Synthesis of 5-Amino-2,5-dihydro-1H-benzo[b]azepines Using a OnePot Multibond Forming Process

Salaheddin A. I. Sharif, Ewen D. D. Calder, Fábio G. Delolo, and Andrew Sutherland*
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom

S Supporting Information

Abstract

Rapid access to allylic trichloroacetimidates bearing a 2 -allylaminoaryl group from readily available 2 iodoanilines combined with a one-pot multibond forming process has allowed the efficient synthesis of a series of 5-amino-2,5-dihydro- 1 H -benzo[b]azepines. The potential of these compounds as synthetic building blocks was demonstrated by the preparation of a late-stage intermediate of the hyponatremia agent, mozavaptan.

INTRODUCTION

$1 H$-Benzo[b]azepines are an important class of sevenmembered heterocyclic compound found as a key structural element in a wide variety of pharmaceutically active substances. ${ }^{1,2}$ Within this class, 5-amino-2,3,4,5-tetrahydro1 H -benzo[b] azepines are of particular significance and include compounds such as mozavaptan (1), a nonpeptide vasopressin V2-receptor antagonist used for the treatment of hyponatremia (low blood sodium levels), ${ }^{3}$ and 3,5-bis(trifluoromethyl)benzyl protected 2,3,4,5-tetrahydro-1H-benzo[b]azepine 2, developed for the treatment of dyslipidemia (Figure 1). ${ }^{4}$ The interest in 5-

Mozavaptan (1)

2

Figure 1. Structures of pharmacologically active 5-amino-2,3,4,5-tetrahydro- $1 H$-benzo [b]azepines.
amino-2,3,4,5-tetrahydro- 1 H -benzo [b] azepines has led recently to a detailed analysis of their conformational bias and a greater understanding of their physicochemical properties. ${ }^{5}$

Due to the pharmacological importance of 5-amino-2,3,4,5-tetrahydro- 1 H -benzo $[b]$ azepines, a number of methods have been developed for their synthesis. ${ }^{2,3 c, 6}$ Traditionally, a Dieckmann condensation has been used to prepare $1 H$ -benzo[b]azepin-5-ones, followed by introduction of the amino substituent by reductive amination of the ketone (Scheme 1a). ${ }^{2 c}$ More recently, the azepine ring system in these compounds has been prepared using methods such as the Beckmann rearrangement, ${ }^{66}$ the Mitsunobu reaction, ${ }^{6 a}$ reductive ring opening of aza-bridged azepines, ${ }^{6 e}$ and ring closing metathesis (RCM) (Scheme 1b). ${ }^{6 d, 7}$ With the aim of

Scheme 1. Synthetic Approaches for the Preparation of 5-Amino-Substituted $1 H$-Benzo[b] azepines
a) Dieckmann Condensation and Reductive Amination Approach - Ref 2c

b) Stepwise Vinylation of an Imine and RCM Approach - Ref 7b

c) One-Pot Synthesis - This Work

developing new methods for the preparation of highly functional polycyclic compounds, we have demonstrated that benzannulated alkene derived allylic alcohols could be used in one-pot multireaction processes for the efficient synthesis of amino-substituted indenes, dihydronaphthalenes, and 1-benzoxepines. ${ }^{8}$ We now report a short and general synthesis of allylic trichloroacetimidates bearing a 2 -allylaminoaryl group from readily available 2 -iodoanilines and demonstrate the application of these compounds in a one-pot multibond forming process for the efficient synthesis of 5 -amino-2,5-dihydro-1H-benzo[b]azepines (Scheme 1c).

[^0]
RESULTS AND DISCUSSION

The substrates for the one-pot process, (E)-(2-allylamino)cinnamyl alcohols, were prepared using a four-step route from commercially available 2-iodoanilines (Scheme 2). Mizoroki-

Scheme 2. Synthesis of Allylic Alcohols 6a-f ${ }^{a}$

${ }^{a}$ Isolated yields are shown.
Heck reaction of 2-iodoanilines 3a-f with methyl acrylate and palladium(II) acetate ($5 \mathrm{~mol} \%$) under standard conditions gave the corresponding methyl $(E)-2^{\prime}$-aminocinnamates $4 \mathbf{a}-\mathbf{f}$ in excellent yields $(76-100 \%)$). ${ }^{9,10}$ The amines were protected with the tosylate group, and this allowed monoallylation using allyl bromide and potassium carbonate. ${ }^{11}$ Finally, reduction of the (E)- α, β-unsaturated methyl esters $5 \mathbf{5}-\mathbf{f}$ with DIBAL-H gave (E)-(2-allylamino) cinnamyl alcohols $\mathbf{6 a}-\mathbf{f}$ in high overall yields.

While this synthetic route allowed access to a range of (E) -(2-allylamino) cinnamyl alcohols, the preparation of a 4^{\prime}-nitro analogue was not possible. Attempted Mizoroki-Heck coupling of 2-iodo-4-nitroaniline with methyl acrylate instead gave the conjugate addition product. An alternative approach was developed for this compound (Scheme 3). 2-Chloro-5-

Scheme 3. Synthesis of Allylic Alcohol $\mathbf{6 g}^{a}$

${ }^{a}$ Isolated yields are shown.
nitrobenzaldehyde (7) was subjected to a nucleophilic aromatic substitution reaction with p-toluenesulfonamide, which gave 8 in 86% yield. ${ }^{12}$ Horner-Wadsworth-Emmons reaction of 8 under Masamune-Roush conditions with triethyl phosphonoacetate (TEPA) gave the ethyl (E)-2'-aminocinnamate in quantitative yield. ${ }^{13}$ Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture showed exclusive formation of the E alkene. Allylation of the amino group was then performed under the same conditions as before. However, due to decreased nucleophilicity of this compound, the product was isolated in a modest 55% yield. DIBAL-H reduction of the ethyl
ester then completed the four-step synthesis of nitrosubstituted cinnamyl alcohol 6 g .

Having prepared a small library of (E)-(2-allylamino)cinnamyl alcohols, $\mathbf{6 a}$ was used for optimization of the onepot process (Table 1). Based on previous work, ${ }^{8,14}$ the

Table 1. Optimization of the One-Pot Process ${ }^{a}$

$\left.\begin{array}{cccc}\text { entry } & \begin{array}{c}\text { Overman } \\ \text { rearrangement }\end{array} & \text { RCM reaction } & \begin{array}{c}\text { yield } \\ (\%)^{a}\end{array} \\ \hline 1 & 140^{\circ} \mathrm{C}, 48 \mathrm{~h} & \text { Grubbs II (10 mol \%), } 50{ }^{\circ} \mathrm{C}, & 69 \\ 2 & 160^{\circ} \mathrm{C}, 24 \mathrm{~h} & \text { Grubbs II }(10 \mathrm{hol} \%), 50^{\circ} \mathrm{C}, & 70 \\ 48 \mathrm{~h}\end{array}\right)$
${ }^{a}$ Isolated yields are shown.
thermally mediated Overman rearrangement was performed at $140{ }^{\circ} \mathrm{C}$ and the RCM step was done using Grubbs' second generation catalyst ($10 \mathrm{~mol} \%$) (entry 1). ${ }^{15}$ While this gave a yield of 69% over the three steps, both the rearrangement and metathesis stages required reaction times of 48 h . Increasing the temperature of the Overman rearrangement to $160^{\circ} \mathrm{C}$ allowed a shorter reaction time (24 h) with a similar overall yield (entry $2)$. The catalyst loading and temperature of the RCM step was then investigated. It was found that a catalyst loading of 5 mol $\%$ and a temperature of $60^{\circ} \mathrm{C}$ was optimal for the RCM step, with the reaction complete after 18 h (entry 4). Using the optimized conditions for both key steps gave 5 -amino-2,5-dihydro- $1 H$-benzo[b]azepine 10a in 81% yield from $\mathbf{6 a}$.

Using the optimized one-pot procedure, the scope of the process with various (E)-(2-allylamino)cinnamyl alcohol substrates was explored (Scheme 4). Overall, the process was found to be general and high yielding (79-92\%) for the preparation of 5 -amino-2,5-dihydro- 1 H -benzo[b]azepines bearing a range of substituents. Only in the case of the strongly electron-deficient 4 'nitrophenyl analogue $\mathbf{6 g}$ did the conditions require significant modification. For this compound, both key steps entailed longer reaction times and this likely accounts for the lower overall yield of 49%.

The synthetic potential of these products was demonstrated with the three-step conversion of 10a to 5 -amino-2,3,4,5-tetrahydro- 1 H -benzo $[b]$ azepine 12, a late-stage intermediate for the preparation of mozavaptan and its analogues (Scheme 5). ${ }^{3}$ A one-pot procedure was used to remove the trichloroacyl group and reprotect the amine as the Boc-derivative. Hydrogenation at atmospheric pressure, followed by detosylation with magnesium under mild conditions, gave 5 -amino-2,3,4,5-

Scheme 4. Synthesis of 5-Amino-2,5-Dihydro-1Hbenzo[b]azepines $10 b-g^{a}$

${ }^{a}$ Isolated yields are shown. ${ }^{b}$ The RCM step required a reaction time of $24 \mathrm{~h} .{ }^{c}$ The Overman rearrangement and RCM step required reaction times of 43 and 31 h , respectively.

Scheme 5. Formal Synthesis of Mozavaptan (1) ${ }^{a}$

10a

11

1. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$	$2 . \mathrm{Mg}, \mathrm{MeOH}$
$\mathrm{EtOAc}, 60^{\circ} \mathrm{C}$	$\Delta, 4 \mathrm{~h}, 88 \%$

17 h , over two steps
Ref. 3c

${ }^{a}$ Isolated yields are shown.
tetrahydro- 1 H -benzo[b]azepine 12 in 88% yield. Overall, the highly efficient four-step route to allylic alcohol 6a, combined with the one-pot multibond forming strategy has allowed the synthesis of 5-amino-2,3,4,5-tetrahydro- 1 H -benzo[b] azepine 12 in 46% overall yield from commercially available 2 -iodoaniline (3a). Mozavaptan is easily prepared from 12 by benzoylation of the $1 H$-benzo $[b]$ azepine ring nitrogen, removal of the Bocprotecting group, and reductive amination of the resulting amine with formaldehyde. ${ }^{3 \mathrm{c}}$

CONCLUSIONS

In summary, a four-step synthesis of (E)-(2-allylamino)cinnamyl alcohols has been developed from readily available 2-iodoanilines using a highly efficient Mizoroki-Heck coupling. Following transformation to the corresponding allylic trichloroacetimidates, these compounds were converted to a series of 5-amino-2,5-dihydro- 1 H -benzo[b]azepines using a one-pot multibond forming process. As demonstrated with the straightfor-
ward synthesis of 5 -amino-2,3,4,5-tetrahydro-1H-benzo[b]azepine 12, a late-stage intermediate for the synthesis of mozavaptan, these compounds have potential for synthetic and medicinal chemistry applications. Work is currently underway to investigate further synthetic applications of 5 -amino-2,5-dihydro- 1 H -benzo $[b]$ azepines and extend the use of one-pot multibond forming reaction processes.

EXPERIMENTAL SECTION

All reagents and starting materials were obtained from commercial sources and used as received. All dry solvents were purified using a solvent purification system. All reactions were performed under an atmosphere of argon unless otherwise mentioned. Brine refers to a saturated solution of sodium chloride. Flash column chromatography was performed using silica gel $60(35-70 \mu \mathrm{~m})$. Aluminum-backed plates precoated with silica gel $60 \mathrm{~F}_{254}$ were used for thin layer chromatography and were visualized with a UV lamp or by staining with potassium permanganate. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on an NMR spectrometer at either 400 or 500 MHz , and data are reported as follows: chemical shift in ppm relative to tetramethylsilane or the solvent $\left(\mathrm{CDCl}_{3}, \delta 7.26 \mathrm{ppm}\right)$ as the internal standard, multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}=$ multiplet or overlap of nonequivalent resonances, integration). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an NMR spectrometer at either 101 or 126 MHz , and data are reported as follows: chemical shift in ppm relative to tetramethylsilane or the solvent $\left(\mathrm{CDCl}_{3}, \delta 77.0 \mathrm{ppm}\right)$ as the internal standard, multiplicity with respect to hydrogen (deduced from DEPT experiments, $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}$, or CH_{3}). Infrared spectra were recorded on an FTIR spectrometer; wavenumbers are indicated in cm^{-1}. Mass spectra were recorded using the electrospray technique. HRMS spectra were recorded using a dual-focusing magnetic analyzer mass spectrometer. Melting points are uncorrected.

Methyl (2E)-3-(2'-Aminophenyl)prop-2-enoate (4a). ${ }^{10}$ Methyl acrylate ($1.53 \mathrm{~mL}, 18.3 \mathrm{mmol}$) was added to a solution of 2 iodoaniline ($3 \mathbf{a}$) $(2.00 \mathrm{~g}, 9.13 \mathrm{mmol})$, palladium acetate $(0.110 \mathrm{~g}$, $0.460 \mathrm{mmol})$, triphenylphosphine ($0.239 \mathrm{~g}, 0.913 \mathrm{mmol}$), potassium carbonate $(1.26 \mathrm{~g}, 9.13 \mathrm{mmol})$, and tetrabutylammonium bromide ($0.741 \mathrm{~g}, 2.30 \mathrm{mmol}$) in N, N^{\prime}-dimethylformamide (90 mL). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature, diluted with water $(50 \mathrm{~mL})$, and extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$. The organic layer was washed with 5% aqueous lithium chloride solution $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (diethyl ether/petroleum ether, $1: 4$) to give methyl (2E)-3-(2'-aminophenyl)prop-2-enoate (4a) (1.59 g, 99%) as a yellow solid. Mp $64-66^{\circ} \mathrm{C} ; R_{f}=0.33$ (diethyl ether/ petroleum ether $=1: 1)$. Spectroscopic data were consistent with the literature. ${ }^{10}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.98$ (br s, $2 \mathrm{H}), 6.36(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (ddd, $J=8.0,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (ddd, $J=7.9,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.7\left(\mathrm{CH}_{3}\right), 116.7(\mathrm{CH}), 117.7(\mathrm{CH}), 119.0$ $(\mathrm{CH}), 119.9(\mathrm{C}), 128.1(\mathrm{CH}), 131.3(\mathrm{CH}), 140.3(\mathrm{CH}), 145.6(\mathrm{C})$, 167.7 (C); MS (ESI) $m / z 200\left(\mathrm{MNa}^{+}, 4\right), 168$ (26), 146 (100), 128 (31).

Methyl (2E)-3-(2'-Amino-5'-methylphenyl)prop-2-enoate (4b). ${ }^{16}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-aminophenyl)prop-2-enoate (4a) using 4-methyl-2-iodoaniline ($3 \mathbf{b}$) $(2.00 \mathrm{~g}, 8.58 \mathrm{mmol})$. Purification by column chromatography (diethyl ether/petroleum ether, 1:3) gave methyl (2E)-3-(2'-amino-5'-methylphenyl)prop-2-enoate ($\mathbf{4 b}$) (1.64 $\mathrm{g}, 100 \%$) as a yellow solid. Mp $84-86^{\circ} \mathrm{C} ; R_{f}=0.28$ (diethyl ether/ petroleum ether $=1: 1$). Spectroscopic data were consistent with the literature. ${ }^{16}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.4\left(\mathrm{CH}_{3}\right), 51.6$ $\left(\mathrm{CH}_{3}\right), 117.0(\mathrm{CH}), 117.4(\mathrm{CH}), 119.9(\mathrm{C}), 128.2(\mathrm{C}), 128.2(\mathrm{CH})$,
132.3 (CH), 140.4 (CH), 143.3 (C), 167.8 (C); MS (ESI) $m / z 214$ ($\mathrm{MNa}^{+}, 100$), 192 (11), 182 (23).

Methyl (2E)-3-(2'-Amino-5'-methoxyphenyl)prop-2-enoate (4c). ${ }^{17}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-aminophenyl)prop-2-enoate (4a) using 4-methoxy-2-iodoaniline (3c) ($0.170 \mathrm{~g}, 0.680 \mathrm{mmol}$) and potassium carbonate ($0.188 \mathrm{~g}, 1.36 \mathrm{mmol}$). Purification by column chromatography (diethyl ether/petroleum ether, 1:3) gave methyl (2E)-3-(2'-amino-5'-methoxyphenyl)prop-2-enoate (4c) (0.141 g, 100\%) as a yellow solid. Mp $93-95^{\circ} \mathrm{C} ; R_{f}=0.20$ (diethyl ether/petroleum ether $=1: 1)$. Spectroscopic data were consistent with the literature. ${ }^{17}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.71$ (br s, 2H), 3.76 ($\mathrm{s}, 3 \mathrm{H}$), 3.81 (s , $3 \mathrm{H}), 6.35(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=$ $8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.7\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{3}\right), 111.6(\mathrm{CH})$, $117.9(\mathrm{CH}), 118.4(\mathrm{CH}), 118.7(\mathrm{CH}), 120.8(\mathrm{C}), 139.6(\mathrm{C}), 140.2$ (CH), 152.8 (C), 167.6 (C); MS (ESI) $m / z 208\left(\mathrm{MH}^{+}, 100\right)$.

Methyl (2E)-3-(2'-Amino-5'-fluorophenyl)prop-2-enoate (4d). ${ }^{10}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2^{\prime}-aminophenyl)prop-2-enoate (4a) using 4-fluoro-2-iodoaniline (3 d) $(3.77 \mathrm{~g}, 16.0 \mathrm{mmol})$ and potassium carbonate (4.40 g, 32.0 mmol). Purification by column chromatography (ethyl acetate/ petroleum ether, 1:3) gave methyl (2E)-3-(2^{\prime}-amino- 5^{\prime}-fluorophenyl)-prop-2-enoate (4d) $(2.50 \mathrm{~g}, 81 \%)$ as a yellow solid. Mp $96-98^{\circ} \mathrm{C}$ (lit. ${ }^{10} 93-95^{\circ} \mathrm{C}$); $R_{f}=0.28$ (diethyl ether/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65\left(\mathrm{dd}, J=8.7,{ }^{4} J_{H F}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90(\mathrm{td}, J=8.7$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08\left(\mathrm{dd},{ }^{3} J_{H F}=9.5, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76(\mathrm{dd}, J=15.8$, $\left.{ }^{5} J_{H F}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.8\left(\mathrm{CH}_{3}\right), 113.4$ $\left(\mathrm{d},{ }^{2} J_{C F}=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 118.0\left(\mathrm{~d},{ }^{3} J_{C F}=7.7 \mathrm{~Hz}, \mathrm{CH}\right), 118.3\left(\mathrm{~d},{ }^{2} J_{C F}=\right.$ $23.0 \mathrm{~Hz}, \mathrm{CH}), 118.8(\mathrm{CH}), 120.8\left(\mathrm{~d},{ }^{3} J_{C F}=7.2 \mathrm{~Hz}, \mathrm{C}\right), 139.1\left(\mathrm{~d},{ }^{4} J_{C F}\right.$ $=2.2 \mathrm{~Hz}, \mathrm{CH}), 141.8(\mathrm{C}), 156.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=237.0 \mathrm{~Hz}, \mathrm{C}\right), 167.3(\mathrm{C})$; MS (ESI) $m / z 218\left(\mathrm{MNa}^{+}, 100\right), 169$ (25), 186 (13), 164 (20).

Methyl (2E)-3-(2'-Amino-4'-fluorophenyl)prop-2-enoate (4e). ${ }^{17}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-aminophenyl)prop-2-enoate (4a) using 5-fluoro-2-iodoaniline ($\mathbf{3 e}$) $(0.926 \mathrm{~g}, 3.90 \mathrm{mmol})$ and potassium carbonate $(1.08 \mathrm{~g}, 7.80 \mathrm{mmol})$. Purification by column chromatography (ethyl acetate/petroleum ether, 1:3) gave methyl (2E)-3-(2'-amino-4'-fluorophenyl)prop-2-enoate (4e) ($0.639 \mathrm{~g}, 84 \%$) as a yellow solid. Mp 107-109 ${ }^{\circ} \mathrm{C} ; R_{f}=0.25$ (diethyl ether/petroleum ether $=1: 1$). Spectroscopic data were consistent with the literature. ${ }^{17}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HF}}=10.5, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.47(\mathrm{td}, J=8.7,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34\left(\mathrm{dd}, J=8.7,{ }^{4} J_{H F}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.7\left(\mathrm{CH}_{3}\right), 102.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ $24.8 \mathrm{~Hz}, \mathrm{CH}), 106.3\left(\mathrm{~d},{ }^{2} J_{C F}=22.2 \mathrm{~Hz}, \mathrm{CH}\right), 116.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.4 \mathrm{~Hz}\right.$, C), $117.2(\mathrm{CH}), 130.0\left(\mathrm{~d},{ }^{3} J_{C F}=10.6 \mathrm{~Hz}, \mathrm{CH}\right), 139.3(\mathrm{CH}), 147.4(\mathrm{~d}$, $\left.{ }^{3} J_{C F}=11.5 \mathrm{~Hz}, \mathrm{C}\right), 164.9\left(\mathrm{~d},{ }^{1} J_{C F}=248.9 \mathrm{~Hz}, \mathrm{C}\right), 167.6$ (C); MS (ESI) $m / z 218\left(\mathrm{MNa}^{+}, 100\right), 186$ (59), 164 (6).

Methyl (2E)-3-(2'-Amino-5'-chlorophenyl)prop-2-enoate (4f). ${ }^{10}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-aminophenyl)prop-2-enoate (4a) using 4-chloro-2iodoaniline (3 f) $(0.975 \mathrm{~g}, 3.90 \mathrm{mmol})$ and potassium carbonate $(1.08$ $\mathrm{g}, 7.80 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h . Purification by column chromatography (ethyl acetate/petroleum ether $=1: 3$) gave methyl $(2 E)$-3-(2^{\prime}-amino- 5^{\prime}-chlorophenyl)prop-2enoate ($4 \mathbf{f}$) $(0.622 \mathrm{~g}, 76 \%)$ as a yellow solid. Mp $92-94{ }^{\circ} \mathrm{C} ; R_{f}=0.18$ (diethyl ether/petroleum ether $=1: 1$). Spectroscopic data were consistent with the literature. ${ }^{10}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.81$ $(\mathrm{s}, 3 \mathrm{H}), 3.97(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.8\left(\mathrm{CH}_{3}\right), 117.9$ $(\mathrm{CH}), 119.0(\mathrm{CH}), 121.1(\mathrm{C}), 123.7(\mathrm{C}), 127.3(\mathrm{CH}), 131.0(\mathrm{CH})$, 138.9 (CH), 144.0 (C), 167.3 (C); MS (ESI) $m / z 234\left(\mathrm{MNa}^{+}, 64\right)$, 202 (46), 186 (100).

Methyl (2E)-3-(2'-[N-(p-Toluenesulfonyl)amino]phenyl)-prop-2-enoate. ${ }^{18}$ p-Toluenesulfonyl chloride ($2.50 \mathrm{~g}, 13.0 \mathrm{mmol}$) was added to a solution of methyl (2E)-3-(2'-aminophenyl)prop-2enoate (4a) ($1.53 \mathrm{~g}, 8.70 \mathrm{mmol}$) in pyridine $(43 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The
reaction mixture was allowed to warm to room temperature and stirred for 1 h . The reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$, washed with lithium chloride solution $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Flash column chromatography (diethyl ether/petroleum ether, 1:1) afforded methyl (2E)-3-(2'-[N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate (2.66 g, 93\%) as a white solid. Mp $156-158{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{18} 160-162{ }^{\circ} \mathrm{C}\right) ; R_{f}=0.13$ (diethyl ether/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.35$ (s, $3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.11(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.62(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5$ $\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 120.1(\mathrm{CH}), 127.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.3(2 \times$ $\mathrm{CH}), 127.6(\mathrm{CH}), 129.6(2 \times \mathrm{CH}), 130.6(\mathrm{C}), 130.9(\mathrm{CH}), 134.8$ (C), 135.9 (C), 139.3 (CH), 143.9 (C), 167.0 (C); MS (ESI) $m / z 354$ ($\mathrm{MNa}^{+}, 100$), 233 (8).

Methyl (2E)-3-(5'-Methyl-2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate. ${ }^{19}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate using methyl (2E)-3-(2^{\prime}-amino- 5^{\prime}-methyl-phenyl)prop-2-enoate ($4 \mathbf{b}$) ($1.50 \mathrm{~g}, 7.84 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 4$) gave methyl (2E)-3-(5'-methyl-2'-[N-(p-toluenesulfonyl)amino]phenyl)-prop-2-enoate ($2.68 \mathrm{~g}, 99 \%$) as a white solid. Mp $164-166{ }^{\circ} \mathrm{C}$ (lit. ${ }^{19} 160-162{ }^{\circ} \mathrm{C}$); $R_{f}=0.20$ (diethyl ether/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.32$ ($\mathrm{s}, 3 \mathrm{H}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}$), 3.77 (s , $3 \mathrm{H}), 6.10(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 3 \mathrm{H})$, 7.23-7.26 (m, 2H), 7.50-7.57 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.0\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 119.7(\mathrm{CH}), 127.3(2$ $\times \mathrm{CH}), 127.4(\mathrm{CH}), 128.0(\mathrm{CH}), 129.6(2 \times \mathrm{CH}), 130.7(\mathrm{C}), 131.8$ (CH), 132.1 (C), 135.9 (C), 137.4 (C), 139.4 (CH), 143.8 (C), 167.0 (C); MS (ESI) $m / z 368\left(\mathrm{MNa}^{+}, 100\right)$.

Methyl (2E)-3-(5'-Methoxy-2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate. The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate using methyl (2E)-3-(2^{\prime}-amino- 5^{\prime}-methoxy-phenyl)prop-2-enoate (4 c) ($0.014 \mathrm{~g}, 0.070 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 4$) gave methyl (2E)-3-(5'-methoxy-2'-[N-(p-toluenesulfonyl)amino]phenyl)-prop-2-enoate ($0.023 \mathrm{~g}, 93 \%$) as a white solid. $\mathrm{Mp} 162-164{ }^{\circ} \mathrm{C}$; $R_{f}=$ 0.23 (petroleum ether/ethyl acetate $=2: 1$); IR (neat) 3256, 3023, 1701, 1637, 1495, 1214, 1325, 1161, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.09(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{CH}_{3}\right), 111.4(\mathrm{CH}), 116.7$ $(\mathrm{CH}), 120.1(\mathrm{CH}), 127.3(\mathrm{C}), 127.4(2 \times \mathrm{CH}), 129.6(2 \times \mathrm{CH})$, 130.6 (CH), 133.1 (C), 135.8 (C), 139.2 (CH), 143.9 (C), 158.9 (C), 166.7 (C); MS (ESI) $m / z 384\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{5} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 384.0876; found, 384.0864.

Methyl (2E)-3-(5'-Fluoro-2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate. ${ }^{19}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate using methyl (2E)-3-(2'-amino-5'-fluoro-phenyl)prop-2-enoate $(4 \mathrm{~d})(2.50 \mathrm{~g}, 13.0 \mathrm{mmol})$. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 5$) gave methyl (2E)-3-(5'-fluoro-2'-[N-(p-toluenesulfonyl)amino]phenyl)-prop-2-enoate ($3.94 \mathrm{~g}, 88 \%$) as a white solid. Mp $156-158{ }^{\circ} \mathrm{C}$ (lit. ${ }^{19} 156-158{ }^{\circ} \mathrm{C}$); $R_{f}=0.13$ (diethyl ether/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.07(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.06\left(\mathrm{ddd}, J=8.8,{ }^{3} \mathrm{~J}_{\mathrm{HF}}=7.7, J=2.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.14\left(\mathrm{dd},{ }^{3} J_{H F}=9.2, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35\left(\mathrm{dd}, J=8.8,{ }^{4} J_{H F}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50\left(\mathrm{dd}, J=15.8,{ }^{5} J_{H F}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5$ $\left(\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}_{3}\right), 113.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=23.5 \mathrm{~Hz}, \mathrm{CH}\right), 117.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ $22.7 \mathrm{~Hz}, \mathrm{CH}), 121.2(\mathrm{CH}), 127.3(2 \times \mathrm{CH}), 129.7(2 \times \mathrm{CH}), 130.6$ $\left(\mathrm{d},{ }^{4} J_{C F}=2.9 \mathrm{~Hz}, \mathrm{C}\right), 130.7\left(\mathrm{~d},{ }^{3} J_{C F}=8.8 \mathrm{~Hz}, \mathrm{CH}\right), 133.4\left(\mathrm{~d},{ }^{3} J_{C F}=8.4\right.$
$\mathrm{Hz}, \mathrm{C}), 135.6$ (C), 138.2 ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.2 \mathrm{~Hz}, \mathrm{CH}$), 144.2 (C), 161.5 (d, $\left.{ }^{1} J_{C F}=248.4 \mathrm{~Hz}, \mathrm{C}\right), 166.5(\mathrm{C})$; MS (ESI) $\mathrm{m} / \mathrm{z} 372\left(\mathrm{MNa}^{+}, 100\right)$.

Methyl (2E)-3-(4'-Fluoro-2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate. ${ }^{17}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate using methyl (2E)-3-(2^{\prime}-amino- 4^{\prime}-fluoro-phenyl)prop-2-enoate ($4 \mathbf{e}$) ($0.620 \mathrm{~g}, 3.20 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 5$) gave methyl (2E)-3-(4'-fluoro-2'-[N-(p-toluenesulfonyl)amino]phenyl)-prop-2-enoate ($1.08 \mathrm{~g}, 97 \%$) as a yellow solid. Mp $157-159{ }^{\circ} \mathrm{C}$; R_{f} $=0.13$ (diethyl ether/petroleum ether $=1: 1$). Spectroscopic data were consistent with the literature. ${ }^{17}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.38$ $(\mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.11(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=8.7,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.41\left(\mathrm{dd}, J=8.7,{ }^{4} \mathrm{~J}_{\mathrm{HF}}=\right.$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 112.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ $24.9 \mathrm{~Hz}, \mathrm{CH}), 114.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.8 \mathrm{~Hz}, \mathrm{CH}\right), 120.5(\mathrm{CH}), 125.1(\mathrm{~d}$, $\left.{ }^{4} J_{C F}=3.4 \mathrm{~Hz}, \mathrm{C}\right), 127.3(2 \times \mathrm{CH}), 128.9\left(\mathrm{~d},{ }^{3} J_{C F}=9.5 \mathrm{~Hz}, \mathrm{CH}\right), 129.9$ $(2 \times \mathrm{CH}), 135.7(\mathrm{C}), 136.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=10.8 \mathrm{~Hz}, \mathrm{C}\right), 137.8(\mathrm{CH}), 144.4$ (C), 163.8 (d, $\left.{ }^{1} J_{C F}=251.8 \mathrm{~Hz}, \mathrm{C}\right), 166.7$ (C); MS (ESI) $\mathrm{m} / z 372$ ($\mathrm{MNa}^{+}, 100$), 363 (37).

Methyl (2E)-3-(5'-Chloro-2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate. ${ }^{19}$ The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate using methyl (2E)-3-(2'-amino-5'-chlorophenyl)prop-2-enoate $(4 f)(0.406 \mathrm{~g}, 1.90 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 18 h . Purification by column chromatography (ethyl acetate/petroleum ether $=1: 5$) gave methyl (2E)-3-(5'-chloro-2'-[N-(p-toluenesulfonyl)amino]phenyl)-prop-2-enoate ($0.638 \mathrm{~g}, 91 \%$) as a yellow solid. Mp $152-154{ }^{\circ} \mathrm{C}$ (lit. ${ }^{19} 149-151^{\circ} \mathrm{C}$); $R_{f}=0.43$ (petroleum ether/ethyl acetate $=2: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.09(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=$ $8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.56(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 52.1$ $\left(\mathrm{CH}_{3}\right), 121.3(\mathrm{CH}), 126.9(\mathrm{CH}), 127.3(2 \times \mathrm{CH}), 129.1(\mathrm{CH}), 129.8$ $(2 \times \mathrm{CH}), 130.8(\mathrm{CH}), 132.2$ (C), 133.1 (C), 133.3 (C), 135.6 (C), 138.1 (CH), 144.2 (C), 166.7 (C); MS (ESI) $m / z 388\left(\mathrm{MNa}^{+}, 100\right)$.

Methyl (2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate (5a). Allyl bromide ($0.830 \mathrm{~mL}, 9.60$ $\mathrm{mmol})$ was added to a stirred solution of methyl $(2 E)-3-\left(2^{\prime}-[N-(p-\right.$ toluenesulfonyl)amino]phenyl)prop-2-enoate $(2.66 \mathrm{~g}, 8.00 \mathrm{mmol})$ and potassium carbonate $(2.21 \mathrm{~g}, 16.0 \mathrm{mmol})$ in N, N^{\prime}-dimethylformamide $(50 \mathrm{~mL})$. The reaction mixture was heated to $70{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to room temperature, diluted with 5% aqueous lithium chloride solution $(20 \mathrm{~mL})$, and extracted with diethyl ether (50 mL). The organic layer was washed with 5% aqueous lithium chloride solution $(3 \times 10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by column chromatography (diethyl ether/petroleum ether $=1: 1$) gave methyl (2E)-3-(2'-[N-allyl- N-(p-toluenesulfonyl)amino]phenyl)prop-2enoate (5a) ($2.98 \mathrm{~g}, 100 \%$) as a white solid. $\mathrm{Mp} 104-106{ }^{\circ} \mathrm{C} ; R_{f}=$ 0.38 (diethyl ether/petroleum ether $=1: 1$); IR (neat) 2951, 1716, 1636, 1436, 1319, 1164, $763 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.42(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.93-5.02$ $(\mathrm{m}, 2 \mathrm{H}), 5.74(\mathrm{ddt}, J=17.0,10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right)$, $119.7(\mathrm{CH}), 119.7\left(\mathrm{CH}_{2}\right), 127.1(\mathrm{CH}), 128.0(2 \times \mathrm{CH}), 128.8(\mathrm{CH})$, $129.6(2 \times \mathrm{CH}), 129.9(\mathrm{CH}), 130.3(\mathrm{CH}), 132.1(\mathrm{CH}), 135.6(\mathrm{C})$, 135.6 (C), 138.3 (C), 140.3 (CH), 143.8 (C), 166.9 (C); MS (ESI) $m / z 394\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}$ (MNa^{+}), 394.1083; found, 394.1067.

Methyl (2E)-3-(2'-[N-Allyl-N-(p-toluenesulfonyl)amino]-5'-methylphenyl)prop-2-enoate (5b). The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-3-(5'-methyl-2'-[N-(p-toluenesulfonyl)amino] phenyl)prop-2-enoate $(2.00 \mathrm{~g}, 5.79 \mathrm{mmol})$ and a reaction time of 3 h . Purification by column
chromatography (ethyl acetate/petroleum ether $=1: 5$) gave methyl (2E)-3-(2'-[N-allyl- N-(p-toluenesulfonyl)amino]-5'-methylphenyl)-prop-2-enoate ($5 \mathbf{b}$) $(2.03 \mathrm{~g}, 91 \%)$ as a white solid. $\mathrm{Mp} 118-120^{\circ} \mathrm{C}$; R_{f} $=0.25$ (diethyl ether/petroleum ether =1:1); IR (neat) 2950, 1717, 1639, 1435, 1347, 1160, $759 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.26(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.93-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.74$ (ddt, $J=17.0,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.1,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 119.4$ $(\mathrm{CH}), 119.6\left(\mathrm{CH}_{2}\right), 127.6(\mathrm{CH}), 128.0(2 \times \mathrm{CH}), 129.5(2 \times \mathrm{CH})$, 129.6 (CH), 131.3 (CH), 132.3 (CH), 135.2 (C), 135.7 (C), 135.7 (C), 138.7 (C), 140.5 (CH), 143.7 (C), 167.0 (C); MS (ESI) $m / z 408$ $\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 408.1240; found, 408.1220.

Methyl (2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-5'-methoxyphenyl)prop-2-enoate (5c). The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-3-(5^{\prime}-methoxy-2'-[N-(p-toluenesulfonyl)amino $]$ phenyl $)$ prop-2-enoate $(0.145 \mathrm{~g}, 0.400 \mathrm{mmol})$ and a reaction time of 2 h . Purification by column chromatography (ethyl acetate/petroleum ether $=1: 5$) gave methyl (2E)-3-(2'-[N-allyl- N-(p-toluenesulfonyl)amino]-5'-methoxy-phenyl)prop-2-enoate (5 c) ($0.149 \mathrm{~g}, 92 \%$) as a white solid. Mp $153-155{ }^{\circ} \mathrm{C} ; R_{f}=0.40$ (petroleum ether/ethyl acetate $=2: 1$); IR (neat) $3022,1709,1642,1495,1289,1215,1163,751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.96-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.93-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{ddt}, J=$ $16.9,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right)$, $51.7\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{2}\right)$, $55.5\left(\mathrm{CH}_{3}\right), 111.2(\mathrm{CH}), 116.4(\mathrm{CH}), 119.7\left(\mathrm{CH}_{2}\right), 119.8(\mathrm{CH})$, $128.0(2 \times \mathrm{CH}), 129.6(2 \times \mathrm{CH}), 131.0(\mathrm{CH}), 132.3(\mathrm{CH}), 135.7$ (C), 136.6 (C), $140.4(\mathrm{CH}), 143.7(2 \times \mathrm{C}), 159.3$ (C), 166.8 (C); MS (ESI) $m / z 424\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{5} \mathrm{~S}$ (MNa^{+}), 424.1189; found, 424.1176.

Methyl (2E)-3-(2'-[N-Allyl-N-(p-toluenesulfonyl)amino]-5'-fluorophenyl)prop-2-enoate (5d). The reaction was carried out as described for the synthesis of methyl (2E)-3-($2^{\prime}-[N-$ allyl $-N-(p$ toluenesulfonyl)amino] phenyl) prop-2-enoate (5a) using methyl ($2 E$)-3-(5'-fluoro-2'-[N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate ($3.74 \mathrm{~g}, 11.0 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 7)$ gave methyl $(2 E)-3-\left(2^{\prime}-[N\right.$-allyl $-N$ - $(p-$ toluenesulfonyl)amino]-5'-fluorophenyl)prop-2-enoate (5 d) (3.50 g , 84%) as a white solid. Mp $108-110{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (diethyl ether/ petroleum ether $=1: 1$); IR (neat) 2951, 1718, 1650, 1488, 1323, 1275, 1160, 862, $728 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40(\mathrm{~s}, 3 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.25$ (br s, 1 H$), 4.95$ (dd, $J=17.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=10.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddt}, J=17.0,10.1,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80\left(\mathrm{dd}, J=8.8,{ }^{4} J_{H F}=5.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.95$ (ddd, $\left.J=8.8,{ }^{3} J_{H F}=7.6, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28\left(\mathrm{dd},{ }^{3} J_{H F}=9.4, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76\left(\mathrm{dd}, J=16.1,{ }^{5} J_{H F}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $21.5\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{2}\right), 113.5\left(\mathrm{~d},{ }^{2} J_{C F}=23.4 \mathrm{~Hz}, \mathrm{CH}\right)$, $117.4\left(\mathrm{~d},{ }^{2} J_{C F}=23.0 \mathrm{~Hz}, \mathrm{CH}\right), 120.1\left(\mathrm{CH}_{2}\right), 120.9(\mathrm{CH}), 127.9(2 \times$ $\mathrm{CH}), 129.7(2 \times \mathrm{CH}), 131.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.9 \mathrm{~Hz}, \mathrm{CH}\right), 131.9(\mathrm{CH})$, $134.2\left(\mathrm{~d},{ }^{4} J_{C F}=3.1 \mathrm{~Hz}, \mathrm{C}\right), 135.3$ (C), $137.8\left(\mathrm{~d},{ }^{3} J_{C F}=8.5 \mathrm{~Hz}, \mathrm{C}\right)$, $139.2\left(\mathrm{~d},{ }^{4} J_{C F}=2.0 \mathrm{~Hz}, \mathrm{CH}\right), 144.0$ (C), $162.0\left(\mathrm{~d},{ }^{1} J_{C F}=249.4 \mathrm{~Hz}, \mathrm{C}\right)$, 166.5 (C); MS (ESI) $m / z 412\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNNaO}_{4} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 412.0989; found, 412.0969.

Methyl (2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-4'-fluorophenyl)prop-2-enoate (5e). The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-3-(4'-fluoro-2'-[N-(p-toluenesulfonyl)amino] phenyl)prop-2-enoate ($1.07 \mathrm{~g}, 3.00 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 7)$ gave methyl $(2 E)-3-\left(2^{\prime}-[N-\right.$ allyl $-N-(p$ -toluenesulfonyl)amino]-4'-fluorophenyl)prop-2-enoate (5e) (0.946 g,
79%) as a white solid. Mp $111-113{ }^{\circ} \mathrm{C} ; R_{f}=0.38$ (diethyl ether/ petroleum ether $=1: 1$); IR (neat) 2951, 1712, 1602, 1497, 1353, 1256, 1164, 908, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43(\mathrm{~s}, 3 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.95-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.72$ (ddt, $J=16.9,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (dd, $\left.{ }^{3} J_{H F}=9.2, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.06(\mathrm{td}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62\left(\mathrm{dd}, J=8.8,{ }^{4} J_{H F}=6.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6$ $\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 116.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.6 \mathrm{~Hz}, \mathrm{CH}\right), 117.0$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.9 \mathrm{~Hz}, \mathrm{CH}\right), 119.5(\mathrm{CH}), 120.2\left(\mathrm{CH}_{2}\right), 128.0(2 \times \mathrm{CH})$, $128.6\left(\mathrm{~d},{ }^{3} J_{C F}=9.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.7(2 \times \mathrm{CH}), 131.7(\mathrm{CH}), 132.1(\mathrm{~d}$, $\left.{ }^{4} J_{C F}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 135.1(\mathrm{C}), 139.3(\mathrm{CH}), 139.8\left(\mathrm{~d},{ }^{3} J_{C F}=9.2 \mathrm{~Hz}, \mathrm{C}\right)$, 144.2 (C), $163.1\left(\mathrm{~d},{ }^{1} J_{C F}=253.1 \mathrm{~Hz}, \mathrm{C}\right), 166.7$ (C); MS (ESI) m / z 412 ($\mathrm{MNa}^{+}, 100$); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNNaO}_{4} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 412.0989; found, 412.0970.

Methyl (2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-5'-chlorophenyl)prop-2-enoate (5f). The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-3-(5'-chloro-2'-[N-(p-toluenesulfonyl)amino] phenyl) prop-2-enoate ($0.600 \mathrm{~g}, 1.60 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 5)$ gave methyl $(2 E)-3-\left(2^{\prime}-[N\right.$-allyl $-N-(p-$ toluenesulfonyl) amino]-5'-chlorophenyl)prop-2-enoate (5f) (0.664 g, 100%) as a yellow solid. Mp $104-106{ }^{\circ} \mathrm{C} ; R_{f}=0.58$ (petroleum ether/ ethyl acetate $=2: 1$); IR (neat) 2951, 1720, 1610, 1353, 1164, 908, 730 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.99$ (br s, 1H), 4.26 (br s, 1H), 4.97 (dd, $J=17.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (dd, J $=10.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{ddt}, J=17.0,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6$ $\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 120.2\left(\mathrm{CH}_{2}\right), 121.0(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 128.0(2 \times \mathrm{CH}), 129.7(2 \times \mathrm{CH}), 130.3(\mathrm{CH}), 131.2(\mathrm{CH})$, 131.8 (CH), 134.7 (C), 135.3 (C), 136.7 (C), 137.4 (C), 139.0 (CH), 144.1 (C), 166.5 (C); MS (ESI) $m / z 428\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20}{ }^{35} \mathrm{ClNNaO} \mathrm{Cl}^{2}\left(\mathrm{MNa}^{+}\right)$, 428.0694; found, 428.0673 .
(2E)-3-(2'-[N-Allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-en-1-ol (6a). Diisobutylaluminum hydride ($4.1 \mathrm{~mL}, 4.1 \mathrm{mmol}, 1 \mathrm{M}$ in hexane) was added dropwise with stirring to a solution of methyl (2E)-3-(2'-[N-allyl- N-(p-toluenesulfonyl)amino]phenyl)prop-2enoate ($\mathbf{5 a}$) $(0.690 \mathrm{~g}, 1.86 \mathrm{mmol})$ in dichloromethane $(19 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h and then allowed to warm to room temperature over 16 h . The reaction was quenched with 10% aqueous potassium sodium tartrate solution (5 mL), extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$, washed with water $(20 \mathrm{~mL})$, brine (20 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 2$) gave (2E)-3-(2'-[N-allyl- N-(p-toluenesulfonyl)amino]phenyl)prop-2-en-1-ol (6a) $(0.611 \mathrm{~g}, 96 \%)$ as a colorless oil. $R_{f}=0.13$ (diethyl ether/petroleum ether $=1: 1$); IR (neat) 3491, 2924, 1597, 1341, 1161, $726 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.18-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.93-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.72$ (ddt, $J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J=16.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 54.8\left(\mathrm{CH}_{2}\right), 63.8\left(\mathrm{CH}_{2}\right), 119.4\left(\mathrm{CH}_{2}\right)$, $126.5(\mathrm{CH}), 126.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.6(\mathrm{CH})$, $129.4(\mathrm{CH}), 129.5(2 \times \mathrm{CH}), 130.8(\mathrm{CH}), 132.4(\mathrm{CH}), 136.1(\mathrm{C})$, 136.6 (C), 137.8 (C), 143.6 (C); MS (ESI) $m / z 366\left(\mathrm{MNa}^{+}, 100\right)$; HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right), 366.1134$; found, 366.1119.
(2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-5'-methyl-phenyl)prop-2-en-1-ol (6b). The reaction was carried out as described for the synthesis of (2E)-3-(2'-[N-allyl-N-(p-toluene-sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2'[N-allyl- N-(p-toluenesulfonyl)amino]-5'-methylphenyl)prop-2-enoate ($5 \mathbf{b}$) ($1.50 \mathrm{~g}, 3.89 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 2$) gave $(2 E)-3-\left(2^{\prime}-[N-a l l y l-N-(p-\right.$ toluenesulfonyl)amino]-5'-methylphenyl)prop-2-en-1-ol (6b) (1.37 g, 98%) as a colorless oil. $R_{f}=0.10$ (diethyl ether/petroleum ether $=$

1:1); IR (neat) 3510, 2921, 1598, 1491, 1340, 1159, 859, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.42$ (s, $3 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.19-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.93-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.72$ (ddt, $J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=16.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.1,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{3}\right), 21.5$ $\left(\mathrm{CH}_{3}\right), 54.8\left(\mathrm{CH}_{2}\right), 63.8\left(\mathrm{CH}_{2}\right), 119.2\left(\mathrm{CH}_{2}\right), 126.7(\mathrm{CH}), 127.0$ $(\mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.7(\mathrm{CH}), 129.1(\mathrm{CH}), 129.5(2 \times \mathrm{CH})$, 130.5 (CH), 132.5 (CH), 134.1 (C), 136.2 (C), 137.3 (C), 138.4 (C), 143.5 (C); MS (ESI) $m / z 380\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 380.1291 ; found, 380.1279 .
(2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]- 5^{\prime}-methoxy-phenyl)prop-2-en-1-ol (6c). The reaction was carried out as described for the synthesis of (2E)-3-($2^{\prime}-[N$-allyl- N-(p-toluenesulfonyl)amino] phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2'[N-allyl- N-(p-toluenesulfonyl)amino]-5'-methoxyphenyl)prop-2enoate (5 c) $(0.140 \mathrm{~g}, 0.350 \mathrm{mmol})$. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 2$) gave $(2 E)-3-$ (2^{\prime}-[N-allyl- N-(p-toluenesulfonyl)amino]-5'-methoxyphenyl)prop-2-en-1-ol (6c) $(0.104 \mathrm{~g}, 80 \%)$ as a colorless oil. $R_{f}=0.18$ (petroleum ether/ethyl acetate $=2: 1$); IR (neat) 3523, 2944, 1601, 1495, 1345, 1161, $752 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.91-3.98(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.28(\mathrm{~m}$, $3 \mathrm{H}), 4.93-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.72$ (ddt, $J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ $(\mathrm{dt}, J=16.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.8$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dt}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 63.7\left(\mathrm{CH}_{2}\right)$, $110.7(\mathrm{CH}), 113.9(\mathrm{CH}), 119.3\left(\mathrm{CH}_{2}\right), 126.6(\mathrm{CH}), 127.9(2 \times \mathrm{CH})$, $129.4(\mathrm{C}), 129.7(2 \times \mathrm{CH}), 130.4(\mathrm{CH}), 130.9(\mathrm{CH}), 132.5(\mathrm{CH})$, 136.2 (C), 138.8 (C), 143.5 (C), 159.2 (C); MS (ESI) m/z 396 $\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 396.1240; found, 396.1223.
(2E)-3-(2'-[N-Allyl-N-(p-toluenesulfonyl)amino]-5'-fluorophenyl)prop-2-en-1-ol (6d). The reaction was carried out as described for the synthesis of (2E)-3-($2^{\prime}-[N$-allyl $-N$ - $(p$-toluene-sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2'[N-allyl- N-(p-toluenesulfonyl)amino]-5'-fluorophenyl)prop-2-enoate $(\mathbf{5 d})(3.30 \mathrm{~g}, 8.50 \mathrm{mmol})$. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 3$) gave $(2 E)-3-\left(2^{\prime}-[N\right.$-allyl $-N$ - $(p$ -toluenesulfonyl)amino]-5'-fluorophenyl)prop-2-en-1-ol (6d) (2.99 g, 98\%) as a colorless oil. $R_{f}=0.10$ (diethyl ether/petroleum ether $=$ 1:1); IR (neat) $3507,2920,1600,1488,1345,1161,752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.35(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.95$ (dd, $J=13.4,6.8,1 \mathrm{H}), 4.17-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.91-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.70$ (ddt, $J=16.9,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=16.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ $\left(\mathrm{dd}, J=8.8,{ }^{4} J_{H F}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.73-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.24\left(\mathrm{dd},{ }^{3} J_{H F}=\right.$ $10.0, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 63.4$ $\left(\mathrm{CH}_{2}\right), 112.8\left(\mathrm{~d},{ }^{2} J_{C F}=23.3 \mathrm{~Hz}, \mathrm{CH}\right), 114.7\left(\mathrm{~d},{ }^{2} J_{C F}=23.1 \mathrm{~Hz}, \mathrm{CH}\right)$, $119.7\left(\mathrm{CH}_{2}\right), 125.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=1.7 \mathrm{~Hz}, \mathrm{CH}\right), 127.9(2 \times \mathrm{CH}), 129.6(2$ $\times \mathrm{CH}), 131.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=9.1 \mathrm{~Hz}, \mathrm{CH}\right), 132.1(\mathrm{CH}), 132.3(\mathrm{CH}), 132.4$ $\left(\mathrm{d},{ }^{4} J_{C F}=2.8 \mathrm{~Hz}, \mathrm{C}\right), 135.9(\mathrm{C}), 140.2\left(\mathrm{~d},{ }^{3} J_{C F}=8.6 \mathrm{~Hz}, \mathrm{C}\right), 143.8$ (C), $162.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=247.9 \mathrm{~Hz}, \mathrm{C}\right)$; MS (ESI) $m / z 384\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNNaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 384.1040; found, 384.1023.
(2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-4'-fluoro-phenyl)prop-2-en-1-ol (6e). The reaction was carried out as described for the synthesis of (2E)-3-($2^{\prime}-[N$-allyl $-N$ - $(p$-toluene-sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2'[N-allyl- N-(p-toluenesulfonyl)amino]-4'-fluorophenyl)prop-2-enoate (5e) $(0.790 \mathrm{~g}, 2.00 \mathrm{mmol})$. Purification by column chromatography (ethyl acetate/petroleum ether, $1: 3$) gave (2E)-3-($2^{\prime}-[N$-allyl- N-(p -toluenesulfonyl)amino]-4'-fluorophenyl)prop-2-en-1-ol (6e) (0.728 g, 99%) as a colorless oil. $R_{f}=0.08$ (diethyl ether/petroleum ether $=$ 1:1); IR (neat) $3507,2923,1600,1495,1347,1161,908,727 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.18(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.09-4.27(\mathrm{~m}, 3 \mathrm{H}), 4.94-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{ddt}, J=$ $16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=16.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41\left(\mathrm{dd},{ }^{3} J_{H F}\right.$
$=9.3, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=8.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55\left(\mathrm{dd}, J=8.6,{ }^{4} J_{\mathrm{HF}}=6.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6$ $\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{2}\right), 63.6\left(\mathrm{CH}_{2}\right), 116.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.2 \mathrm{~Hz}, \mathrm{CH}\right), 116.2$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.2 \mathrm{~Hz}, \mathrm{CH}\right), 119.8\left(\mathrm{CH}_{2}\right), 125.7(\mathrm{CH}), 127.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=\right.$ $8.9 \mathrm{~Hz}, \mathrm{CH}), 127.9(2 \times \mathrm{CH}), 129.7(2 \times \mathrm{CH}), 130.7\left(\mathrm{~d},{ }^{5} \mathrm{~J}_{\mathrm{CF}}=1.8\right.$ $\mathrm{Hz}, \mathrm{CH}), 131.9(\mathrm{CH}), 134.3$ (d, $\left.{ }^{4} J_{\mathrm{CF}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 135.7$ (C), 137.7 $\left(\mathrm{d},{ }^{3} J_{C F}=8.8 \mathrm{~Hz}, \mathrm{C}\right), 144.0(\mathrm{C}), 161.5\left(\mathrm{~d},{ }^{1} J_{C F}=248.9 \mathrm{~Hz}, \mathrm{C}\right) ; \mathrm{MS}$ (ESI) $m / z 384\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNNaO}_{3} \mathrm{~S}$ (MNa^{+}), 384.1040; found, 384.1023.
(2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-5'-chloro-phenyl)prop-2-en-1-ol (6f). The reaction was carried out as described for the synthesis of (2E)-3-(2'-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl) prop-2-en-1-ol (6a) using methyl (2E)-3-(2'[N-allyl- N-(p-toluenesulfonyl)amino]-5'-chlorophenyl)prop-2-enoate (5f) $(0.660 \mathrm{~g}, 1.60 \mathrm{mmol})$. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 3$) gave $(2 E)-3-\left(2^{\prime}-[N-\right.$ allyl $-N-(p-$ toluenesulfonyl)amino]-5'-chlorophenyl)prop-2-en-1-ol (6f) (0.566 g, 92%) as a colorless oil. $R_{f}=0.28$ (petroleum ether/ethyl acetate $=$ 2:1); IR (neat) $3505,2923,1597,1478,1343,1161,907,727 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.17-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.92-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{ddt}, J=17.0$, $10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dt}, J=16.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{dt}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CH}_{3}\right), 54.8\left(\mathrm{CH}_{2}\right), 63.4\left(\mathrm{CH}_{2}\right), 119.8\left(\mathrm{CH}_{2}\right), 125.2$ $(\mathrm{CH}), 126.5(\mathrm{CH}), 127.8(\mathrm{CH}), 127.9(2 \times \mathrm{CH}), 129.7(2 \times \mathrm{CH})$, $130.7(\mathrm{CH}), 132.0(\mathrm{CH}), 132.4(\mathrm{CH}), 134.5(\mathrm{C}), 135.0(\mathrm{C}), 135.8$ (C), 139.6 (C), 143.9 (C); MS (ESI) $m / z 400\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20}{ }^{35} \mathrm{ClNNaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right), 400.0745$; found, 400.0729.

5-Nitro-2-[N-(p-toluenesulfonyl)amino]benzaldehyde (8). p Toluenesulfonamide ($0.148 \mathrm{~g}, 0.865 \mathrm{mmol}$) was added to a solution of 2-chloro-5-nitrobenzaldehyde (7) ($0.0800 \mathrm{~g}, 0.432 \mathrm{mmol}$), and potassium carbonate $(0.107 \mathrm{~g}, 0.780 \mathrm{mmol})$ in N, N^{\prime}-dimethylformamide $(2 \mathrm{~mL})$ and heated to $90{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to room temperature, diluted with water (2 mL), and extracted with ethyl acetate $(10 \mathrm{~mL})$. The organic layer was washed with 1 M hydrochloric acid solution $(3 \times 2 \mathrm{~mL})$ and brine (2 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 5$) gave 5-nitro-2-[N-(p-toluenesulfonyl)amino]benzaldehyde (8) (0.122 g, 86%) as a white solid. Mp 172-174 ${ }^{\circ} \mathrm{C} ; R_{f}=0.38$ (petroleum ether/ ethyl acetate $=2: 1$); IR (neat) $3164,1673,1586,1345,1215,1164$, $749 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.34$ (dd, $J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.94(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 11.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CH}_{3}\right)$, $117.3(\mathrm{CH}), 120.5(\mathrm{C}), 127.4(2 \times \mathrm{CH}), 130.2(2 \times \mathrm{CH}), 130.5$ (CH), 131.5 (CH), 135.6 (C), 142.1 (C), 145.0 (C), 145.3 (C), 193.5 (CH); MS (ESI) $m / z 343\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 343.0359; found, 343.0350.

Ethyl (2E)-3-(5'-Nitro-2'-[N-(p-toluenesulfonyl)amino]-phenyl)prop-2-enoate. Lithium bromide ($0.043 \mathrm{~g}, 0.50 \mathrm{mmol}$) was added to a solution of triethyl phosphonoacetate $(0.085 \mathrm{~mL}, 0.43$ mmol) and 1,8 -diazabicyclo[5.4.0]undec-7-ene ($0.064 \mathrm{~mL}, 0.43$ $\mathrm{mmol})$ in acetonitrile $(2 \mathrm{~mL})$ and stirred at room temperature for $0.5 \mathrm{~h} . \quad 5$-Nitro-2-[N-(p-toluenesulfonyl)amino]benzaldehyde (8) $(0.040 \mathrm{~g}, 0.13 \mathrm{mmol})$ was added, and the solution was stirred at room temperature for 3 h . The reaction was quenched with 10% aqueous potassium sodium tartrate solution $(2 \mathrm{~mL})$, concentrated to half volume in vacuo, and extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \mathrm{~mL})$, brine (2 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 3$) gave ethyl (2E)-3-(5'-nitro-2'-[N-(p-toluenesulfonyl)amino $]$ phenyl $)$ -prop-2-enoate ($0.048 \mathrm{~g}, 99 \%$) as a white solid. Mp $158-160^{\circ} \mathrm{C}$; $R_{f}=$ 0.28 (petroleum ether/ethyl acetate $=2: 1$); IR (neat) 3255, 2980, 1700, 1640, 1527, 1344, 1166, 908, $757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}$,
$2 \mathrm{H}), 6.35(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.72(\mathrm{~m}, 4 \mathrm{H}), 8.16(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3}\right), 21.6$ $\left(\mathrm{CH}_{3}\right), 61.3\left(\mathrm{CH}_{2}\right), 123.0(\mathrm{CH}), 123.1(\mathrm{CH}), 124.3(\mathrm{CH}), 125.5$ (CH), $127.2(2 \times \mathrm{CH}), 127.9(\mathrm{C}), 130.1(2 \times \mathrm{CH}), 135.6(\mathrm{C}), 136.5$ (CH), 140.6 (C), 144.7 (C), 144.9 (C), 165.9 (C); MS (ESI) m/z 413 (MNa ${ }^{+}$100); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 413.0778; found, 413.0760.

Ethyl (2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]-5'-nitrophenyl)prop-2-enoate (9). The reaction was carried out as described for the synthesis of methyl (2E)-3-(2'-[N-allyl-N-(ptoluenesulfonyl)amino] phenyl)prop-2-enoate (5a) using ethyl (2E)-$3-\left(2^{\prime}-\left[N-(p\right.\right.$-toluenesulfonyl)amino $]-5^{\prime}$-nitrophenyl)prop-2-enoate ($0.020 \mathrm{~g}, 0.047 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether, 1:10) gave ethyl (2E)-3-(2'-[N-allyl-N-(p-toluenesulfonyl)amino]-5'-nitrophenyl)prop-2-enoate (9) (0.012 g, 55%) as a white solid. $\mathrm{Mp} 128-130^{\circ} \mathrm{C}$; $R_{f}=0.50$ (petroleum ether/ ethyl acetate $=2: 1$); IR (neat) 2956, 1716, 1529, 1349, 1215, 908, 730 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 4.16(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=17.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{ddt}, J=17.0,10.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 54.8\left(\mathrm{CH}_{2}\right), 60.9\left(\mathrm{CH}_{2}\right)$, $120.7\left(\mathrm{CH}_{2}\right), 122.3(\mathrm{CH}), 122.9(\mathrm{CH}), 124.3(\mathrm{CH}), 127.9(2 \times \mathrm{CH})$, $129.9(2 \times \mathrm{CH}), 131.1(\mathrm{CH}), 131.4(\mathrm{CH}), 134.9(\mathrm{C}), 137.6(\mathrm{C})$, 138.0 (CH), 143.6 (C), 144.6 (C), 147.4 (C), 165.7 (C); MS (ESI) $m / z 453$ ($\mathrm{MNa}^{+}, 100$); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}$ $\left(\mathrm{MNa}^{+}\right), 453.1091$; found, 453.1073.
(2E)-3-(2'-[N-Allyl-N-(p-toluenesulfonyl)amino]-5'-nitro-phenyl)prop-2-en-1-ol $(6 \mathrm{~g})$. The reaction was carried out as described for the synthesis of (2E)-3-($2^{\prime}-[N$-allyl $-N$ - $(p$-toluene-sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using ethyl (2E)-3-(2'[N-allyl- N-(p-toluenesulfonyl)amino]-5'-nitrophenyl)prop-2-enoate (9) ($0.143 \mathrm{~g}, 0.330 \mathrm{mmol}$). Purification by column chromatography (ethyl acetate/petroleum ether $=1: 2)$ gave $(2 E)-3-\left(2^{\prime}-[N-\right.$ allyl $-N-(p$ -toluenesulfonyl)amino]-5'-nitrophenyl)prop-2-en-1-ol ($6 \mathbf{g}$) (0.110 g , $85 \%)$ as a colorless oil. $R_{f}=0.18$ (petroleum ether/ethyl acetate $=$ 2:1); IR (neat) 3537, 2924, 1525, 1347, 1162, $748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $4.33(\mathrm{br} \mathrm{d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.92-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{ddt}, J=17.0$, $10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dt}, J=16.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=16.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{2}\right), 63.2$ $\left(\mathrm{CH}_{2}\right), 120.4\left(\mathrm{CH}_{2}\right), 121.7(\mathrm{CH}), 122.1(\mathrm{CH}), 124.4(\mathrm{CH}), 127.9(2$ $\times \mathrm{CH}), 129.8(2 \times \mathrm{CH}), 130.5(\mathrm{CH}), 131.5(\mathrm{CH}), 134.1(\mathrm{CH}), 135.4$ (C), 139.9 (C), 142.0 (C), 144.3 (C), 147.5 (C); MS (ESI) m/z 411 $\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 411.0985; found, 411.0970.
N-(p-Toluenesulfonyl)-5-(2', $2^{\prime}, 2^{\prime}$-trichloromethylcarbonyl-amino)-2,5-dihydro-1H-benzo[b]azepine (10a). (2E)-3-(2'-[N-Allyl- N-(p-toluenesulfonyl)amino]phenyl)prop-2-en-1-ol (6a) (0.313 $\mathrm{g}, 0.911 \mathrm{mmol})$ was dissolved in dichloromethane $(45 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ under argon with stirring. Trichloroacetonitrile $(0.137 \mathrm{~mL}$, 1.37 mmol) was added to the solution, followed by 1,8 -diaza-bicyclo[5.4.0]undec-7-ene ($0.0685 \mathrm{~mL}, 0.460 \mathrm{mmol}$), and the reaction was allowed to warm to room temperature over 2 h . The reaction mixture was filtered through a short pad of alumina (neutral, Brockman V) with diethyl ether (150 mL) and concentrated in vacuo to yield the crude allylic trichloroacetimidate as a yellow oil. This was used without further purification. The allylic trichloroacetimidate was transferred to a dry Schlenk tube containing a stirrer bar and potassium carbonate $(0.0300 \mathrm{~g}, 5 \mathrm{mg} / \mathrm{mL})$ to which p-xylene $(6 \mathrm{~mL})$ was then added. The tube was purged with argon, sealed, and heated to $160{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was allowed to cool to room temperature, and Grubbs' second generation catalyst ($0.0391 \mathrm{~g}, 0.0460$ $\mathrm{mmol})$ and p-xylene $(51 \mathrm{~mL})$ were added. The reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was concentrated in
vacuo and purified by column chromatography (diethyl ether/ petroleum ether $=1: 3$) to give N-(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$ -trichloromethylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10a) ($0.339 \mathrm{~g}, 81 \%$) as a white solid. Mp $160-163{ }^{\circ} \mathrm{C}$ (decomposition); $R_{f}=0.28$ (diethyl ether/petroleum ether $=1: 1$); IR (neat) 3337, 2925, 1701, 1496, 1341, 1159, 906, $727 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.66(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.58(\mathrm{brt}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{br} \mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (br s, $1 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=8.4$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{br} \mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $21.6\left(\mathrm{CH}_{3}\right), 49.0\left(\mathrm{CH}_{2}\right), 52.7(\mathrm{CH}), 92.5(\mathrm{C}), 125.8(\mathrm{CH}), 127.4(2$ $\times \mathrm{CH}), 128.2(\mathrm{CH}), 129.3(\mathrm{CH}), 129.7(\mathrm{CH}), 130.0(2 \times \mathrm{CH}), 130.8$ $(2 \times \mathrm{CH}), 137.7$ (C), 138.1 (C), 139.2 (C), 144.2 (C), 161.4 (C); MS (ESI) $m / z 481\left(\mathrm{MNa}^{+}, 49\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 480.9918 ; found, 480.9904.

7-Methyl- N -(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethyl-carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10b). The reaction was carried out as described for the synthesis of $N-(p$ -toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihy-dro-1H-benzo[b]azepine (10a) using (2E)-3-(2'-[N-allyl- N - (p toluenesulfonyl) amino]-5'-methylphenyl)prop-2-en-1-ol ($\mathbf{6 b}$) (0.170 $\mathrm{g}, 0.480 \mathrm{mmol}$). Purification by column chromatography (diethyl ether/petroleum ether $=1: 3$) gave 7 -methyl- N - $(p$-toluenesulfonyl)-5($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10b) $(0.179 \mathrm{~g}, 80 \%)$ as a white solid. $\mathrm{Mp} 174-176{ }^{\circ} \mathrm{C} ; R_{f}=$ 0.30 (diethyl ether/petroleum ether $=1: 1$); IR (neat) 3333, 2923, 1701, 1505, 1340, 1155, 1112, 909, $727 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.53(\mathrm{brt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.67 (br s, 1H), 7.02 (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.36$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 49.1\left(\mathrm{CH}_{2}\right), 52.7$ $(\mathrm{CH}), 92.5(\mathrm{C}), 125.8(\mathrm{CH}), 127.4(2 \times \mathrm{CH}), 127.9(\mathrm{CH}), 130.0(2$ $\times \mathrm{CH}), 130.2(2 \times \mathrm{CH}), 130.9(\mathrm{CH}), 135.4(\mathrm{C}), 137.8(\mathrm{C}), 138.8$ (C), 139.4 (C), 144.1 (C), 161.4 (C); MS (ESI) $m / z 495\left(\mathrm{MNa}^{+}, 48\right)$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19}{ }^{35} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 495.0074; found, 495.0053.

7-Methoxy- N-(p-toluenesulfonyl)-5-(2', $2^{\prime}, 2^{\prime}$-trichloro-methylcarbonylamino)-2,5-dihydro-1 H -benzo[b]azepine (10c). The reaction was carried out as described for the synthesis of $N-(p$ -toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihy-dro-1H-benzo[b]azepine (10a) using (2E)-3-(2'-[N-allyl- N - $(p-$ toluenesulfonyl)amino]-5'-methoxyphenyl)prop-2-en-1-ol (6c) $(0.076 \mathrm{~g}, 0.20 \mathrm{mmol})$. Purification by column chromatography (diethyl ether/petroleum ether $=1: 3$) gave 7 -methoxy- N - $(p$ -toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihy-dro- $1 H$-benzo [b] azepine (10c) $(0.079 \mathrm{~g}, 79 \%)$ as a white solid. Mp $190-195{ }^{\circ} \mathrm{C}$ (decomposition); $R_{f}=0.20$ (diethyl ether/petroleum ether $=1: 1$); IR (neat) $3337,2935,1701,1502,1215,1156,749 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.84(\mathrm{~m}, 4 \mathrm{H}), 4.72$ (br s, 1 H), $5.51(\mathrm{brt}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.35(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{2}\right), 52.9(\mathrm{CH}), 55.6$ $\left(\mathrm{CH}_{3}\right), 92.5(\mathrm{C}), 114.9(\mathrm{CH}), 125.5(\mathrm{CH}), 127.4(2 \times \mathrm{CH}), 129.2$ $(\mathrm{CH}), 130.0(2 \times \mathrm{CH}), 130.4(\mathrm{CH}), 131.2(\mathrm{CH}), 137.7(\mathrm{C}), 140.5$ (C), 144.1 (C), $159.7(2 \times \mathrm{C}), 161.4$ (C); MS (ESI) $m / z 513\left(\mathrm{MNa}^{+}\right.$, 51); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19}{ }^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{~S}$ (MNa^{+}), 512.9994; found, 512.9973.

7-Fluoro- N-(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethyl-carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10d). The reaction was carried out as described for the synthesis of $N-(p$ -toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino $)$-2,5-dihy-dro-1H-benzo $[b]$ azepine (10a) using (2E)-3-(2'-[N-allyl- N - $(p-$ toluenesulfonyl)amino]-5'-fluorophenyl)prop-2-en-1-ol (6d) (0.189 g, 0.520 mmol). Purification by column chromatography (diethyl ether/petroleum ether $=1: 3$) gave 7-fluoro- N-(p-toluenesulfonyl)-5($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10d) $(0.204 \mathrm{~g}, 82 \%)$ as a white solid. Mp $181-183{ }^{\circ} \mathrm{C}$; $R_{f}=$
0.25 (petroleum ether/diethyl ether = 3:1); IR (neat) 3333, 3034, 1705, 1503, 1344, 1159, 907, $729 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.52(\mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=8.2$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CH}_{3}\right)$, $48.9\left(\mathrm{CH}_{2}\right), 52.2(\mathrm{CH}), 92.4(\mathrm{C}), 116.1(\mathrm{CH}), 116.4(\mathrm{CH}), 125.4$ $(\mathrm{CH}), 127.4(2 \times \mathrm{CH}), 130.1(3 \times \mathrm{CH}), 131.1(\mathrm{CH}), 133.9(\mathrm{C})$, 137.3 (C), 141.6 (C), 144.4 (C), 161.4 (C), 162.1 (d, ${ }^{1} J_{C F}=250.6 \mathrm{~Hz}$, C); MS (ESI) $m / z 499\left(\mathrm{MNa}^{+}, 49\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{3} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 498.9823 ; found, 498.9809.

8-Fluoro- N-(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloro-methylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10e). The reaction was carried out as described for the synthesis of $N-(p$ -toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihy-dro-1H-benzo[b]azepine (10a) using (2E)-3-(2'-[N-allyl- N - $(p$ -toluenesulfonyl)amino]-4'-fluorophenyl)prop-2-en-1-ol (6e) (0.222 g, 0.610 mmol). Purification by column chromatography (diethyl ether/petroleum ether $=1: 3$) gave 8 -fluoro- N-(p-toluenesulfonyl) 5 ($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihydro- $1 H$-benzo [b]azepine (10e) $(0.269 \mathrm{~g}, 92 \%)$ as a white solid. Mp $147-149{ }^{\circ} \mathrm{C}$; $R_{f}=$ 0.28 (diethyl ether/petroleum ether $=1: 1$); IR (neat) 3340, 2925, 1704, 1599, 1501, 1343, 1160, 909, $731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.86($ br d, $J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62($ br d, $J=$ $17.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{brt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddd}, J=11.4,4.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55\left(\mathrm{br} \mathrm{d},{ }^{3} J_{H F}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.02(\mathrm{td}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}$, $\left.J=8.2,{ }^{4} J_{H F}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7\left(\mathrm{CH}_{3}\right), 48.8\left(\mathrm{CH}_{2}\right), 52.1(\mathrm{CH})$, $92.4(\mathrm{C}), 115.6\left(\mathrm{~d},{ }^{2} J_{C F}=22.9 \mathrm{~Hz}, \mathrm{CH}\right), 116.2\left(\mathrm{~d},{ }^{2} J_{C F}=21.0 \mathrm{~Hz}\right.$, $\mathrm{CH}), 125.6(\mathrm{CH}), 127.4(2 \times \mathrm{CH}), 130.2(2 \times \mathrm{CH}), 130.7(\mathrm{CH})$, $132.0(\mathrm{CH}), 135.3\left(\mathrm{~d},{ }^{4} J_{C F}=3.5 \mathrm{~Hz}, \mathrm{C}\right), 137.2(\mathrm{C}), 139.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=\right.$ $9.9 \mathrm{~Hz}, \mathrm{C}), 144.6$ (C), 161.4 (C), $162.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=230.0 \mathrm{~Hz}, \mathrm{C}\right) ; \mathrm{MS}$ (ESI) $m / z 499\left(\mathrm{MNa}^{+}, 49\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{3} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right), 498.9823$; found, 498.9804.

7-Chloro- N-(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethyl-carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10f). The reaction was carried out as described for the synthesis of $N-(p$ -toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihy-dro-1H-benzo[b]azepine (10a) using (2E)-3-(2'-[N-allyl- N-(p -toluenesulfonyl)amino]-5'-chlorophenyl)prop-2-en-1-ol (6f) (0.290 $\mathrm{g}, 0.770 \mathrm{mmol})$. The RCM step was heated to $60{ }^{\circ} \mathrm{C}$ for 24 h . Purification by column chromatography (diethyl ether/petroleum ether $=1: 3$) gave 7 -chloro- N-(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloro-methylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10f) (0.300 g, 79%) as a white solid. Mp $158-160{ }^{\circ} \mathrm{C} ; R_{f}=0.25$ (diethyl ether/ petroleum ether $=1: 1$); IR (neat) $3341,2925,1705,1495,1343,1159$, 908, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.51(\mathrm{br} \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{br} \mathrm{d}, J=9.0$ Hz, 1H), 5.97 (br s, 1H), 6.79 (br s, 1H), 7.20 (dd, $J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7\left(\mathrm{CH}_{3}\right)$, $48.9\left(\mathrm{CH}_{2}\right), 52.1(\mathrm{CH}), 92.3(\mathrm{C}), 125.4(\mathrm{CH}), 127.4(2 \times \mathrm{CH}), 129.6$ $(2 \times \mathrm{CH}), 130.2(2 \times \mathrm{CH}), 131.0(2 \times \mathrm{CH}), 134.9(\mathrm{C}), 136.5(\mathrm{C})$, 137.2 (C), 141.0 (C), 144.5 (C), 161.4 (C); MS (ESI) $\mathrm{m} / \mathrm{z} 515$ (MNa ${ }^{+}$, 42); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 514.9528; found, 514.9515.

7-Nitro- N-(p-toluenesulfonyl)-5-(2', $2^{\prime}, 2^{\prime}$-trichloromethyl-carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10g). The reaction was carried out as described for the synthesis of $N-(p$ -toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonylamino)-2,5-dihy-dro- $1 H$-benzo $[b]$ azepine (10a) using (2E)-3-($2^{\prime}-[N$-allyl- N - $(p$ -toluenesulfonyl)amino]-5'-nitrophenyl)prop-2-en-1-ol (6 g) (0.084 g , 0.22 mmol). The Overman rearrangement was heated to $160{ }^{\circ} \mathrm{C}$ for 43 h , and the RCM step was heated to $60^{\circ} \mathrm{C}$ for 31 h . Purification by column chromatography (diethyl ether/petroleum ether $=1: 3$) gave 7 -nitro- N-(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloromethylcarbonyl-amino)-2,5-dihydro- 1 H -benzo[b]azepine ($\mathbf{1 0 g}$) ($0.053 \mathrm{~g}, 49 \%$) as a white solid. Mp $180-185{ }^{\circ} \mathrm{C}$ (decomposition); $R_{f}=0.28$ (diethyl ether/petroleum ether = 1:1); IR (neat) $3335,3020,1709,1592,1530$,

1350, 1215, 1161, $749 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.49(\mathrm{~s}$, 3 H), 4.03 (br d, $J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{br} \mathrm{d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64$ (br t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{br} \mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-6.02(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J 8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.13$ (dd, $J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (d, $J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7\left(\mathrm{CH}_{3}\right), 48.7\left(\mathrm{CH}_{2}\right)$, $51.8(\mathrm{CH}), 92.1(\mathrm{C}), 124.5(2 \times \mathrm{CH}), 125.1(\mathrm{CH}), 127.4(2 \times \mathrm{CH})$, $129.6(\mathrm{CH}), 130.4(2 \times \mathrm{CH}), 130.7(\mathrm{CH}), 136.8(\mathrm{C}), 141.1(\mathrm{C})$, 143.8 (C), 145.0 (C), 147.4 (C), 161.5 (C); MS (ESI) $m / z 526$ (MNa ${ }^{+}$, 49); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}\left(\mathrm{MNa}^{+}\right)$, 525.9768; found, 525.9761 .

5-tert-Butoxycarbonylamino- N-(p-toluenesulfonyl)-2,5-dihy-dro-1H-benzo[b]azepine (11). Sodium hydroxide ($2 \mathrm{M}, 5 \mathrm{~mL}$) was added to a solution of N-(p-toluenesulfonyl)-5-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloro-methylcarbonylamino)-2,5-dihydro- $1 H$-benzo[b]azepine (10a) (0.165 $\mathrm{g}, 0.359 \mathrm{mmol})$ in methanol $(3 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ and stirred for 18 h . The mixture was allowed to cool to room temperature, and then di-tertbutyl dicarbonate ($0.393 \mathrm{~g}, 1.80 \mathrm{mmol}$) was added. The reaction mixture was stirred for a further 24 h . The reaction mixture was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by column chromatography (ethyl acetate/petroleum ether $=1: 20$) gave 5 -tert-butoxycarbonylamino- N (p-toluenesulfonyl)-2,5-dihydro-1 H -benzo[b]azepine (11) (0.108 g , 73%) as a white solid. Mp $149-151{ }^{\circ} \mathrm{C}$ (decomposition); $R_{f}=0.28$ (petroleum ether/ethyl acetate $=2: 1$); IR (neat) 3393, 2978, 1698, $1494,1343,1159,908,728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44$ $(\mathrm{s}, 9 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.61(\mathrm{br} \mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.36$ $(\mathrm{m}, 4 \mathrm{H}), 7.77(\mathrm{br} \mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $21.6\left(\mathrm{CH}_{3}\right), 28.4\left(3 \times \mathrm{CH}_{3}\right), 48.9\left(\mathrm{CH}_{2}\right), 51.4(\mathrm{CH}), 79.5(\mathrm{C}), 127.3$ $(2 \times \mathrm{CH}), 127.8(\mathrm{CH}), 128.5(3 \times \mathrm{CH}), 128.7(2 \times \mathrm{CH}), 129.9(2 \times$ CH), 137.6 (C), 138.0 (C), 141.4 (C), 143.8 (C), 154.9 (C); MS (ESI) $m / z 437\left(\mathrm{MNa}^{+}, 100\right)$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}$ (MNa^{+}), 437.1505; found, 437.1486.

5-tert-Butoxycarbonylamino-2,3,4,5-tetrahydro-1 H-benzo[b]azepine (12). ${ }^{3 \mathrm{c}}$ Palladium on charcoal ($10 \%, 0.017 \mathrm{~g}$) was added to a solution of 5-tert-butoxycarbonylamino- N -(p-toluenesulfonyl)-2,5-dihydro- $1 H$-benzo $[b]$ azepine (11) ($0.057 \mathrm{~g}, 0.14 \mathrm{mmol}$) in ethyl acetate $(4 \mathrm{~mL})$. The mixture was stirred under an atmosphere of hydrogen at $60^{\circ} \mathrm{C}$ for 17 h . The reaction mixture was filtered through a short pad of Celite with diethyl ether (50 mL) and concentrated in vacuo to give 5 -tert-butoxycarbonylamino- N-(p-toluenesulfonyl)-2,3,4,5-tetrahydro- 1 H -benzo[b]azepine (0.050 g) as a white solid. 5-tert-Butoxycarbonylamino- N-(p-toluenesulfonyl)-2,3,4,5-tetrahydro$1 H$-benzo [b]azepine ($0.050 \mathrm{~g}, 0.12 \mathrm{mmol}$) was dissolved in methanol $(5 \mathrm{~mL})$, and magnesium turnings $(0.082 \mathrm{~g}, 3.4 \mathrm{mmol})$ were added. The mixture was heated under reflux for 4 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and 1 M hydrochloric acid solution $(10 \mathrm{~mL})$ was added dropwise. The solution was extracted with ethyl acetate $(3 \times 10$ $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification by column chromatography using (ethyl acetate/petroleum ether $=1: 20$) gave 5 -tert-butoxycarbonylamino-2,3,4,5-tetrahydro-1 H -benzo[b]azepine (12) $(0.032 \mathrm{~g}, 88 \%)$ as a white solid. $\mathrm{Mp} 151-153{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3 \mathrm{c}} 153-154{ }^{\circ} \mathrm{C}$); $R_{f}=0.45$ (petroleum ether/ethyl acetate $=2: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.80(\mathrm{~m}, 2 \mathrm{H})$, $1.94-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{td}, J=12.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.35(\mathrm{~m}$, $1 \mathrm{H}), 3.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{br} \mathrm{d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{dd}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $(\mathrm{td}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.5\left(\mathrm{CH}_{2}\right), 28.5\left(3 \times \mathrm{CH}_{3}\right), 30.9\left(\mathrm{CH}_{2}\right), 49.1$ $\left(\mathrm{CH}_{2}\right), 55.1(\mathrm{CH}), 79.0(\mathrm{C}), 120.5(\mathrm{CH}), 121.9(\mathrm{CH}), 128.0(\mathrm{CH})$, 130.0 (CH), 133.7 (C), 149.1 (C), 155.2 (C); MS (ESI) $m / z 285$ ($\mathrm{MNa}^{+}, 100$).

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01357.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all novel compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: Andrew.Sutherland@glasgow.ac.uk.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the Ministry of Higher Education and Scientific Research and the University of Benghazi, Libya (studentship to S.A.I.S.), the EPSRC (studentship to E.D.D.C., EP/P505534/1), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, grant to F.G.D., Proc. No. $88888.021508 / 2013-00$), and Science without Borders is gratefully acknowledged.

REFERENCES

(1) (a) Ryan, J. H.; Hyland, C.; Meyer, A. G.; Smith, J. A.; Yin, J.-X. Prog. Heterocycl. Chem. 2012, 24, 493. (b) Ramig, K. Tetrahedron 2013, 69, 10783.
(2) For examples of biologically active amino-substituted 1 benzazepines, see: (a) Schoen, W. R.; Pisano, J. M.; Prendergast, K.; Wyvratt, M. J., Jr.; Fisher, M. H.; Cheng, K.; Chan, W. W.-S.; Butler, B.; Smith, R. G.; Ball, R. G. J. Med. Chem. 1994, 37, 897. (b) DeVita, R. J.; Bochis, R.; Frontier, A. J.; Kotliar, A.; Fisher, M. H.; Schoen, W. R.; Wyvratt, M. J.; Cheng, K.; Chan, W. W.-S.; Butler, B.; Jacks, T. M.; Hickey, G. J.; Schleim, K. D.; Leung, K.; Chen, Z.; Chiu, S.-H. L.; Feeney, W. P.; Cunningham, P. K.; Smith, R. G. J. Med. Chem. 1998, 41, 1716. (c) Kondo, K.; Ogawa, H.; Yamashita, H.; Miyamoto, H.; Tanaka, M.; Nakaya, K.; Kitano, K.; Yamamura, Y.; Nakamura, S.; Onogawa, T.; Mori, T.; Tominaga, M. Bioorg. Med. Chem. 1999, 7, 1743. (d) Schultz, C.; Link, A.; Leost, M.; Zaharevitz, D. W.; Gussio, R.; Sausville, E. A.; Meijer, L.; Kunick, C. J. Med. Chem. 1999, 42, 2909. (e) Soto, S.; Vaz, E.; Dell'Aversana, C.; Álvarez, R.; Altucci, L.; de Lera, Á. R. Org. Biomol. Chem. 2012, 10, 2101.
(3) (a) Yamamura, Y.; Ogawa, H.; Yamashita, H.; Chihara, T.; Miyamoto, H.; Nakamura, S.; Onogawa, T.; Yamashita, T.; Hosokawa, T.; Mori, T.; Tominaga, M.; Yabuuchi, Y. Br. J. Pharmacol. 1992, 105, 787. (b) Ogawa, H.; Yamashita, H.; Kondo, K.; Yamamura, Y.; Miyamoto, H.; Kan, K.; Kitano, K.; Tanaka, M.; Nakaya, K.; Nakamura, S.; Mori, T.; Tominaga, M.; Yabuuchi, Y. J. Med. Chem. 1996, 39, 3547. (c) Matsubara, J.; Kitano, K.; Otsubo, K.; Kawano, Y.; Ohtani, T.; Bando, M.; Kido, M.; Uchida, M.; Tabusa, F. Tetrahedron 2000, 56, 4667. (d) Loison, S.; Cottet, M.; Orcel, H.; Adihou, H.; Rahmeh, R.; Lamarque, L.; Trinquet, E.; Kellenberger, E.; Hibert, M.; Durroux, T.; Mouillac, B.; Bonnet, D. J. Med. Chem. 2012, 55, 8588.
(4) Cao, G.; Escribano, A. M.; Fernandez, M. C.; Fields, T.; Genert, D. L.; Cioffi, C. L.; Herr, R. J.; Mantlo, N. B.; Martin, D. L. N. E. M.; Mateo, H. A. I.; Mayhugh, D. R.; Wang, X. Compounds and methods for treating dyslipidemia. W.O. Patent WO2005037796 A1, April 28, 2005.
(5) (a) Tabata, H.; Nakagomi, J.; Morizono, D.; Oshitari, T.; Takahashi, H.; Natsugari, H. Angew. Chem., Int. Ed. 2011, 50, 3075. (b) Tabata, H.; Yoneda, T.; Tasaka, T.; Ito, S.; Oshitari, T.; Takahashi, H.; Natsugari, H. J. Org. Chem. 2016, 81, 3136.
(6) For example, see: (a) Ohtani, T.; Kawano, Y.; Kitano, K.; Matsubara, J.; Komatsu, M.; Uchida, M.; Tabusa, F.; Nagao, Y. Heterocycles 2005, 66, 481. (b) Cordero-Vargas, A.; Quiclet-Sire, B.; Zard, S. Z. Bioorg. Med. Chem. 2006, 14, 6165. (c) Boeglin, D.; Bonnet, D.; Hibert, M. J. Comb. Chem. 2007, 9, 487. (d) Chang, M.-Y.; Chan, C.-K.; Lin, S.-Y. Heterocycles 2013, 87, 1519 and references therein. (e) Zhang, Y.; Zheng, L.; Yang, F.; Zhang, Z.; Dang, Q.; Bai, X. Tetrahedron 2015, 71, 1930.
(7) (a) Kotha, S.; Shah, V. R. Eur. J. Org. Chem. 2008, 2008, 1054.
(b) Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F. Tetrahedron 2009, 65, 6454.
(8) (a) Calder, E. D. D.; McGonagle, F. I.; Harkiss, A. H.; McGonagle, G. A.; Sutherland, A. J. Org. Chem. 2014, 79, 7633. (b) Calder, E. D. D.; Sharif, S. A. I.; McGonagle, F. I.; Sutherland, A. J. Org. Chem. 2015, 80, 4683.
(9) (a) Heck, R. F. Org. React. 1982, 27, 345. (b) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
(10) Adepu, R.; Rajitha, A.; Ahuja, D.; Sharma, A. K.; Ramudu, B.; Kapavarapu, R.; Parsa, K. V. L; Pal, M. Org. Biomol. Chem. 2014, 12, 2514.
(11) (a) Caron, S.; Vazquez, E. J. Org. Chem. 2003, 68, 4104. (b) Yang, W.; He, H.-X.; Gao, Y.; Du, D.-M. Adv. Synth. Catal. 2013, 355, 3670.
(12) William, A. D.; Lee, A. C.-H.; Blanchard, S.; Poulsen, A.; Teo, E. L.; Nagaraj, H.; Tan, E.; Chen, D.; Williams, M.; Sun, E. T.; Goh, K. C.; Ong, W. C.; Goh, S. K.; Hart, S.; Jayaraman, R.; Pasha, M. K.; Ethirajulu, K.; Wood, J. M.; Dymock, B. W. J. Med. Chem. 2011, 54, 4638.
(13) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masumune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
(14) (a) Grafton, M. W.; Farrugia, L. J.; Senn, H. M.; Sutherland, A. Chem. Commun. 2012, 48, 7994. (b) Ahmad, S.; Sutherland, A. Org. Biomol. Chem. 2012, 10, 8251. (c) Grafton, M. W.; Farrugia, L. J.; Sutherland, A. J. Org. Chem. 2013, 78, 7199. (d) Grafton, M. W.; Johnson, S. A.; Farrugia, L. J.; Sutherland, A. Tetrahedron 2014, 70, 7133.
(15) (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. (b) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543.
(16) Saunthwal, R. K.; Patel, M.; Tiwari, R. K.; Parang, K.; Verma, A. K. Green Chem. 2015, 17, 1434.
(17) Hayashi, S.; Ueno, N.; Murase, A.; Nakagawa, Y.; Takada, J. Eur. J. Med. Chem. 2012, 50, 179.
(18) Youn, S. W.; Lee, S. R. Org. Biomol. Chem. 2015, 13, 4652.
(19) Sunke, R.; Kumar, V.; Ashfaq, M. A.; Yellanki, S.; Medisetti, R.; Kulkarni, P.; Ramarao, E. V. V. S.; Ehtesham, N. Z.; Pal, M. RSC Adv. 2015, 5, 44722.

[^0]: Received: June 4, 2016
 Published: July 14, 2016

