissue
Development TNNC1 protein complex Acid Phosphatase Activity

Dilated Heart Left Ventricle SGCD protein complex

Z Disc
Prolonged Qrs Complex Duration

Intercalated Disc
PRKAB2 protein complex

Cardiac Chamber Development
Myofibril Assembly

Muscle Cell Apoptotic ProcessRegulation Of Striated Muscle
Tissue Development

Muscle Structure Development

TNNT2 protein complex Actomyosin Regulation Of Generation Of
Precursor Metabolites And Energy

Abnormal Heart Development PPP1R12A protein complex

HAND2 protein complex

Abnormal Blood Vessel Morphology
Adherens Junction

RNA Polymerase II Regulatory
Region Sequence-Specific DNA

Binding
Transcription Regulatory Region

DNA Binding
Abnormal Placenta Labyrinth

Morphology
MYO1G protein complexMAPK14 protein complex

Complete Embryonic Lethality
During Organogenesis

Protein Binding Transcription Factor
Acitivity YWHAB protein complex

Protein Binding, Bridging

CGN protein complex

PCGF1 protein complex

Lysine N-Methyltransferase Activity

DENND4A protein complex

Kinase Binding

E2F4 protein complex
Maintenance Of Protein Location

A B
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physiological systems. (B) In a graphic display of DEPICT gene set enrichment analysis, meta-gene sets are represented by nodes colored according to statistical

significance, and similarities between them are indicated by edges scaled according to their correlation (only correlations with r > 0.3 are shown).
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candidate genes known to be involved in cardiac
muscle function strengthens the hypothesis that the
easily obtainable QRS-voltage phenotypes of the ECG
are effective in capturing unknown loci that harbor
genes likely to play an important role in left ventric-
ular mass, but these are currently not well under-
stood. The colocalization of our genetic loci with
regulatory DNA elements (e.g., enhancers, promoters,
and transcription factor binding sites) that are active
in cardiac tissues further supports the relevance of
the genes within these loci. The current work was not
designed to provide an explanation for association of
each loci and each individual gene.

Clearly, future translational efforts should be
undertaken to resolve the causal genes and exact
molecular machinery resulting in the phenotype and
should consider mapping the effect of genetic vari-
ants on these functional elements at each of the
identified loci. Nevertheless, we have provided some
exemplar preliminary elements to offer early insights
into strategies that can be undertaken to follow-up
our findings. For example, we performed a series of
experiments to demonstrate in vivo effects of
rs6781009 on expression. Dedicated experiments
might also elucidate loci containing effects on mul-
tiple plausible genes. In 1 of our loci, we identified a
very strong candidate gene (MYBPC3) that is well
known to be involved in hypertrophic cardiomyopa-
thies. However, using additional layers of informa-
tion derived from gene expression and histone
modifications, we also considered NR1H3 and were
able to link overexpression of this gene to cardiac
protection of hypertrophy. These examples fuel our
expectation that the presented shortlist of SNP asso-
ciations and the identified candidate genes provided
in this work are valuable resources that will help to
prioritize and guide future translational studies to
further our knowledge on the (patho)physiology of
cardiac hypertrophy.

STUDY LIMITATIONS. As in all current GWAS, we have
only studied a finite number (w2.8 million) of markers
on the genome. Additional fine-mapping studiesmight
be required to narrow the signal of association even
further and to identify the potential causal variants
with higher accuracy. Also, additional exome-focused
arrays or whole-genome sequencing might lead to a
stronger signal within a locus or to multiple additional



CENTRAL ILLUSTRATION Gene-Related Cardiac Conditions

van der Harst, P. et al. J Am Coll Cardiol. 2016;68(13):1435–48.

In this study, a number of gene-containing loci were identified that influence a variety of abnormalities in the dysfunctional heart, myocardium, and cardiac myocytes.

Analyzing the QRS genome-wide association study results using the DEPICT (Data-Driven Expression-Prioritized Integration for Complex Traits) tool identified 43 meta-

gene sets (Figure 5B); 1 of these is the “dilated heart left ventricle,” of which the effects of the individual gene sets are visualized in the illustration. The correlation

substructure and the p values of this gene set are also displayed in Online Figure 12.
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independent signals within a locus. To understand
genetic mechanisms and to identify candidate genes,
we have studied eQTLs. Although we studied the
largest set of human cardiac eQTLs available to date,
the absolute number of studied samples is relatively
small compared to eQTL data available in easily
accessible peripheral blood. Finally, our ECG indexes
are generally considered to be markers of cardiac
hypertrophy; they also might reflect electrical remod-
eling of the action potential and not mass per se.
Nevertheless, the variables studied here harbor
important prognostic information, independently
from cardiac mass parameters as assessed by echo-
cardiography (26). This further underscores the rele-
vance of the trait studied and the importance of
understanding its genetic determinants.

CONCLUSIONS

In this study, we identified 52 genomic loci, of which
32 are novel and associated with electrically active
cardiac mass. We prioritized 67 candidate genes and
showed their relevance in cardiac biology using bio-
informatic approaches, and we performed in vitro and
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

Numerous genetic loci have been identified that are

associated with electrocardiographic markers of ven-

tricular hypertrophy.

TRANSLATIONAL OUTLOOK: A better under-

standing of the genetic pathways underlying

increased myocardial mass could be used to target

therapeutic interventions that improve clinical out-

comes for patients with hypertension, heart failure,

and various forms of congenital heart disease.
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in vivo experiments, going beyond the classical GWAS
approach. To facilitate and accelerate future studies
aimed at a better understanding of cardiac hypertro-
phy, heart failure, and related diseases, we made our
results of genome-wide associations publicly
available.
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