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ABSTRACT: Rapid access to allylic trichloroacetimidates
bearing a 2-allylaminoaryl group from readily available 2-
iodoanilines combined with a one-pot multibond forming
process has allowed the efficient synthesis of a series of 5-
amino-2,5-dihydro-1H-benzo[b]azepines. The potential of
these compounds as synthetic building blocks was demon-
strated by the preparation of a late-stage intermediate of the
hyponatremia agent, mozavaptan.

■ INTRODUCTION
1H-Benzo[b]azepines are an important class of seven-
membered heterocyclic compound found as a key structural
element in a wide variety of pharmaceutically active
substances.1,2 Within this class, 5-amino-2,3,4,5-tetrahydro-
1H-benzo[b]azepines are of particular significance and include
compounds such as mozavaptan (1), a nonpeptide vasopressin
V2-receptor antagonist used for the treatment of hyponatremia
(low blood sodium levels),3 and 3,5-bis(trifluoromethyl)benzyl
protected 2,3,4,5-tetrahydro-1H-benzo[b]azepine 2, developed
for the treatment of dyslipidemia (Figure 1).4 The interest in 5-

amino-2,3,4,5-tetrahydro-1H-benzo[b]azepines has led recently
to a detailed analysis of their conformational bias and a greater
understanding of their physicochemical properties.5

Due to the pharmacological importance of 5-amino-2,3,4,5-
tetrahydro-1H-benzo[b]azepines, a number of methods have
been developed for their synthesis.2,3c,6 Traditionally, a
Dieckmann condensation has been used to prepare 1H-
benzo[b]azepin-5-ones, followed by introduction of the
amino substituent by reductive amination of the ketone
(Scheme 1a).2c More recently, the azepine ring system in
these compounds has been prepared using methods such as the
Beckmann rearrangement,6b the Mitsunobu reaction,6a reduc-
tive ring opening of aza-bridged azepines,6e and ring closing
metathesis (RCM) (Scheme 1b).6d,7 With the aim of

developing new methods for the preparation of highly
functional polycyclic compounds, we have demonstrated that
benzannulated alkene derived allylic alcohols could be used in
one-pot multireaction processes for the efficient synthesis of
amino-substituted indenes, dihydronaphthalenes, and 1-benzox-
epines.8 We now report a short and general synthesis of allylic
trichloroacetimidates bearing a 2-allylaminoaryl group from
readily available 2-iodoanilines and demonstrate the application
of these compounds in a one-pot multibond forming process
for the efficient synthesis of 5-amino-2,5-dihydro-1H-benzo-
[b]azepines (Scheme 1c).
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Figure 1. Structures of pharmacologically active 5-amino-2,3,4,5-
tetrahydro-1H-benzo[b]azepines.

Scheme 1. Synthetic Approaches for the Preparation of 5-
Amino-Substituted 1H-Benzo[b]azepines
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■ RESULTS AND DISCUSSION
The substrates for the one-pot process, (E)-(2-allylamino)-
cinnamyl alcohols, were prepared using a four-step route from
commercially available 2-iodoanilines (Scheme 2). Mizoroki−

Heck reaction of 2-iodoanilines 3a−f with methyl acrylate and
palladium(II) acetate (5 mol %) under standard conditions
gave the corresponding methyl (E)-2′-aminocinnamates 4a−f
in excellent yields (76−100%).9,10 The amines were protected
with the tosylate group, and this allowed monoallylation using
allyl bromide and potassium carbonate.11 Finally, reduction of
the (E)-α,β-unsaturated methyl esters 5a−f with DIBAL-H
gave (E)-(2-allylamino)cinnamyl alcohols 6a−f in high overall
yields.
While this synthetic route allowed access to a range of (E)-

(2-allylamino)cinnamyl alcohols, the preparation of a 4′-nitro
analogue was not possible. Attempted Mizoroki−Heck
coupling of 2-iodo-4-nitroaniline with methyl acrylate instead
gave the conjugate addition product. An alternative approach
was developed for this compound (Scheme 3). 2-Chloro-5-

nitrobenzaldehyde (7) was subjected to a nucleophilic aromatic
substitution reaction with p-toluenesulfonamide, which gave 8
in 86% yield.12 Horner−Wadsworth−Emmons reaction of 8
under Masamune−Roush conditions with triethyl phospho-
noacetate (TEPA) gave the ethyl (E)-2′-aminocinnamate in
quantitative yield.13 Analysis of the 1H NMR spectrum of the
crude reaction mixture showed exclusive formation of the E-
alkene. Allylation of the amino group was then performed
under the same conditions as before. However, due to
decreased nucleophilicity of this compound, the product was
isolated in a modest 55% yield. DIBAL-H reduction of the ethyl

ester then completed the four-step synthesis of nitro-
substituted cinnamyl alcohol 6g.
Having prepared a small library of (E)-(2-allylamino)-

cinnamyl alcohols, 6a was used for optimization of the one-
pot process (Table 1). Based on previous work,8,14 the

thermally mediated Overman rearrangement was performed
at 140 °C and the RCM step was done using Grubbs’ second
generation catalyst (10 mol %) (entry 1).15 While this gave a
yield of 69% over the three steps, both the rearrangement and
metathesis stages required reaction times of 48 h. Increasing the
temperature of the Overman rearrangement to 160 °C allowed
a shorter reaction time (24 h) with a similar overall yield (entry
2). The catalyst loading and temperature of the RCM step was
then investigated. It was found that a catalyst loading of 5 mol
% and a temperature of 60 °C was optimal for the RCM step,
with the reaction complete after 18 h (entry 4). Using the
optimized conditions for both key steps gave 5-amino-2,5-
dihydro-1H-benzo[b]azepine 10a in 81% yield from 6a.
Using the optimized one-pot procedure, the scope of the

process with various (E)-(2-allylamino)cinnamyl alcohol
substrates was explored (Scheme 4). Overall, the process was
found to be general and high yielding (79−92%) for the
preparation of 5-amino-2,5-dihydro-1H-benzo[b]azepines bear-
ing a range of substituents. Only in the case of the strongly
electron-deficient 4′-nitrophenyl analogue 6g did the con-
ditions require significant modification. For this compound,
both key steps entailed longer reaction times and this likely
accounts for the lower overall yield of 49%.
The synthetic potential of these products was demonstrated

with the three-step conversion of 10a to 5-amino-2,3,4,5-
tetrahydro-1H-benzo[b]azepine 12, a late-stage intermediate
for the preparation of mozavaptan and its analogues (Scheme
5).3 A one-pot procedure was used to remove the trichloroacyl
group and reprotect the amine as the Boc-derivative. Hydro-
genation at atmospheric pressure, followed by detosylation with
magnesium under mild conditions, gave 5-amino-2,3,4,5-

Scheme 2. Synthesis of Allylic Alcohols 6a−fa

aIsolated yields are shown.

Scheme 3. Synthesis of Allylic Alcohol 6ga

aIsolated yields are shown.

Table 1. Optimization of the One-Pot Processa

entry
Overman

rearrangement RCM reaction
yield
(%)a

1 140 °C, 48 h Grubbs II (10 mol %), 50 °C,
48 h

69

2 160 °C, 24 h Grubbs II (10 mol %), 50 °C,
48 h

70

3 160 °C, 24 h Grubbs II (2.5 mol %), 60 °C,
48 h

58

4 160 °C, 24 h Grubbs II (5 mol %), 60 °C, 18 h 81
aIsolated yields are shown.
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tetrahydro-1H-benzo[b]azepine 12 in 88% yield. Overall, the
highly efficient four-step route to allylic alcohol 6a, combined
with the one-pot multibond forming strategy has allowed the
synthesis of 5-amino-2,3,4,5-tetrahydro-1H-benzo[b]azepine 12
in 46% overall yield from commercially available 2-iodoaniline
(3a). Mozavaptan is easily prepared from 12 by benzoylation of
the 1H-benzo[b]azepine ring nitrogen, removal of the Boc-
protecting group, and reductive amination of the resulting
amine with formaldehyde.3c

■ CONCLUSIONS
In summary, a four-step synthesis of (E)-(2-allylamino)-
cinnamyl alcohols has been developed from readily available
2-iodoanilines using a highly efficient Mizoroki−Heck coupling.
Following transformation to the corresponding allylic trichloro-
acetimidates, these compounds were converted to a series of 5-
amino-2,5-dihydro-1H-benzo[b]azepines using a one-pot multi-
bond forming process. As demonstrated with the straightfor-

ward synthesis of 5-amino-2,3,4,5-tetrahydro-1H-benzo[b]-
azepine 12, a late-stage intermediate for the synthesis of
mozavaptan, these compounds have potential for synthetic and
medicinal chemistry applications. Work is currently underway
to investigate further synthetic applications of 5-amino-2,5-
dihydro-1H-benzo[b]azepines and extend the use of one-pot
multibond forming reaction processes.

■ EXPERIMENTAL SECTION
All reagents and starting materials were obtained from commercial
sources and used as received. All dry solvents were purified using a
solvent purification system. All reactions were performed under an
atmosphere of argon unless otherwise mentioned. Brine refers to a
saturated solution of sodium chloride. Flash column chromatography
was performed using silica gel 60 (35−70 μm). Aluminum-backed
plates precoated with silica gel 60F254 were used for thin layer
chromatography and were visualized with a UV lamp or by staining
with potassium permanganate. 1H NMR spectra were recorded on an
NMR spectrometer at either 400 or 500 MHz, and data are reported as
follows: chemical shift in ppm relative to tetramethylsilane or the
solvent (CDCl3, δ 7.26 ppm) as the internal standard, multiplicity (s =
singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of
nonequivalent resonances, integration). 13C NMR spectra were
recorded on an NMR spectrometer at either 101 or 126 MHz, and
data are reported as follows: chemical shift in ppm relative to
tetramethylsilane or the solvent (CDCl3, δ 77.0 ppm) as the internal
standard, multiplicity with respect to hydrogen (deduced from DEPT
experiments, C, CH, CH2, or CH3). Infrared spectra were recorded on
an FTIR spectrometer; wavenumbers are indicated in cm−1. Mass
spectra were recorded using the electrospray technique. HRMS spectra
were recorded using a dual-focusing magnetic analyzer mass
spectrometer. Melting points are uncorrected.

Methyl (2E)-3-(2′-Aminophenyl)prop-2-enoate (4a).10 Methyl
acrylate (1.53 mL, 18.3 mmol) was added to a solution of 2-
iodoaniline (3a) (2.00 g, 9.13 mmol), palladium acetate (0.110 g,
0.460 mmol), triphenylphosphine (0.239 g, 0.913 mmol), potassium
carbonate (1.26 g, 9.13 mmol), and tetrabutylammonium bromide
(0.741 g, 2.30 mmol) in N,N′-dimethylformamide (90 mL). The
reaction mixture was stirred at 80 °C for 2 h. The mixture was cooled
to room temperature, diluted with water (50 mL), and extracted with
diethyl ether (3 × 50 mL). The organic layer was washed with 5%
aqueous lithium chloride solution (10 mL) and brine (10 mL), dried
(MgSO4), filtered, and concentrated in vacuo. The residue was purified
by column chromatography (diethyl ether/petroleum ether, 1:4) to
give methyl (2E)-3-(2′-aminophenyl)prop-2-enoate (4a) (1.59 g,
99%) as a yellow solid. Mp 64−66 °C; Rf = 0.33 (diethyl ether/
petroleum ether = 1:1). Spectroscopic data were consistent with the
literature.10 1H NMR (400 MHz, CDCl3) δ 3.80 (s, 3H), 3.98 (br s,
2H), 6.36 (d, J = 15.8 Hz, 1H), 6.70 (dd, J = 8.0, 1.3 Hz, 1H), 6.77
(ddd, J = 8.0, 7.3, 1.3 Hz, 1H), 7.17 (ddd, J = 7.9, 7.3, 1.3 Hz, 1H),
7.38 (dd, J = 7.9, 1.3 Hz, 1H), 7.83 (d, J = 15.8 Hz, 1H); 13C NMR
(101 MHz, CDCl3) δ 51.7 (CH3), 116.7 (CH), 117.7 (CH), 119.0
(CH), 119.9 (C), 128.1 (CH), 131.3 (CH), 140.3 (CH), 145.6 (C),
167.7 (C); MS (ESI) m/z 200 (MNa+, 4), 168 (26), 146 (100), 128
(31).

Methyl (2E)-3-(2′-Amino-5′-methylphenyl)prop-2-enoate
(4b).16 The reaction was carried out as described for the synthesis
of methyl (2E)-3-(2′-aminophenyl)prop-2-enoate (4a) using 4-
methyl-2-iodoaniline (3b) (2.00 g, 8.58 mmol). Purification by
column chromatography (diethyl ether/petroleum ether, 1:3) gave
methyl (2E)-3-(2′-amino-5′-methylphenyl)prop-2-enoate (4b) (1.64
g, 100%) as a yellow solid. Mp 84−86 °C; Rf = 0.28 (diethyl ether/
petroleum ether = 1:1). Spectroscopic data were consistent with the
literature.16 1H NMR (400 MHz, CDCl3) δ 2.24 (s, 3H), 3.79 (s, 3H),
3.86 (br s, 2H), 6.34 (d, J = 15.8 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H),
6.99 (dd, J = 8.1, 1.5 Hz, 1H), 7.19 (d, J = 1.5 Hz, 1H), 7.82 (d, J =
15.8 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 20.4 (CH3), 51.6
(CH3), 117.0 (CH), 117.4 (CH), 119.9 (C), 128.2 (C), 128.2 (CH),

Scheme 4. Synthesis of 5-Amino-2,5-Dihydro-1H-
benzo[b]azepines 10b−ga

aIsolated yields are shown. bThe RCM step required a reaction time of
24 h. cThe Overman rearrangement and RCM step required reaction
times of 43 and 31 h, respectively.

Scheme 5. Formal Synthesis of Mozavaptan (1)a

aIsolated yields are shown.

The Journal of Organic Chemistry Article

DOI: 10.1021/acs.joc.6b01357
J. Org. Chem. 2016, 81, 6697−6706

6699

http://dx.doi.org/10.1021/acs.joc.6b01357


132.3 (CH), 140.4 (CH), 143.3 (C), 167.8 (C); MS (ESI) m/z 214
(MNa+, 100), 192 (11), 182 (23).
Methyl (2E)-3-(2′-Amino-5′-methoxyphenyl)prop-2-enoate

(4c).17 The reaction was carried out as described for the synthesis
of methyl (2E)-3-(2′-aminophenyl)prop-2-enoate (4a) using 4-
methoxy-2-iodoaniline (3c) (0.170 g, 0.680 mmol) and potassium
carbonate (0.188 g, 1.36 mmol). Purification by column chromatog-
raphy (diethyl ether/petroleum ether, 1:3) gave methyl (2E)-3-(2′-
amino-5′-methoxyphenyl)prop-2-enoate (4c) (0.141 g, 100%) as a
yellow solid. Mp 93−95 °C; Rf = 0.20 (diethyl ether/petroleum ether
= 1:1). Spectroscopic data were consistent with the literature.17 1H
NMR (400 MHz, CDCl3) δ 3.71 (br s, 2H), 3.76 (s, 3H), 3.81 (s,
3H), 6.35 (d, J = 15.8 Hz, 1H), 6.67 (d, J = 8.7 Hz, 1H), 6.82 (dd, J =
8.7, 2.9 Hz, 1H), 6.92 (d, J = 2.9 Hz, 1H), 7.82 (d, J = 15.8 Hz, 1H);
13C NMR (101 MHz, CDCl3) δ 51.7 (CH3), 55.8 (CH3), 111.6 (CH),
117.9 (CH), 118.4 (CH), 118.7 (CH), 120.8 (C), 139.6 (C), 140.2
(CH), 152.8 (C), 167.6 (C); MS (ESI) m/z 208 (MH+, 100).
Methyl (2E)-3-(2′-Amino-5′-fluorophenyl)prop-2-enoate

(4d).10 The reaction was carried out as described for the synthesis
of methyl (2E)-3-(2′-aminophenyl)prop-2-enoate (4a) using 4-fluoro-
2-iodoaniline (3d) (3.77 g, 16.0 mmol) and potassium carbonate (4.40
g, 32.0 mmol). Purification by column chromatography (ethyl acetate/
petroleum ether, 1:3) gave methyl (2E)-3-(2′-amino-5′-fluorophenyl)-
prop-2-enoate (4d) (2.50 g, 81%) as a yellow solid. Mp 96−98 °C
(lit.10 93−95 °C); Rf = 0.28 (diethyl ether/petroleum ether = 1:1); 1H
NMR (400 MHz, CDCl3) δ 3.80 (s, 3H), 3.86 (br s, 2H), 6.33 (d, J =
15.8 Hz, 1H), 6.65 (dd, J = 8.7, 4JHF = 4.8 Hz, 1H), 6.90 (td, J = 8.7,
2.9 Hz, 1H), 7.08 (dd, 3JHF = 9.5, J = 2.9 Hz, 1H), 7.76 (dd, J = 15.8,
5JHF = 1.1 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 51.8 (CH3), 113.4
(d, 2JCF = 22.7 Hz, CH), 118.0 (d, 3JCF = 7.7 Hz, CH), 118.3 (d, 2JCF =
23.0 Hz, CH), 118.8 (CH), 120.8 (d, 3JCF = 7.2 Hz, C), 139.1 (d, 4JCF
= 2.2 Hz, CH), 141.8 (C), 156.2 (d, 1JCF = 237.0 Hz, C), 167.3 (C);
MS (ESI) m/z 218 (MNa+, 100), 169 (25), 186 (13), 164 (20).
Methyl (2E)-3-(2′-Amino-4′-fluorophenyl)prop-2-enoate

(4e).17 The reaction was carried out as described for the synthesis
of methyl (2E)-3-(2′-aminophenyl)prop-2-enoate (4a) using 5-fluoro-
2-iodoaniline (3e) (0.926 g, 3.90 mmol) and potassium carbonate
(1.08 g, 7.80 mmol). Purification by column chromatography (ethyl
acetate/petroleum ether, 1:3) gave methyl (2E)-3-(2′-amino-4′-
fluorophenyl)prop-2-enoate (4e) (0.639 g, 84%) as a yellow solid.
Mp 107−109 °C; Rf = 0.25 (diethyl ether/petroleum ether = 1:1).
Spectroscopic data were consistent with the literature.17 1H NMR
(400 MHz, CDCl3) δ 3.80 (s, 3H), 4.11 (br s, 2H), 6.29 (d, J = 15.8
Hz, 1H), 6.39 (dd, 3JHF = 10.5, J = 2.5 Hz, 1H), 6.47 (td, J = 8.7, 2.5
Hz, 1H), 7.34 (dd, J = 8.7, 4JHF = 6.4 Hz, 1H), 7.74 (d, J = 15.8 Hz,
1H); 13C NMR (101 MHz, CDCl3) δ 51.7 (CH3), 102.9 (d, 2JCF =
24.8 Hz, CH), 106.3 (d, 2JCF = 22.2 Hz, CH), 116.0 (d, 4JCF = 2.4 Hz,
C), 117.2 (CH), 130.0 (d, 3JCF = 10.6 Hz, CH), 139.3 (CH), 147.4 (d,
3JCF = 11.5 Hz, C), 164.9 (d, 1JCF = 248.9 Hz, C), 167.6 (C); MS (ESI)
m/z 218 (MNa+, 100), 186 (59), 164 (6).
Methyl (2E)-3-(2′-Amino-5′-chlorophenyl)prop-2-enoate

(4f).10 The reaction was carried out as described for the synthesis of
methyl (2E)-3-(2′-aminophenyl)prop-2-enoate (4a) using 4-chloro-2-
iodoaniline (3f) (0.975 g, 3.90 mmol) and potassium carbonate (1.08
g, 7.80 mmol). The reaction mixture was stirred at 80 °C for 8 h.
Purification by column chromatography (ethyl acetate/petroleum
ether = 1:3) gave methyl (2E)-3-(2′-amino-5′-chlorophenyl)prop-2-
enoate (4f) (0.622 g, 76%) as a yellow solid. Mp 92−94 °C; Rf = 0.18
(diethyl ether/petroleum ether = 1:1). Spectroscopic data were
consistent with the literature.10 1H NMR (400 MHz, CDCl3) δ 3.81
(s, 3H), 3.97 (br s, 2H), 6.34 (d, J = 15.8 Hz, 1H), 6.64 (d, J = 8.6 Hz,
1H), 7.12 (dd, J = 8.6, 2.4 Hz, 1H), 7.34 (d, J = 2.4 Hz, 1H), 7.73 (d, J
= 15.8 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 51.8 (CH3), 117.9
(CH), 119.0 (CH), 121.1 (C), 123.7 (C), 127.3 (CH), 131.0 (CH),
138.9 (CH), 144.0 (C), 167.3 (C); MS (ESI) m/z 234 (MNa+, 64),
202 (46), 186 (100).
Methyl (2E)-3-(2′-[N-(p-Toluenesulfonyl)amino]phenyl)-

prop-2-enoate.18 p-Toluenesulfonyl chloride (2.50 g, 13.0 mmol)
was added to a solution of methyl (2E)-3-(2′-aminophenyl)prop-2-
enoate (4a) (1.53 g, 8.70 mmol) in pyridine (43 mL) at 0 °C. The

reaction mixture was allowed to warm to room temperature and stirred
for 1 h. The reaction mixture was diluted with water (50 mL) and
extracted with dichloromethane (3 × 50 mL), washed with lithium
chloride solution (10 mL) and brine (10 mL), dried (MgSO4), filtered,
and concentrated in vacuo. Flash column chromatography (diethyl
ether/petroleum ether, 1:1) afforded methyl (2E)-3-(2′-[N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (2.66 g, 93%) as a
white solid. Mp 156−158 °C (lit.18 160−162 °C); Rf = 0.13 (diethyl
ether/petroleum ether = 1:1); 1H NMR (400 MHz, CDCl3) δ 2.35 (s,
3H), 3.77 (s, 3H), 6.11 (d, J = 15.8 Hz, 1H), 7.17 (d, J = 8.2 Hz, 2H),
7.20−7.27 (m, 2H), 7.34 (td, J = 8.0, 1.5 Hz, 1H), 7.40 (dd, J = 8.0,
1.2 Hz, 1H), 7.45 (dd, J = 8.0, 1.5 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H),
7.62 (d, J = 15.8 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 21.5
(CH3), 51.9 (CH3), 120.1 (CH), 127.1 (CH), 127.2 (CH), 127.3 (2 ×
CH), 127.6 (CH), 129.6 (2 × CH), 130.6 (C), 130.9 (CH), 134.8
(C), 135.9 (C), 139.3 (CH), 143.9 (C), 167.0 (C); MS (ESI) m/z 354
(MNa+, 100), 233 (8).

Methyl (2E)-3-(5′-Methyl-2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate.19 The reaction was carried out as described
for the synthesis of methyl (2E)-3-(2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate using methyl (2E)-3-(2′-amino-5′-methyl-
phenyl)prop-2-enoate (4b) (1.50 g, 7.84 mmol). Purification by
column chromatography (ethyl acetate/petroleum ether = 1:4) gave
methyl (2E)-3-(5′-methyl-2′-[N-(p-toluenesulfonyl)amino]phenyl)-
prop-2-enoate (2.68 g, 99%) as a white solid. Mp 164−166 °C
(lit.19 160−162 °C); Rf = 0.20 (diethyl ether/petroleum ether = 1:1);
1H NMR (400 MHz, CDCl3) δ 2.32 (s, 3H), 2.35 (s, 3H), 3.77 (s,
3H), 6.10 (d, J = 15.9 Hz, 1H), 6.99 (br s, 1H), 7.12−7.19 (m, 3H),
7.23−7.26 (m, 2H), 7.50−7.57 (m, 3H); 13C NMR (101 MHz,
CDCl3) δ 21.0 (CH3), 21.5 (CH3), 51.8 (CH3), 119.7 (CH), 127.3 (2
× CH), 127.4 (CH), 128.0 (CH), 129.6 (2 × CH), 130.7 (C), 131.8
(CH), 132.1 (C), 135.9 (C), 137.4 (C), 139.4 (CH), 143.8 (C), 167.0
(C); MS (ESI) m/z 368 (MNa+, 100).

Methyl (2E)-3-(5′-Methoxy-2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate. The reaction was carried out as described
for the synthesis of methyl (2E)-3-(2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate using methyl (2E)-3-(2′-amino-5′-methoxy-
phenyl)prop-2-enoate (4c) (0.014 g, 0.070 mmol). Purification by
column chromatography (ethyl acetate/petroleum ether = 1:4) gave
methyl (2E)-3-(5′-methoxy-2′-[N-(p-toluenesulfonyl)amino]phenyl)-
prop-2-enoate (0.023 g, 93%) as a white solid. Mp 162−164 °C; Rf =
0.23 (petroleum ether/ethyl acetate = 2:1); IR (neat) 3256, 3023,
1701, 1637, 1495, 1214, 1325, 1161, 750 cm−1; 1H NMR (500 MHz,
CDCl3) δ 2.37 (s, 3H), 3.78 (s, 3H), 3.81 (s, 3H), 6.09 (d, J = 15.9 Hz,
1H), 6.53 (br s, 1H), 6.89 (dd, J = 8.8, 2.9 Hz, 1H), 6.95 (d, J = 2.9
Hz, 1H), 7.19 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.8 Hz, 1H), 7.46 (d, J
= 15.9 Hz, 1H), 7.52 (d, J = 8.2 Hz, 2H); 13C NMR (101 MHz,
CDCl3) δ 21.5 (CH3), 51.8 (CH3), 55.5 (CH3), 111.4 (CH), 116.7
(CH), 120.1 (CH), 127.3 (C), 127.4 (2 × CH), 129.6 (2 × CH),
130.6 (CH), 133.1 (C), 135.8 (C), 139.2 (CH), 143.9 (C), 158.9 (C),
166.7 (C); MS (ESI) m/z 384 (MNa+, 100); HRMS (ESI) calcd for
C18H19NNaO5S (MNa+), 384.0876; found, 384.0864.

Methyl (2E)-3-(5′-Fluoro-2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate.19 The reaction was carried out as described
for the synthesis of methyl (2E)-3-(2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate using methyl (2E)-3-(2′-amino-5′-fluoro-
phenyl)prop-2-enoate (4d) (2.50 g, 13.0 mmol). Purification by
column chromatography (ethyl acetate/petroleum ether = 1:5) gave
methyl (2E)-3-(5′-fluoro-2′-[N-(p-toluenesulfonyl)amino]phenyl)-
prop-2-enoate (3.94 g, 88%) as a white solid. Mp 156−158 °C
(lit.19 156−158 °C); Rf = 0.13 (diethyl ether/petroleum ether = 1:1);
1H NMR (400 MHz, CDCl3) δ 2.36 (s, 3H), 3.78 (s, 3H), 6.07 (d, J =
15.8 Hz, 1H), 6.96 (br s, 1H), 7.06 (ddd, J = 8.8, 3JHF = 7.7, J = 2.9 Hz,
1H), 7.14 (dd, 3JHF = 9.2, J = 2.9 Hz, 1H), 7.19 (d, J = 8.1 Hz, 2H),
7.35 (dd, J = 8.8, 4JHF = 5.2 Hz, 1H), 7.50 (dd, J = 15.8, 5JHF = 1.5 Hz,
1H), 7.52 (d, J = 8.1 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5
(CH3), 52.0 (CH3), 113.3 (d, 2JCF = 23.5 Hz, CH), 117.9 (d, 2JCF =
22.7 Hz, CH), 121.2 (CH), 127.3 (2 × CH), 129.7 (2 × CH), 130.6
(d, 4JCF = 2.9 Hz, C), 130.7 (d, 3JCF = 8.8 Hz, CH), 133.4 (d, 3JCF = 8.4
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Hz, C), 135.6 (C), 138.2 (d, 4JCF = 2.2 Hz, CH), 144.2 (C), 161.5 (d,
1JCF = 248.4 Hz, C), 166.5 (C); MS (ESI) m/z 372 (MNa+, 100).
Methyl (2E)-3-(4′-Fluoro-2′-[N-(p-toluenesulfonyl)amino]-

phenyl)prop-2-enoate.17 The reaction was carried out as described
for the synthesis of methyl (2E)-3-(2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate using methyl (2E)-3-(2′-amino-4′-fluoro-
phenyl)prop-2-enoate (4e) (0.620 g, 3.20 mmol). Purification by
column chromatography (ethyl acetate/petroleum ether = 1:5) gave
methyl (2E)-3-(4′-fluoro-2′-[N-(p-toluenesulfonyl)amino]phenyl)-
prop-2-enoate (1.08 g, 97%) as a yellow solid. Mp 157−159 °C; Rf
= 0.13 (diethyl ether/petroleum ether = 1:1). Spectroscopic data were
consistent with the literature.17 1H NMR (400 MHz, CDCl3) δ 2.38
(s, 3H), 3.79 (s, 3H), 6.11 (d, J = 15.8 Hz, 1H), 6.92 (td, J = 8.7, 2.6
Hz, 1H), 7.00 (br s, 1H), 7.20−7.26 (m, 3H), 7.41 (dd, J = 8.7, 4JHF =
6.1 Hz, 1H), 7.48 (d, J = 15.8 Hz, 1H), 7.63 (d, J = 8.3 Hz, 2H); 13C
NMR (101 MHz, CDCl3) δ 21.5 (CH3), 51.9 (CH3), 112.8 (d, 2JCF =
24.9 Hz, CH), 114.1 (d, 2JCF = 21.8 Hz, CH), 120.5 (CH), 125.1 (d,
4JCF = 3.4 Hz, C), 127.3 (2 × CH), 128.9 (d, 3JCF = 9.5 Hz, CH), 129.9
(2 × CH), 135.7 (C), 136.5 (d, 3JCF = 10.8 Hz, C), 137.8 (CH), 144.4
(C), 163.8 (d, 1JCF = 251.8 Hz, C), 166.7 (C); MS (ESI) m/z 372
(MNa+, 100), 363 (37).
Methyl (2E)-3-(5′-Chloro-2′-[N-(p-toluenesulfonyl)amino]-

phenyl)prop-2-enoate.19 The reaction was carried out as described
for the synthesis of methyl (2E)-3-(2′-[N-(p-toluenesulfonyl)amino]-
phenyl)prop-2-enoate using methyl (2E)-3-(2′-amino-5′-
chlorophenyl)prop-2-enoate (4f) (0.406 g, 1.90 mmol). The reaction
mixture was stirred at room temperature for 18 h. Purification by
column chromatography (ethyl acetate/petroleum ether = 1:5) gave
methyl (2E)-3-(5′-chloro-2′-[N-(p-toluenesulfonyl)amino]phenyl)-
prop-2-enoate (0.638 g, 91%) as a yellow solid. Mp 152−154 °C
(lit.19 149−151 °C); Rf = 0.43 (petroleum ether/ethyl acetate = 2:1);
1H NMR (400 MHz, CDCl3) δ 2.36 (s, 3H), 3.78 (s, 3H), 6.09 (d, J =
15.8 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.28 (br s, 1H), 7.31 (dd, J =
8.6, 2.4 Hz, 1H), 7.36 (d, J = 8.6 Hz, 1H), 7.40 (d, J = 2.4 Hz, 1H),
7.50−7.56 (m, 3H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 52.1
(CH3), 121.3 (CH), 126.9 (CH), 127.3 (2 × CH), 129.1 (CH), 129.8
(2 × CH), 130.8 (CH), 132.2 (C), 133.1 (C), 133.3 (C), 135.6 (C),
138.1 (CH), 144.2 (C), 166.7 (C); MS (ESI) m/z 388 (MNa+, 100).
Methyl (2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-

phenyl)prop-2-enoate (5a). Allyl bromide (0.830 mL, 9.60
mmol) was added to a stirred solution of methyl (2E)-3-(2′-[N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (2.66 g, 8.00 mmol) and
potassium carbonate (2.21 g, 16.0 mmol) in N,N′-dimethylformamide
(50 mL). The reaction mixture was heated to 70 °C for 1 h. The
reaction mixture was cooled to room temperature, diluted with 5%
aqueous lithium chloride solution (20 mL), and extracted with diethyl
ether (50 mL). The organic layer was washed with 5% aqueous lithium
chloride solution (3 × 10 mL), brine (10 mL), dried (MgSO4),
filtered, and concentrated in vacuo. Purification by column
chromatography (diethyl ether/petroleum ether = 1:1) gave methyl
(2E)-3-(2′-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-
enoate (5a) (2.98 g, 100%) as a white solid. Mp 104−106 °C; Rf =
0.38 (diethyl ether/petroleum ether = 1:1); IR (neat) 2951, 1716,
1636, 1436, 1319, 1164, 763 cm−1; 1H NMR (400 MHz, CDCl3) δ
2.42 (s, 3H), 3.79 (s, 3H), 4.02 (br s, 1H), 4.27 (br s, 1H), 4.93−5.02
(m, 2H), 5.74 (ddt, J = 17.0, 10.0, 6.8 Hz, 1H), 6.33 (d, J = 16.1 Hz,
1H), 6.84 (dd, J = 7.8, 1.1 Hz, 1H), 7.24−7.35 (m, 4H), 7.56 (d, J =
8.2 Hz, 2H), 7.64 (dd, J = 7.8, 1.5 Hz, 1H), 7.86 (d, J = 16.1 Hz, 1H);
13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 51.7 (CH3), 54.9 (CH2),
119.7 (CH), 119.7 (CH2), 127.1 (CH), 128.0 (2 × CH), 128.8 (CH),
129.6 (2 × CH), 129.9 (CH), 130.3 (CH), 132.1 (CH), 135.6 (C),
135.6 (C), 138.3 (C), 140.3 (CH), 143.8 (C), 166.9 (C); MS (ESI)
m/z 394 (MNa+, 100); HRMS (ESI) calcd for C20H21NNaO4S
(MNa+), 394.1083; found, 394.1067.
Methyl (2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-

methylphenyl)prop-2-enoate (5b). The reaction was carried out
as described for the synthesis of methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-
3-(5′-methyl-2′-[N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate
(2.00 g, 5.79 mmol) and a reaction time of 3 h. Purification by column

chromatography (ethyl acetate/petroleum ether = 1:5) gave methyl
(2E)-3-(2′-[N-allyl-N-(p-toluenesulfonyl)amino]-5′-methylphenyl)-
prop-2-enoate (5b) (2.03 g, 91%) as a white solid. Mp 118−120 °C; Rf
= 0.25 (diethyl ether/petroleum ether = 1:1); IR (neat) 2950, 1717,
1639, 1435, 1347, 1160, 759 cm−1; 1H NMR (400 MHz, CDCl3) δ
2.34 (s, 3H), 2.42 (s, 3H), 3.78 (s, 3H), 3.99 (br s, 1H), 4.26 (br s,
1H), 4.93−5.02 (m, 2H), 5.74 (ddt, J = 17.0, 10.1, 6.8 Hz, 1H), 6.31
(d, J = 16.1 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 7.08 (dd, J = 8.1, 1.6
Hz, 1H), 7.26 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 1.6 Hz, 1H), 7.56 (d, J
= 8.2 Hz, 2H), 7.82 (d, J = 16.1 Hz, 1H); 13C NMR (101 MHz,
CDCl3) δ 21.2 (CH3), 21.5 (CH3), 51.7 (CH3), 54.9 (CH2), 119.4
(CH), 119.6 (CH2), 127.6 (CH), 128.0 (2 × CH), 129.5 (2 × CH),
129.6 (CH), 131.3 (CH), 132.3 (CH), 135.2 (C), 135.7 (C), 135.7
(C), 138.7 (C), 140.5 (CH), 143.7 (C), 167.0 (C); MS (ESI) m/z 408
(MNa+, 100); HRMS (ESI) calcd for C21H23NNaO4S (MNa+),
408.1240; found, 408.1220.

Methyl (2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-
methoxyphenyl)prop-2-enoate (5c). The reaction was carried
out as described for the synthesis of methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-
3-(5′-methoxy-2′-[N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate
(0.145 g, 0.400 mmol) and a reaction time of 2 h. Purification by
column chromatography (ethyl acetate/petroleum ether = 1:5) gave
methyl (2E)-3-(2′-[N-allyl-N-(p-toluenesulfonyl)amino]-5′-methoxy-
phenyl)prop-2-enoate (5c) (0.149 g, 92%) as a white solid. Mp
153−155 °C; Rf = 0.40 (petroleum ether/ethyl acetate = 2:1); IR
(neat) 3022, 1709, 1642, 1495, 1289, 1215, 1163, 751 cm−1; 1H NMR
(400 MHz, CDCl3) δ 2.42 (s, 3H), 3.79 (s, 3H), 3.81 (s, 3H), 3.96−
4.01 (m, 1H), 4.24−4.29 (m, 1H), 4.93−5.03 (m, 2H), 5.74 (ddt, J =
16.9, 10.1, 6.8 Hz, 1H), 6.29 (d, J = 16.1 Hz, 1H), 6.74 (d, J = 8.8 Hz,
1H), 6.81 (dd, J = 8.8, 2.8 Hz, 1H), 7.09 (d, J = 2.8 Hz, 1H), 7.26 (d, J
= 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 16.1 Hz, 1H); 13C
NMR (101 MHz, CDCl 3) δ 21.5 (CH3), 51.7 (CH3), 55.0 (CH2),
55.5 (CH3), 111.2 (CH), 116.4 (CH), 119.7 (CH2), 119.8 (CH),
128.0 (2 × CH), 129.6 (2 × CH), 131.0 (CH), 132.3 (CH), 135.7
(C), 136.6 (C), 140.4 (CH), 143.7 (2 × C), 159.3 (C), 166.8 (C); MS
(ESI) m/z 424 (MNa+, 100); HRMS (ESI) calcd for C21H23NNaO5S
(MNa+), 424.1189; found, 424.1176.

Methyl (2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-
fluorophenyl)prop-2-enoate (5d). The reaction was carried out
as described for the synthesis of methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-
3-(5′-fluoro-2′-[N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate
(3.74 g, 11.0 mmol). Purification by column chromatography (ethyl
acetate/petroleum ether = 1:7) gave methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-fluorophenyl)prop-2-enoate (5d) (3.50 g,
84%) as a white solid. Mp 108−110 °C; Rf = 0.43 (diethyl ether/
petroleum ether = 1:1); IR (neat) 2951, 1718, 1650, 1488, 1323, 1275,
1160, 862, 728 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.40 (s, 3H),
3.77 (s, 3H), 3.95 (br s, 1H), 4.25 (br s, 1H), 4.95 (dd, J = 17.0, 1.2
Hz, 1H), 5.00 (dd, J = 10.1, 1.2 Hz, 1H), 5.71 (ddt, J = 17.0, 10.1, 6.8
Hz, 1H), 6.28 (d, J = 16.1 Hz, 1H), 6.80 (dd, J = 8.8, 4JHF = 5.3 Hz,
1H), 6.95 (ddd, J = 8.8, 3JHF = 7.6, J = 2.9 Hz, 1H), 7.26 (d, J = 8.2 Hz,
2H), 7.28 (dd, 3JHF = 9.4, J = 2.9 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H),
7.76 (dd, J = 16.1, 5JHF = 1.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ
21.5 (CH3), 51.8 (CH3), 55.0 (CH2), 113.5 (d, 2JCF = 23.4 Hz, CH),
117.4 (d, 2JCF = 23.0 Hz, CH), 120.1 (CH2), 120.9 (CH), 127.9 (2 ×
CH), 129.7 (2 × CH), 131.8 (d, 3JCF = 8.9 Hz, CH), 131.9 (CH),
134.2 (d, 4JCF = 3.1 Hz, C), 135.3 (C), 137.8 (d, 3JCF = 8.5 Hz, C),
139.2 (d, 4JCF = 2.0 Hz, CH), 144.0 (C), 162.0 (d, 1JCF = 249.4 Hz, C),
166.5 (C); MS (ESI) m/z 412 (MNa+, 100); HRMS (ESI) calcd for
C20H20FNNaO4S (MNa+), 412.0989; found, 412.0969.

Methyl (2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-4′-
fluorophenyl)prop-2-enoate (5e). The reaction was carried out
as described for the synthesis of methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-
3-(4′-fluoro-2′-[N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate
(1.07 g, 3.00 mmol). Purification by column chromatography (ethyl
acetate/petroleum ether = 1:7) gave methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-4′-fluorophenyl)prop-2-enoate (5e) (0.946 g,
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79%) as a white solid. Mp 111−113 °C; Rf = 0.38 (diethyl ether/
petroleum ether = 1:1); IR (neat) 2951, 1712, 1602, 1497, 1353, 1256,
1164, 908, 730 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.43 (s, 3H),
3.78 (s, 3H), 4.02 (br s, 1H), 4.21 (br s, 1H), 4.95−5.05 (m, 2H), 5.72
(ddt, J = 16.9, 10.1, 6.8 Hz, 1H), 6.27 (d, J = 16.1 Hz, 1H), 6.57 (dd,
3JHF = 9.2, J = 2.8 Hz, 1H), 7.06 (td, J = 8.8, 2.8 Hz, 1H), 7.29 (d, J =
8.2 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.62 (dd, J = 8.8, 4JHF = 6.2 Hz,
1H), 7.78 (d, J = 16.1 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 21.6
(CH3), 51.7 (CH3), 54.9 (CH2), 116.4 (d,

2JCF = 21.6 Hz, CH), 117.0
(d, 2JCF = 21.9 Hz, CH), 119.5 (CH), 120.2 (CH2), 128.0 (2 × CH),
128.6 (d, 3JCF = 9.4 Hz, CH), 129.7 (2 × CH), 131.7 (CH), 132.1 (d,
4JCF = 3.7 Hz, C), 135.1 (C), 139.3 (CH), 139.8 (d, 3JCF = 9.2 Hz, C),
144.2 (C), 163.1 (d, 1JCF = 253.1 Hz, C), 166.7 (C); MS (ESI) m/z
412 (MNa+, 100); HRMS (ESI) calcd for C20H20FNNaO4S (MNa+),
412.0989; found, 412.0970.
Methyl (2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-

chlorophenyl)prop-2-enoate (5f). The reaction was carried out
as described for the synthesis of methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using methyl (2E)-
3-(5′-chloro-2′-[N-(p-toluenesulfonyl)amino]phenyl)prop-2-enoate
(0.600 g, 1.60 mmol). Purification by column chromatography (ethyl
acetate/petroleum ether = 1:5) gave methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-chlorophenyl)prop-2-enoate (5f) (0.664 g,
100%) as a yellow solid. Mp 104−106 °C; Rf = 0.58 (petroleum ether/
ethyl acetate = 2:1); IR (neat) 2951, 1720, 1610, 1353, 1164, 908, 730
cm−1; 1H NMR (400 MHz, CDCl3) δ 2.44 (s, 3H), 3.80 (s, 3H), 3.99
(br s, 1H), 4.26 (br s, 1H), 4.97 (dd, J = 17.0, 1.1 Hz, 1H), 5.03 (dd, J
= 10.1, 1.1 Hz, 1H), 5.73 (ddt, J = 17.0, 10.1, 6.8 Hz, 1H), 6.31 (d, J =
16.1 Hz, 1H), 6.78 (d, J = 8.6 Hz, 1H), 7.24 (dd, J = 8.6, 2.4 Hz, 1H),
7.29 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 2.4 Hz,
1H), 7.75 (d, J = 16.1 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 21.6
(CH3), 51.8 (CH3), 54.9 (CH2), 120.2 (CH2), 121.0 (CH), 127.1
(CH), 128.0 (2 × CH), 129.7 (2 × CH), 130.3 (CH), 131.2 (CH),
131.8 (CH), 134.7 (C), 135.3 (C), 136.7 (C), 137.4 (C), 139.0 (CH),
144.1 (C), 166.5 (C); MS (ESI) m/z 428 (MNa+, 100); HRMS (ESI)
calcd for C20H20

35ClNNaO4S (MNa+), 428.0694; found, 428.0673.
(2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-

2-en-1-ol (6a). Diisobutylaluminum hydride (4.1 mL, 4.1 mmol, 1 M
in hexane) was added dropwise with stirring to a solution of methyl
(2E)-3-(2′-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-
enoate (5a) (0.690 g, 1.86 mmol) in dichloromethane (19 mL) at −78
°C. The solution was stirred at −78 °C for 2 h and then allowed to
warm to room temperature over 16 h. The reaction was quenched with
10% aqueous potassium sodium tartrate solution (5 mL), extracted
with diethyl ether (2 × 10 mL), washed with water (20 mL), brine (20
mL), dried (MgSO4), filtered, and concentrated in vacuo. Purification
by column chromatography (ethyl acetate/petroleum ether = 1:2)
gave (2E)-3-(2′-[N-allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-
en-1-ol (6a) (0.611 g, 96%) as a colorless oil. Rf = 0.13 (diethyl
ether/petroleum ether = 1:1); IR (neat) 3491, 2924, 1597, 1341, 1161,
726 cm−1; 1H NMR (400 MHz, CDCl3) δ 1.97 (br s, 1H), 2.43 (s,
3H), 4.00 (br s, 1H), 4.18−4.29 (m, 3H), 4.93−5.01 (m, 2H), 5.72
(ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 6.33 (dt, J = 16.0, 5.4 Hz, 1H), 6.68
(dd, J = 7.8, 1.3 Hz, 1H), 6.83 (d, J = 16.0 Hz, 1H), 7.12 (td, J = 7.8,
1.3 Hz, 1H), 7.23−7.30 (m, 3H), 7.55−7.61 (m, 3H); 13C NMR (101
MHz, CDCl3) δ 21.5 (CH3), 54.8 (CH2), 63.8 (CH2), 119.4 (CH2),
126.5 (CH), 126.7 (CH), 127.8 (CH), 127.9 (2 × CH), 128.6 (CH),
129.4 (CH), 129.5 (2 × CH), 130.8 (CH), 132.4 (CH), 136.1 (C),
136.6 (C), 137.8 (C), 143.6 (C); MS (ESI) m/z 366 (MNa+, 100);
HMRS (ESI) calcd for C19H21NNaO3S (MNa+), 366.1134; found,
366.1119.
(2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-methyl-

phenyl)prop-2-en-1-ol (6b). The reaction was carried out as
described for the synthesis of (2E)-3-(2′-[N-allyl-N-(p-toluene-
sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2′-
[N-allyl-N-(p-toluenesulfonyl)amino]-5′-methylphenyl)prop-2-enoate
(5b) (1.50 g, 3.89 mmol). Purification by column chromatography
(ethyl acetate/petroleum ether = 1:2) gave (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-methylphenyl)prop-2-en-1-ol (6b) (1.37 g,
98%) as a colorless oil. Rf = 0.10 (diethyl ether/petroleum ether =

1:1); IR (neat) 3510, 2921, 1598, 1491, 1340, 1159, 859, 734 cm−1;
1H NMR (400 MHz, CDCl3) δ 2.15 (br s, 1H), 2.31 (s, 3H), 2.42 (s,
3H), 3.96 (br s, 1H), 4.19−4.28 (m, 3H), 4.93−5.01 (m, 2H), 5.72
(ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 6.31 (dt, J = 16.0, 5.7 Hz, 1H), 6.56
(d, J = 8.1 Hz, 1H), 6.79 (d, J = 16.0 Hz, 1H), 6.92 (dd, J = 8.1, 1.3
Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 1.3 Hz, 1H), 7.57 (d, J
= 8.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.2 (CH3), 21.5
(CH3), 54.8 (CH2), 63.8 (CH2), 119.2 (CH2), 126.7 (CH), 127.0
(CH), 127.9 (2 × CH), 128.7 (CH), 129.1 (CH), 129.5 (2 × CH),
130.5 (CH), 132.5 (CH), 134.1 (C), 136.2 (C), 137.3 (C), 138.4 (C),
143.5 (C); MS (ESI) m/z 380 (MNa+, 100); HRMS (ESI) calcd for
C20H23NNaO3S (MNa+), 380.1291; found, 380.1279.

(2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-methoxy-
phenyl)prop-2-en-1-ol (6c). The reaction was carried out as
described for the synthesis of (2E)-3-(2′-[N-allyl-N-(p-toluene-
sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2′-
[N-allyl-N-(p-toluenesulfonyl)amino]-5′-methoxyphenyl)prop-2-
enoate (5c) (0.140 g, 0.350 mmol). Purification by column
chromatography (ethyl acetate/petroleum ether = 1:2) gave (2E)-3-
(2′-[N-allyl-N-(p-toluenesulfonyl)amino]-5′-methoxyphenyl)prop-2-
en-1-ol (6c) (0.104 g, 80%) as a colorless oil. Rf = 0.18 (petroleum
ether/ethyl acetate = 2:1); IR (neat) 3523, 2944, 1601, 1495, 1345,
1161, 752 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.07 (t, J = 5.4 Hz,
1H), 2.42 (s, 3H), 3.79 (s, 3H), 3.91−3.98 (m, 1H), 4.18−4.28 (m,
3H), 4.93−5.01 (m, 2H), 5.72 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 6.30
(dt, J = 16.0, 5.4 Hz, 1H), 6.58 (d, J = 8.8 Hz, 1H), 6.65 (dd, J = 8.8,
2.9 Hz, 1H), 6.77 (dt, J = 16.0, 1.5 Hz, 1H), 7.07 (d, J = 2.9 Hz, 1H),
7.27 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H); 13C NMR (101
MHz, CDCl3) δ 21.5 (CH3), 54.9 (CH2), 55.4 (CH3), 63.7 (CH2),
110.7 (CH), 113.9 (CH), 119.3 (CH2), 126.6 (CH), 127.9 (2 × CH),
129.4 (C), 129.7 (2 × CH), 130.4 (CH), 130.9 (CH), 132.5 (CH),
136.2 (C), 138.8 (C), 143.5 (C), 159.2 (C); MS (ESI) m/z 396
(MNa+, 100); HRMS (ESI) calcd for C20H23NNaO4S (MNa+),
396.1240; found, 396.1223.

(2E )-3-(2 ′-[N-Allyl-N- (p-toluenesulfonyl)amino]-5 ′-
fluorophenyl)prop-2-en-1-ol (6d). The reaction was carried out as
described for the synthesis of (2E)-3-(2′-[N-allyl-N-(p-toluene-
sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2′-
[N-allyl-N-(p-toluenesulfonyl)amino]-5′-fluorophenyl)prop-2-enoate
(5d) (3.30 g, 8.50 mmol). Purification by column chromatography
(ethyl acetate/petroleum ether = 1:3) gave (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-fluorophenyl)prop-2-en-1-ol (6d) (2.99 g,
98%) as a colorless oil. Rf = 0.10 (diethyl ether/petroleum ether =
1:1); IR (neat) 3507, 2920, 1600, 1488, 1345, 1161, 752 cm−1; 1H
NMR (400 MHz, CDCl3) δ 2.35 (t, J = 5.6 Hz, 1H), 2.42 (s, 3H), 3.95
(dd, J = 13.4, 6.8, 1H), 4.17−4.28 (m, 3H), 4.91−5.01 (m, 2H), 5.70
(ddt, J = 16.9, 10.1, 6.8 Hz, 1H), 6.30 (dt, J = 16.0, 5.5 Hz, 1H), 6.65
(dd, J = 8.8, 4JHF = 5.4 Hz, 1H), 6.73−6.83 (m, 2H), 7.24 (dd, 3JHF =
10.0, J = 2.9 Hz, 1H), 7.27 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.3 Hz,
2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 54.9 (CH2), 63.4
(CH2), 112.8 (d, 2JCF = 23.3 Hz, CH), 114.7 (d, 2JCF = 23.1 Hz, CH),
119.7 (CH2), 125.4 (d,

4JCF = 1.7 Hz, CH), 127.9 (2 × CH), 129.6 (2
× CH), 131.2 (d, 3JCF = 9.1 Hz, CH), 132.1 (CH), 132.3 (CH), 132.4
(d, 4JCF = 2.8 Hz, C), 135.9 (C), 140.2 (d, 3JCF = 8.6 Hz, C), 143.8
(C), 162.2 (d, 1JCF = 247.9 Hz, C); MS (ESI) m/z 384 (MNa+, 100);
HRMS (ESI) calcd for C19H20FNNaO3S (MNa+), 384.1040; found,
384.1023.

(2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-4′-fluoro-
phenyl)prop-2-en-1-ol (6e). The reaction was carried out as
described for the synthesis of (2E)-3-(2′-[N-allyl-N-(p-toluene-
sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2′-
[N-allyl-N-(p-toluenesulfonyl)amino]-4′-fluorophenyl)prop-2-enoate
(5e) (0.790 g, 2.00 mmol). Purification by column chromatography
(ethyl acetate/petroleum ether, 1:3) gave (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-4′-fluorophenyl)prop-2-en-1-ol (6e) (0.728 g,
99%) as a colorless oil. Rf = 0.08 (diethyl ether/petroleum ether =
1:1); IR (neat) 3507, 2923, 1600, 1495, 1347, 1161, 908, 727 cm−1;
1H NMR (400 MHz, CDCl3) δ 2.18 (t, J = 5.6 Hz, 1H), 2.43 (s, 3H),
3.96 (br s, 1H), 4.09−4.27 (m, 3H), 4.94−5.03 (m, 2H), 5.69 (ddt, J =
16.9, 10.1, 6.7 Hz, 1H), 6.25 (dt, J = 16.0, 5.3 Hz, 1H), 6.41 (dd, 3JHF
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= 9.3, J = 2.6 Hz, 1H), 6.75 (d, J = 16.0 Hz, 1H), 6.99 (td, J = 8.6, 2.6
Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.55 (dd, J = 8.6, 4JHF = 6.3 Hz,
1H), 7.58 (d, J = 8.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.6
(CH3), 54.7 (CH2), 63.6 (CH2), 116.0 (d,

2JCF = 21.2 Hz, CH), 116.2
(d, 2JCF = 21.2 Hz, CH), 119.8 (CH2), 125.7 (CH), 127.7 (d, 3JCF =
8.9 Hz, CH), 127.9 (2 × CH), 129.7 (2 × CH), 130.7 (d, 5JCF = 1.8
Hz, CH), 131.9 (CH), 134.3 (d, 4JCF = 3.7 Hz, C), 135.7 (C), 137.7
(d, 3JCF = 8.8 Hz, C), 144.0 (C), 161.5 (d, 1JCF = 248.9 Hz, C); MS
(ESI) m/z 384 (MNa+, 100); HRMS (ESI) calcd for C19H20FNNaO3S
(MNa+), 384.1040; found, 384.1023.
(2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-chloro-

phenyl)prop-2-en-1-ol (6f). The reaction was carried out as
described for the synthesis of (2E)-3-(2′-[N-allyl-N-(p-toluene-
sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using methyl (2E)-3-(2′-
[N-allyl-N-(p-toluenesulfonyl)amino]-5′-chlorophenyl)prop-2-enoate
(5f) (0.660 g, 1.60 mmol). Purification by column chromatography
(ethyl acetate/petroleum ether = 1:3) gave (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-chlorophenyl)prop-2-en-1-ol (6f) (0.566 g,
92%) as a colorless oil. Rf = 0.28 (petroleum ether/ethyl acetate =
2:1); IR (neat) 3505, 2923, 1597, 1478, 1343, 1161, 907, 727 cm−1;
1H NMR (400 MHz, CDCl3) δ 2.23 (br s, 1H), 2.43 (s, 3H), 3.94 (br
s, 1H), 4.17−4.29 (m, 3H), 4.92−5.02 (m, 2H), 5.69 (ddt, J = 17.0,
10.1, 6.8 Hz, 1H), 6.32 (dt, J = 16.0, 5.1 Hz, 1H), 6.60 (d, J = 8.6 Hz,
1H), 6.75 (dt, J = 16.0, 1.5 Hz, 1H), 7.07 (dd, J = 8.6, 2.4 Hz, 1H),
7.28 (d, J = 8.2 Hz, 2H), 7.54−7.59 (m, 3H); 13C NMR (101 MHz,
CDCl3) δ 21.6 (CH3), 54.8 (CH2), 63.4 (CH2), 119.8 (CH2), 125.2
(CH), 126.5 (CH), 127.8 (CH), 127.9 (2 × CH), 129.7 (2 × CH),
130.7 (CH), 132.0 (CH), 132.4 (CH), 134.5 (C), 135.0 (C), 135.8
(C), 139.6 (C), 143.9 (C); MS (ESI) m/z 400 (MNa+, 100); HRMS
(ESI) calcd for C19H20

35ClNNaO3S (MNa+), 400.0745; found,
400.0729.
5-Nitro-2-[N-(p-toluenesulfonyl)amino]benzaldehyde (8). p-

Toluenesulfonamide (0.148 g, 0.865 mmol) was added to a solution of
2-chloro-5-nitrobenzaldehyde (7) (0.0800 g, 0.432 mmol), and
potassium carbonate (0.107 g, 0.780 mmol) in N,N′-dimethyl-
formamide (2 mL) and heated to 90 °C for 2 h. The reaction
mixture was cooled to room temperature, diluted with water (2 mL),
and extracted with ethyl acetate (10 mL). The organic layer was
washed with 1 M hydrochloric acid solution (3 × 2 mL) and brine (2
mL), dried (MgSO4), filtered, and concentrated in vacuo. Purification
by column chromatography (ethyl acetate/petroleum ether = 1:5)
gave 5-nitro-2-[N-(p-toluenesulfonyl)amino]benzaldehyde (8) (0.122
g, 86%) as a white solid. Mp 172−174 °C; Rf = 0.38 (petroleum ether/
ethyl acetate = 2:1); IR (neat) 3164, 1673, 1586, 1345, 1215, 1164,
749 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.40 (s, 3H), 7.31 (d, J =
8.2 Hz, 2H), 7.81 (d, J = 9.3 Hz, 1H), 7.83 (d, J = 8.2 Hz, 2H), 8.34
(dd, J = 9.3, 2.6 Hz, 1H), 8.54 (d, J = 2.6 Hz, 1H), 9.94 (d, J = 0.6 Hz,
1H), 11.19 (br s, 1H); 13C NMR (101 MHz, CDCl3) δ 21.6 (CH3),
117.3 (CH), 120.5 (C), 127.4 (2 × CH), 130.2 (2 × CH), 130.5
(CH), 131.5 (CH), 135.6 (C), 142.1 (C), 145.0 (C), 145.3 (C), 193.5
(CH); MS (ESI) m/z 343 (MNa+, 100); HRMS (ESI) calcd for
C14H12N2NaO5S (MNa+), 343.0359; found, 343.0350.
Ethyl (2E)-3-(5′-Nitro-2′-[N-(p-toluenesulfonyl)amino]-

phenyl)prop-2-enoate. Lithium bromide (0.043 g, 0.50 mmol)
was added to a solution of triethyl phosphonoacetate (0.085 mL, 0.43
mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.064 mL, 0.43
mmol) in acetonitrile (2 mL) and stirred at room temperature for
0.5 h. 5-Nitro-2-[N-(p-toluenesulfonyl)amino]benzaldehyde (8)
(0.040 g, 0.13 mmol) was added, and the solution was stirred at
room temperature for 3 h. The reaction was quenched with 10%
aqueous potassium sodium tartrate solution (2 mL), concentrated to
half volume in vacuo, and extracted with diethyl ether (3 × 5 mL). The
combined organic layers were washed with water (2 mL), brine (2
mL), dried (MgSO4), filtered, and concentrated in vacuo. Purification
by column chromatography (ethyl acetate/petroleum ether = 1:3)
gave ethyl (2E)-3-(5′-nitro-2′-[N-(p-toluenesulfonyl)amino]phenyl)-
prop-2-enoate (0.048 g, 99%) as a white solid. Mp 158−160 °C; Rf =
0.28 (petroleum ether/ethyl acetate = 2:1); IR (neat) 3255, 2980,
1700, 1640, 1527, 1344, 1166, 908, 757 cm−1; 1H NMR (400 MHz,
CDCl3) δ 1.34 (t, J = 7.1 Hz, 3H), 2.38 (s, 3H), 4.27 (q, J = 7.1 Hz,

2H), 6.35 (d, J = 15.7 Hz, 1H), 7.26 (d, J = 8.2 Hz, 2H), 7.63 (d, J =
15.7 Hz, 1H), 7.65−7.72 (m, 4H), 8.16 (dd, J = 9.0, 2.6 Hz, 1H), 8.28
(d, J = 2.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 14.2 (CH3), 21.6
(CH3), 61.3 (CH2), 123.0 (CH), 123.1 (CH), 124.3 (CH), 125.5
(CH), 127.2 (2 × CH), 127.9 (C), 130.1 (2 × CH), 135.6 (C), 136.5
(CH), 140.6 (C), 144.7 (C), 144.9 (C), 165.9 (C); MS (ESI) m/z 413
(MNa+, 100); HRMS (ESI) calcd for C18H18N2NaO6S (MNa+),
413.0778; found, 413.0760.

Ethyl (2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-
nitrophenyl)prop-2-enoate (9). The reaction was carried out as
described for the synthesis of methyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]phenyl)prop-2-enoate (5a) using ethyl (2E)-
3-(2′-[N-(p-toluenesulfonyl)amino]-5′-nitrophenyl)prop-2-enoate
(0.020 g, 0.047 mmol). Purification by column chromatography (ethyl
acetate/petroleum ether, 1:10) gave ethyl (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-nitrophenyl)prop-2-enoate (9) (0.012 g,
55%) as a white solid. Mp 128−130 °C; Rf = 0.50 (petroleum ether/
ethyl acetate = 2:1); IR (neat) 2956, 1716, 1529, 1349, 1215, 908, 730
cm−1; 1H NMR (400 MHz, CDCl3) δ 1.35 (t, J = 7.1 Hz, 3H), 2.44 (s,
3H), 4.16 (br s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.98 (dd, J = 17.0, 1.1
Hz, 1H), 5.04 (dd, J = 10.0, 1.1 Hz, 1H), 5.72 (ddt, J = 17.0, 10.0, 6.8
Hz, 1H), 6.47 (d, J = 16.1 Hz, 1H), 7.05 (d, J = 8.8 Hz, 1H), 7.31 (d, J
= 8.2 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 16.1 Hz, 1H), 8.11
(dd, J = 8.8, 2.6 Hz, 1H), 8.49 (d, J = 2.6 Hz, 1H); 13C NMR (101
MHz, CDCl3) δ 14.3 (CH3), 21.6 (CH3), 54.8 (CH2), 60.9 (CH2),
120.7 (CH2), 122.3 (CH), 122.9 (CH), 124.3 (CH), 127.9 (2 × CH),
129.9 (2 × CH), 131.1 (CH), 131.4 (CH), 134.9 (C), 137.6 (C),
138.0 (CH), 143.6 (C), 144.6 (C), 147.4 (C), 165.7 (C); MS (ESI)
m/z 453 (MNa+, 100); HRMS (ESI) calcd for C21H22N2NaO6S
(MNa+), 453.1091; found, 453.1073.

(2E)-3-(2′-[N-Allyl-N-(p-toluenesulfonyl)amino]-5′-nitro-
phenyl)prop-2-en-1-ol (6g). The reaction was carried out as
described for the synthesis of (2E)-3-(2′-[N-allyl-N-(p-toluene-
sulfonyl)amino]phenyl)prop-2-en-1-ol (6a) using ethyl (2E)-3-(2′-
[N-allyl-N-(p-toluenesulfonyl)amino]-5′-nitrophenyl)prop-2-enoate
(9) (0.143 g, 0.330 mmol). Purification by column chromatography
(ethyl acetate/petroleum ether = 1:2) gave (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-nitrophenyl)prop-2-en-1-ol (6g) (0.110 g,
85%) as a colorless oil. Rf = 0.18 (petroleum ether/ethyl acetate =
2:1); IR (neat) 3537, 2924, 1525, 1347, 1162, 748 cm−1; 1H NMR
(400 MHz, CDCl3) δ 2.05 (br s, 1H), 2.45 (s, 3H), 4.12 (br s, 2H),
4.33 (br d, J = 4.9 Hz, 2H), 4.92−5.04 (m, 2H), 5.69 (ddt, J = 17.0,
10.1, 6.8 Hz, 1H), 6.49 (dt, J = 16.0, 4.9 Hz, 1H), 6.85 (dt, J = 16.0,
1.6 Hz, 1H), 6.86 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.57
(d, J = 8.2 Hz, 2H), 7.95 (dd, J = 8.8, 2.7 Hz, 1H), 8.43 (d, J = 2.7 Hz,
1H); 13C NMR (101 MHz, CDCl3) δ 21.6 (CH3), 54.7 (CH2), 63.2
(CH2), 120.4 (CH2), 121.7 (CH), 122.1 (CH), 124.4 (CH), 127.9 (2
× CH), 129.8 (2 × CH), 130.5 (CH), 131.5 (CH), 134.1 (CH), 135.4
(C), 139.9 (C), 142.0 (C), 144.3 (C), 147.5 (C); MS (ESI) m/z 411
(MNa+, 100); HRMS (ESI) calcd for C19H20N2NaO5S (MNa+),
411.0985; found, 411.0970.

N-(p-Toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonyl-
amino)-2,5-dihydro-1H-benzo[b]azepine (10a). (2E)-3-(2′-[N-
Allyl-N-(p-toluenesulfonyl)amino]phenyl)prop-2-en-1-ol (6a) (0.313
g, 0.911 mmol) was dissolved in dichloromethane (45 mL) and cooled
to 0 °C under argon with stirring. Trichloroacetonitrile (0.137 mL,
1.37 mmol) was added to the solution, followed by 1,8-diaza-
bicyclo[5.4.0]undec-7-ene (0.0685 mL, 0.460 mmol), and the reaction
was allowed to warm to room temperature over 2 h. The reaction
mixture was filtered through a short pad of alumina (neutral,
Brockman V) with diethyl ether (150 mL) and concentrated in
vacuo to yield the crude allylic trichloroacetimidate as a yellow oil. This
was used without further purification. The allylic trichloroacetimidate
was transferred to a dry Schlenk tube containing a stirrer bar and
potassium carbonate (0.0300 g, 5 mg/mL) to which p-xylene (6 mL)
was then added. The tube was purged with argon, sealed, and heated
to 160 °C for 24 h. The reaction mixture was allowed to cool to room
temperature, and Grubbs’ second generation catalyst (0.0391 g, 0.0460
mmol) and p-xylene (51 mL) were added. The reaction mixture was
heated to 60 °C for 18 h. The reaction mixture was concentrated in
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vacuo and purified by column chromatography (diethyl ether/
petroleum ether = 1:3) to give N-(p-toluenesulfonyl)-5-(2′,2′,2′-
trichloromethylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine
(10a) (0.339 g, 81%) as a white solid. Mp 160−163 °C
(decomposition); Rf = 0.28 (diethyl ether/petroleum ether = 1:1);
IR (neat) 3337, 2925, 1701, 1496, 1341, 1159, 906, 727 cm−1; 1H
NMR (400 MHz, CDCl3) δ 2.47 (s, 3H), 3.86 (br s, 1H), 4.66 (br s,
1H), 5.58 (br t, J = 7.7 Hz, 1H), 5.84 (br d, J = 9.0 Hz, 1H), 6.04 (br s,
1H), 6.82 (br s, 1H), 7.23 (td, J = 8.4, 1.6 Hz, 1H), 7.31 (td, J = 8.4,
1.3 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 7.42 (br d, J = 8.4 Hz, 1H), 7.77
(d, J = 8.2 Hz, 2H), 8.37 (br s, 1H); 13C NMR (101 MHz, CDCl3) δ
21.6 (CH3), 49.0 (CH2), 52.7 (CH), 92.5 (C), 125.8 (CH), 127.4 (2
× CH), 128.2 (CH), 129.3 (CH), 129.7 (CH), 130.0 (2 × CH), 130.8
(2 × CH), 137.7 (C), 138.1 (C), 139.2 (C), 144.2 (C), 161.4 (C); MS
(ESI) m/z 481 (MNa+, 49); HRMS (ESI) calcd for
C19H17

35Cl3N2NaO3S (MNa+), 480.9918; found, 480.9904.
7-Methyl-N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloromethyl-

carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10b). The
reaction was carried out as described for the synthesis of N-(p-
toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihy-
dro-1H-benzo[b]azepine (10a) using (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-methylphenyl)prop-2-en-1-ol (6b) (0.170
g, 0.480 mmol). Purification by column chromatography (diethyl
ether/petroleum ether = 1:3) gave 7-methyl-N-(p-toluenesulfonyl)-5-
(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihydro-1H-benzo[b]-
azepine (10b) (0.179 g, 80%) as a white solid. Mp 174−176 °C; Rf =
0.30 (diethyl ether/petroleum ether = 1:1); IR (neat) 3333, 2923,
1701, 1505, 1340, 1155, 1112, 909, 727 cm−1; 1H NMR (400 MHz,
CDCl3) δ 2.33 (s, 3H), 2.47 (s, 3H), 3.82 (br s, 1H), 4.67 (br s, 1H),
5.53 (br t, J = 7.8 Hz, 1H), 5.84 (br d, J = 8.6 Hz, 1H), 6.04 (br s, 1H),
6.67 (br s, 1H), 7.02 (dd, J = 8.1, 1.4 Hz, 1H), 7.23 (br s, 1H), 7.36 (d,
J = 8.2 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 8.43 (br s, 1H); 13C NMR
(101 MHz, CDCl3) δ 21.1 (CH3), 21.6 (CH3), 49.1 (CH2), 52.7
(CH), 92.5 (C), 125.8 (CH), 127.4 (2 × CH), 127.9 (CH), 130.0 (2
× CH), 130.2 (2 × CH), 130.9 (CH), 135.4 (C), 137.8 (C), 138.8
(C), 139.4 (C), 144.1 (C), 161.4 (C); MS (ESI) m/z 495 (MNa+, 48);
HRMS (ESI) calcd for C20H19

35Cl3N2NaO3S (MNa+), 495.0074;
found, 495.0053.
7-Methoxy-N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloro-

methylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10c).
The reaction was carried out as described for the synthesis of N-(p-
toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihy-
dro-1H-benzo[b]azepine (10a) using (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-methoxyphenyl)prop-2-en-1-ol (6c)
(0.076 g, 0.20 mmol). Purification by column chromatography
(diethyl ether/petroleum ether = 1:3) gave 7-methoxy-N-(p-
toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihy-
dro-1H-benzo[b]azepine (10c) (0.079 g, 79%) as a white solid. Mp
190−195 °C (decomposition); Rf = 0.20 (diethyl ether/petroleum
ether = 1:1); IR (neat) 3337, 2935, 1701, 1502, 1215, 1156, 749 cm−1;
1H NMR (400 MHz, CDCl3) δ 2.46 (s, 3H), 3.61−3.84 (m, 4H), 4.72
(br s, 1H), 5.51 (br t, J = 7.6 Hz, 1H), 5.85 (br s, 1H), 6.05 (br s, 1H),
6.64 (br s, 1H), 6.71 (dd, J = 8.6, 2.8 Hz, 1H), 6.93 (br s, 1H), 7.35 (d,
J = 8.2 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 8.58 (br s, 1H); 13C NMR
(101 MHz, CDCl3) δ 21.6 (CH3), 49.2 (CH2), 52.9 (CH), 55.6
(CH3), 92.5 (C), 114.9 (CH), 125.5 (CH), 127.4 (2 × CH), 129.2
(CH), 130.0 (2 × CH), 130.4 (CH), 131.2 (CH), 137.7 (C), 140.5
(C), 144.1 (C), 159.7 (2 × C), 161.4 (C); MS (ESI) m/z 513 (MNa+,
51); HRMS (ESI) calcd for C20H19

35Cl2
37ClN2NaO4S (MNa+),

512.9994; found, 512.9973.
7-Fluoro-N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloromethyl-

carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10d). The
reaction was carried out as described for the synthesis of N-(p-
toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihy-
dro-1H-benzo[b]azepine (10a) using (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-fluorophenyl)prop-2-en-1-ol (6d) (0.189
g, 0.520 mmol). Purification by column chromatography (diethyl
ether/petroleum ether = 1:3) gave 7-fluoro-N-(p-toluenesulfonyl)-5-
(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihydro-1H-benzo[b]-
azepine (10d) (0.204 g, 82%) as a white solid. Mp 181−183 °C; Rf =

0.25 (petroleum ether/diethyl ether = 3:1); IR (neat) 3333, 3034,
1705, 1503, 1344, 1159, 907, 729 cm−1; 1H NMR (400 MHz, CDCl3)
δ 2.47 (s, 3H), 3.81 (br s, 1H), 4.62 (br s, 1H), 5.52 (br t, J = 7.4 Hz,
1H), 5.85 (br s, 1H), 5.98 (br s, 1H), 6.81 (br s, 1H), 6.91 (td, J = 8.2,
2.9 Hz, 1H), 7.12 (br s, 1H), 7.36 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.2
Hz, 2H), 8.40 (br s, 1H); 13C NMR (101 MHz, CDCl3) δ 21.6 (CH3),
48.9 (CH2), 52.2 (CH), 92.4 (C), 116.1 (CH), 116.4 (CH), 125.4
(CH), 127.4 (2 × CH), 130.1 (3 × CH), 131.1 (CH), 133.9 (C),
137.3 (C), 141.6 (C), 144.4 (C), 161.4 (C), 162.1 (d, 1JCF = 250.6 Hz,
C); MS (ESI) m/z 499 (MNa+, 49); HRMS (ESI) calcd for
C19H16

35Cl3FN2NaO3S (MNa+), 498.9823; found, 498.9809.
8-Fluoro-N-(p-toluenesulfonyl)-5-(2′ ,2′ ,2′-trichloro-

methylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10e).
The reaction was carried out as described for the synthesis of N-(p-
toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihy-
dro-1H-benzo[b]azepine (10a) using (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-4′-fluorophenyl)prop-2-en-1-ol (6e) (0.222
g, 0.610 mmol). Purification by column chromatography (diethyl
ether/petroleum ether = 1:3) gave 8-fluoro-N-(p-toluenesulfonyl)-5-
(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihydro-1H-benzo[b]-
azepine (10e) (0.269 g, 92%) as a white solid. Mp 147−149 °C; Rf =
0.28 (diethyl ether/petroleum ether = 1:1); IR (neat) 3340, 2925,
1704, 1599, 1501, 1343, 1160, 909, 731 cm−1; 1H NMR (400 MHz,
CDCl3) δ 2.48 (s, 3H), 3.86 (br d, J = 17.8 Hz, 1H), 4.62 (br d, J =
17.8 Hz, 1H), 5.56 (br t, J = 7.8 Hz, 1H), 5.85 (ddd, J = 11.4, 4.5, 1.8
Hz, 1H), 6.02 (dd, J = 11.4, 7.8 Hz, 1H), 6.55 (br d, 3JHF = 8.0 Hz,
1H), 7.02 (td, J = 8.2, 2.6 Hz, 1H), 7.38 (d, J = 8.2 Hz, 2H), 7.41 (dd,
J = 8.2, 4JHF = 6.4 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 8.24 (br s, 1H);
13C NMR (101 MHz, CDCl3) δ 21.7 (CH3), 48.8 (CH2), 52.1 (CH),
92.4 (C), 115.6 (d, 2JCF = 22.9 Hz, CH), 116.2 (d, 2JCF = 21.0 Hz,
CH), 125.6 (CH), 127.4 (2 × CH), 130.2 (2 × CH), 130.7 (CH),
132.0 (CH), 135.3 (d, 4JCF = 3.5 Hz, C), 137.2 (C), 139.4 (d, 3JCF =
9.9 Hz, C), 144.6 (C), 161.4 (C), 162.5 (d, 1JCF = 230.0 Hz, C); MS
(ESI) m/z 499 (MNa+, 49); HRMS (ESI) calcd for
C19H16

35Cl3FN2NaO3S (MNa+), 498.9823; found, 498.9804.
7-Chloro-N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloromethyl-

carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10f). The
reaction was carried out as described for the synthesis of N-(p-
toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihy-
dro-1H-benzo[b]azepine (10a) using (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-chlorophenyl)prop-2-en-1-ol (6f) (0.290
g, 0.770 mmol). The RCM step was heated to 60 °C for 24 h.
Purification by column chromatography (diethyl ether/petroleum
ether = 1:3) gave 7-chloro-N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloro-
methylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10f) (0.300
g, 79%) as a white solid. Mp 158−160 °C; Rf = 0.25 (diethyl ether/
petroleum ether = 1:1); IR (neat) 3341, 2925, 1705, 1495, 1343, 1159,
908, 730 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.47 (s, 3H), 3.88 (br
s, 1H), 4.60 (br s, 1H), 5.51 (br t, J = 7.6 Hz, 1H), 5.84 (br d, J = 9.0
Hz, 1H), 5.97 (br s, 1H), 6.79 (br s, 1H), 7.20 (dd, J = 8.4, 2.4 Hz,
1H), 7.36 (d, J = 8.2 Hz, 2H), 7.40 (br s, 1H), 7.75 (d, J = 8.2 Hz,
2H), 8.26 (br s, 1H); 13C NMR (101 MHz, CDCl3) δ 21.7 (CH3),
48.9 (CH2), 52.1 (CH), 92.3 (C), 125.4 (CH), 127.4 (2 × CH), 129.6
(2 × CH), 130.2 (2 × CH), 131.0 (2 × CH), 134.9 (C), 136.5 (C),
137.2 (C), 141.0 (C), 144.5 (C), 161.4 (C); MS (ESI) m/z 515
(MNa+, 42); HRMS (ESI) calcd for C19H16

35Cl4N2NaO3S (MNa+),
514.9528; found, 514.9515.

7-Nitro-N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloromethyl-
carbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10g). The
reaction was carried out as described for the synthesis of N-(p-
toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonylamino)-2,5-dihy-
dro-1H-benzo[b]azepine (10a) using (2E)-3-(2′-[N-allyl-N-(p-
toluenesulfonyl)amino]-5′-nitrophenyl)prop-2-en-1-ol (6g) (0.084 g,
0.22 mmol). The Overman rearrangement was heated to 160 °C for
43 h, and the RCM step was heated to 60 °C for 31 h. Purification by
column chromatography (diethyl ether/petroleum ether = 1:3) gave 7-
nitro-N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloromethylcarbonyl-
amino)-2,5-dihydro-1H-benzo[b]azepine (10g) (0.053 g, 49%) as a
white solid. Mp 180−185 °C (decomposition); Rf = 0.28 (diethyl
ether/petroleum ether = 1:1); IR (neat) 3335, 3020, 1709, 1592, 1530,
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1350, 1215, 1161, 749 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.49 (s,
3H), 4.03 (br d, J = 18.5 Hz, 1H), 4.54 (br d, J = 18.5 Hz, 1H), 5.64
(br t, J = 7.2 Hz, 1H), 5.86 (br d, J = 11.4 Hz, 1H), 5.95−6.02 (m,
1H), 7.18 (d, J 8.6 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.2
Hz, 2H), 7.98 (br s, 1H), 8.13 (dd, J = 8.6, 2.6 Hz, 1H), 8.29 (d, J =
2.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 21.7 (CH3), 48.7 (CH2),
51.8 (CH), 92.1 (C), 124.5 (2 × CH), 125.1 (CH), 127.4 (2 × CH),
129.6 (CH), 130.4 (2 × CH), 130.7 (CH), 136.8 (C), 141.1 (C),
143.8 (C), 145.0 (C), 147.4 (C), 161.5 (C); MS (ESI) m/z 526
(MNa+, 49); HRMS (ESI) calcd for C19H16

35Cl3N3NaO5S (MNa+),
525.9768; found, 525.9761.
5-tert-Butoxycarbonylamino-N-(p-toluenesulfonyl)-2,5-dihy-

dro-1H-benzo[b]azepine (11). Sodium hydroxide (2 M, 5 mL) was
added to a solution of N-(p-toluenesulfonyl)-5-(2′,2′,2′-trichloro-
methylcarbonylamino)-2,5-dihydro-1H-benzo[b]azepine (10a) (0.165
g, 0.359 mmol) in methanol (3 mL) at 60 °C and stirred for 18 h. The
mixture was allowed to cool to room temperature, and then di-tert-
butyl dicarbonate (0.393 g, 1.80 mmol) was added. The reaction
mixture was stirred for a further 24 h. The reaction mixture was
extracted with ethyl acetate (3 × 5 mL), dried (MgSO4), filtered, and
concentrated in vacuo. Purification by column chromatography (ethyl
acetate/petroleum ether = 1:20) gave 5-tert-butoxycarbonylamino-N-
(p-toluenesulfonyl)-2,5-dihydro-1H-benzo[b]azepine (11) (0.108 g,
73%) as a white solid. Mp 149−151 °C (decomposition); Rf = 0.28
(petroleum ether/ethyl acetate = 2:1); IR (neat) 3393, 2978, 1698,
1494, 1343, 1159, 908, 728 cm−1; 1H NMR (400 MHz, CDCl3) δ 1.44
(s, 9H), 2.45 (s, 3H), 4.14 (br s, 1H), 4.35 (br s, 1H), 5.33 (br t, J =
7.2 Hz, 1H), 5.50 (br s, 1H), 5.61 (br d, J = 10.7 Hz, 1H), 5.81 (br s,
1H), 7.05 (d, J = 7.6 Hz, 1H), 7.21 (td, J = 7.6, 1.6 Hz, 1H), 7.27−7.36
(m, 4H), 7.77 (br d, J = 8.2 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ
21.6 (CH3), 28.4 (3 × CH3), 48.9 (CH2), 51.4 (CH), 79.5 (C), 127.3
(2 × CH), 127.8 (CH), 128.5 (3 × CH), 128.7 (2 × CH), 129.9 (2 ×
CH), 137.6 (C), 138.0 (C), 141.4 (C), 143.8 (C), 154.9 (C); MS
(ESI) m/z 437 (MNa+, 100); HRMS (ESI) calcd for C22H26N2NaO4S
(MNa+), 437.1505; found, 437.1486.
5-tert-Butoxycarbonylamino-2,3,4,5-tetrahydro-1H-benzo-

[b]azepine (12).3c Palladium on charcoal (10%, 0.017 g) was added
to a solution of 5-tert-butoxycarbonylamino-N-(p-toluenesulfonyl)-2,5-
dihydro-1H-benzo[b]azepine (11) (0.057 g, 0.14 mmol) in ethyl
acetate (4 mL). The mixture was stirred under an atmosphere of
hydrogen at 60 °C for 17 h. The reaction mixture was filtered through
a short pad of Celite with diethyl ether (50 mL) and concentrated in
vacuo to give 5-tert-butoxycarbonylamino-N-(p-toluenesulfonyl)-
2,3,4,5-tetrahydro-1H-benzo[b]azepine (0.050 g) as a white solid. 5-
tert-Butoxycarbonylamino-N-(p-toluenesulfonyl)-2,3,4,5-tetrahydro-
1H-benzo[b]azepine (0.050 g, 0.12 mmol) was dissolved in methanol
(5 mL), and magnesium turnings (0.082 g, 3.4 mmol) were added.
The mixture was heated under reflux for 4 h. The reaction mixture was
cooled to 0 °C, and 1 M hydrochloric acid solution (10 mL) was
added dropwise. The solution was extracted with ethyl acetate (3 × 10
mL), dried (MgSO4), and concentrated in vacuo. Purification by
column chromatography using (ethyl acetate/petroleum ether = 1:20)
gave 5-tert-butoxycarbonylamino-2,3,4,5-tetrahydro-1H-benzo[b]-
azepine (12) (0.032 g, 88%) as a white solid. Mp 151−153 °C
(lit.3c 153−154 °C); Rf = 0.45 (petroleum ether/ethyl acetate = 2:1);
1H NMR (400 MHz, CDCl3) δ 1.42 (s, 9H), 1.55−1.80 (m, 2H),
1.94−2.21 (m, 2H), 2.83 (td, J = 12.8, 2.0 Hz, 1H), 3.21−3.35 (m,
1H), 3.61 (br s, 1H), 4.90 (t, J = 8.1 Hz, 1H), 5.72 (br d, J = 8.1 Hz,
1H), 6.73 (dd, J = 7.3, 1.1 Hz, 1H), 6.89 (td, J = 7.3, 1.1 Hz, 1H), 7.08
(td, J = 7.3, 1.6 Hz, 1H), 7.23 (br d, J = 7.3 Hz, 1H); 13C NMR (101
MHz, CDCl3) δ 25.5 (CH2), 28.5 (3 × CH3), 30.9 (CH2), 49.1
(CH2), 55.1 (CH), 79.0 (C), 120.5 (CH), 121.9 (CH), 128.0 (CH),
130.0 (CH), 133.7 (C), 149.1 (C), 155.2 (C); MS (ESI) m/z 285
(MNa+, 100).
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