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Abstract

Using the popular Schwartz 97 two-factor approach, we study future
contracts written on fresh farmed salmon, which have been actively
traded at the Fish Pool Market in Norway since 2006. This approach
features a stochastic convenience yield for the salmon spot price. We
connect this approach with the classical literature on fish-farming and
aquaculture using first principles, starting by modeling the aggregate
salmon farming production process and modeling the demand using
a Cobb-Douglas utility function for a representative consumer. The
model is estimated by means of Kalman filtering, using a rich data
set of contracts with different maturities traded at Fish Pool between
12/06/2006 and 22/03/2012. The results are then discussed in the
context of other commodity markets, specifically live cattle which acts
as a substitute.
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1 Introduction

Fish Pool is a new derivatives market, where futures and options on fresh

farmed salmon are traded in large quantities since 2006. Located in Bergen

(Norway), contract volumes traded at this market have reached 102.295 tons,

equivalent to 440 million Euro, during 2013. These numbers continue a strong

upwards trend from previous years. Following its great success in the start-

up phase the Oslo Stock Exchange acquired 71% of Fish Pool in December

2012.

Bergfjord (2007), Dalton (2005) and Bulte and Pennings (1997) provide

possible explanations for this trend. In short, markets for forwards and

futures on fresh salmon help companies which use fresh salmon in their pro-

duction, for example, food processing companies, to hedge the price risk and

plan ahead, by fixing the price in advance. In the same way, they help pro-

ducers, i.e. salmon farmers, to reduce their (selling) price risk. An analysis of

the welfare effects of futures markets in a rather general context is presented

in Hirschleifer (1988). He discusses a two period model which includes con-

sumers, processors, producers and speculators. In fact speculative investors

at Fish pool play a more and more important role1, which in consequence

urges the issue of finding appropriate, theoretical well-founded and sound

pricing formulas for the futures and options traded there.

In this article we discuss the valuation of futures on fresh farmed salmon

as traded on the Fish Pool exchange. Our major concern is the accurate

and market consistent pricing of the futures contracts, taking into account

at least some of the key-elements describing the salmon farming process as

well as the demand for farmed salmon and combining these coherently with

the methodology of arbitrage free pricing developed in the derivatives pricing

literature. More specifically we are connecting the Schwartz (1997) multi-

factor approach with stochastic convenience yield to the classical literature in

fish-farming and aqua-culture. We estimate the parameters in our model on

the basis of an extensive data-set obtained from the Fish Pool market cover-

ing the period from 12/06/2006 until 22/03/2012. Solibakke (2012) presents

1Compare Fish Pool News Archive, March 20th, 2012.
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an approach using stochastic volatility to model the Fish Pool market. How-

ever, only front months contracts are considered and the term structure,

which can only be obtained from contracts with longer maturities, is not

accounted for. In fact, it is well known that stochastic volatility alone can-

not produce realistic term structures. While stochastic volatility is without

doubt an important feature, modeling the term structure of the future con-

tracts and identifying the stochastic convenience yield is generally considered

to be more important.

The classical salmon farming literature, e.g. Bjorndal (1988), Arnason

(1992), Heaps (1995), Cacho (1997), Yu and Leung (2006) as well as Gut-

tormsen (2008) focuses on the harvesting behavior of one individual salmon

farmer. In contrast to this, our focus is on the aggregate salmon production,

as the aggregate production alone will affect the market price, which fea-

tures prominently in our financial model. In order to get there, we assume

that at any given time, a constant proportion of salmon farmers (or farming

units) will harvest. This assumption accurately reflects how salmon farming

companies operate world wide and salmon can be harvested at any time, re-

flecting consumer demand. The demand for farmed salmon is then modeled

in a rather classical way by attaching a Cobb Douglas type utility function

to a representative consumer, who chooses between farmed salmon and an

alternative consumption good. The market clearing price will then be used

in the analysis of future contracts within the Schwartz (1997) framework.

To place our study into context and compare the estimated parameters of

our model with those obtained for other commodities, we have also included

a data set for live-cattle future contracts as traded on the Chicago Mercantile

Exchange into our analysis.

A problem related to pricing farmed salmon futures and options has been

discussed in Ewald (2013). The difference there, is that the population is

assumed to be wild and not farmed, and managed as an open access fishery.

Further the driving dynamics, e.g. the biomass of the wild population in the

sea, is assumed to be of different type. Ewald (2013) uses stochastic logistic

growth, which is mainly motivated by the classical fishery economics as well

as population ecology literature such as Beddington and May (1977), May
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(1973), Lande (1995), Alvarez (1998) as well as Alvarez and Shepp (1998).

This specification however does only allow for approximate pricing formulas

for futures and options, and hence causes problems in the calibration of the

model. A mean variance approach in the context of optimizing sustainable

yields under uncertainty in the same dynamic setup has been presented in

Ewald and Wang (2010).

The rest of the paper is structured as follows. In section 2 we will briefly

review the Schwartz (1997) multi-factor approach, while in section 3 we dis-

cuss farmed salmon supply and demand leading to an equilibrium price.

Section 4 contains our empirical analysis, using Kalman filtering to estimate

the parameters within our model for different sub-samples of our data-set.

In section 5 we draw comparisons with live cattle futures and identify sub-

tle differences in the two markets. Our main conclusions are summarized

in section 6. The appendix contains a number of figures which support the

findings in the main text.

2 The Schwartz (1997) multi-factor frame-

work

Let us denote with P (t) the price of a commodity at time t. In the Schwartz

(1997) framework the state variables P (t), δ(t) and r(t) are given by

dP (t) = (µ− δ(t))P (t)dt+ σ1P (t)dZ1(t) (1)

dδ(t) = κ(α− δ(t))dt+ σ2dZ2(t) (2)

dr(t) = a(m− r(t))dt+ σ3dZ3(t) (3)

with constants µ, κ, α, a, m, σ1, σ2 and σ3 under the real world probability P.

The Brownian motions Z1(t), Z2(t) and Z3(t) are assumed to be correlated,

according to

dZ1(t)dZ2(t) = ρ1dt, dZ2(t)dZ3(t) = ρ2dt, dZ1(t)dZ3(t) = ρ3dt. (4)
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We assume κ, a ≥ 0. The process r(t) denotes the stochastic interest rate.

Under the assumption σ3 = 0 and a = 0, the interest rate remains constant

and the model in fact becomes a two-factor model, also known as Schwartz

(1997) two-factor model. The process δ(t) represents the stochastic conve-

nience yield and can be recognized as a mean reverting Ornstein Uhlenbeck

process. It reflects the utility that an agent receives when holding the com-

modity, or storage/maintenance costs that the agent needs to pay. The price

dynamics (1) has an implicit mean reversion feature. If ρ1 > 0, then the in-

stantaneous correlation between P (t) and δ(t) is positive. Hence P (t) is likely

to be large when δ(t) is large and in this case δ(t) is likely to be larger than µ.

The drift term in (1) will then push P (t) downwards. The opposite happens if

P (t) is small, pushing P (t) upwards. If in fact one chooses δ(t) = κ ln(P (t)),

one obtains the dynamics of a geometric Ornstein-Uhlenbeck process in (1),

and δ(t) defined in this way satisfies (2) with ρ = 1. In this case we obtain

the so called Schwartz (1997) one-factor model. In its full generality, i.e.

without any coefficient restrictions other than κ, a ≥ 0 the model is known

as Schwartz (1997) three-factor model.

A forward contract in this context is an agreement established at a time

s < T to deliver or receive the renewable resource at time T for a price K,

which is specified at time s. In financial terms, the payoff at time of maturity

T of such a forward contract is

H = P (T )−K. (5)

The value K that lets this contract have a value zero under a no-arbitrage

assumption is given by

F forw
P (s, T ) =

1

B(s, T )
EQ

(
e−

∫ T
s r(t)dt · P (T )|Fs

)
, (6)

where B(s, T ) = EQ

(
e−

∫ T
s r(t)dt

)
denotes the prize of a zero coupon bond

maturing at time T at current time s. This is called the forward price at

time s. The symbol Fs denotes the information available at time s and

we denote in the following with F = (Fs) the associated filtration which
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represents the information flow.2

The expectation in (6) is taken with respect to the pricing measure Q,

which takes into account a market price of convenience yield risk λ, i.e.

dP (t) = (r − δ(t))P (t)dt+ σ1P (t)dZ̃1(t) (7)

dδ(t) = (κ(α− δ(t))− λ)dt+ σ2dZ̃2(t) (8)

dr(t) = a(m∗ − r(t))dt+ σ3dZ̃3(t) (9)

with

dZ̃1(t)dZ̃2(t) = ρ1dt, dZ̃2(t)dZ̃3(t) = ρ2dt, dZ̃1(t)dZ̃3(t) = ρ3dt. (10)

Here m∗ denotes the risk adjusted long-term mean interest rate.

A futures contract is basically a type of forward contract which is centrally

cleared on a daily basis. The clearing exchange then usually requires the

agent to set up a margin account, the amount held reflecting price movements

in the market, protecting buyer and seller from possible default of the other

party. The mechanism of the margin account affects the price as determined

above and in fact the futures price is then provided via

F fut
P (s, T ) = EQ (P (T )|Fs) . (11)

It is a direct consequence from equations (6) and (11), that if the interest

rate process r(t) and the commodity price P (t) are uncorrelated, the forward

and futures prices coincide. This is in particular the case, if the interest rate

is assumed to be deterministic, which is the case in the Schwartz (1997)

two-factor model. While until 19/07/2007 contracts traded at Fish Pool

had been exclusively bilateral and of forward type, the majority of contracts

traded after that date had been cleared, and in fact close to 100% of contracts

are nowadays cleared daily via Fish Pool’s link with NASDAQ, hence are of

futures type. This will be reflected in our empirical analysis. To simplify the

notation, we write FP (s, T ) = F fut
P (s, T ).

2More precisely, F = (Fs) denotes the augmented and completed filtration generated
by the Brownian motions Z1(s), Z2(s) and Z3(s).
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Let us assume initially that the interest rate is constant and equal to r,

corresponding to the case a= σ3 =0. As indicated above, in this case, forward

prices and futures prices coincide, and we do not need to distinguish these

any further. In fact we use the notion forwards and futures as synonymous

here.

We can always assume that current time is normalized to 0 and that the

time of maturity T is relative to this, hence the same as time to maturity.

Since our model is Markovian, we can then denote the futures price in (11)

as F (P, δ, T ) depending on current spot price, level of convenience yield and

time to maturity T . With this notation, Schwartz (1997) refers to Jamshidian

and Fein (1990) and Bjerksund (1991) for an explicit expression for (11)

F (P, δ, T ) = P · exp

(
−δ ·

(
1− e−κT

κ

)
+ A(T )

)
(12)

A(T ) =

(
r − α +

λ

κ
+

1

2

σ2
2

κ2
− σ1σ2ρ

κ

)
T +

1

4
σ2

2

(
1− e−2κT

κ3

)
+

(
ακ− λ+ σ1σ2ρ−

σ2
2

κ

)(
1− e−κT

κ2

)
.

Note, that the futures price (12) has a log-normal distribution, which makes

the analytical pricing of options in this framework possible. On the other

hand note that at least one of the state variables, the convenience yield δ(t)

is unobservable. In fact Schwartz (1997) assumes that both the commodity

price P (t) and the convenience yield δ(t) are unobservable, and only the

future prices (12) are observable. In order to estimate the model, Schwartz

(1997) then applies Kalman filtering techniques.

The case of stochastic interest rates is slightly more involved, but more of

notational means rather than mathematical complexity, as the futures prices

remain log-normal. The futures price in the Schwartz three-factor model is

given as

F (P, δ, r, T ) = P ·exp

(
−δ ·

(
1− e−κT

κ

)
+ r ·

(
1− e−aT

a

)
+ C(T )

)
, (13)
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with

C(T ) =
(κ(α− λ

κ
) + σ1σ2ρ1)(1− e−κT − κT )

κ2

−σ
2
2(4(1− e−κT )− (1− e−2κT )− 2κT )

4κ3

−(am∗ + σ1σ3ρ3)(1− e−aT − aT )

a2

−σ
2
3(4(1− e−aT )− (1− e−2aT )− 2aT )

4a3

+σ2σ3ρ2

(
(1− e−κT ) + (1− e−aT )− (1− e−(κ+a)T )

κa(κ+ a)

)
+

(
κ2(1− e−aT ) + a2(1− e−κT )− κa2T − aκ2T

κ2a2(κ+ a)

)
.

The empirical analysis in section 4 predominantly focuses on the applica-

tion of the two factor model. The function of the three factor model in the

context of this paper lies mainly in assessing how robust the results from the

two factor model are in light of stochastically fluctuating interest rates, in

particular when longer term contracts are used in the analysis.

3 Farmed Salmon Production and Demand

Aggregate salmon supply and demand in the context of market interactions

on a global level has been discussed in Asche et al (1999) and Asche et

al (2001), but from a mostly exogenous and empirical point of view. We

attempt to provide a micro founded model of aggregate salmon supply and

demand.

Let us look at the farmed salmon production. We follow a more or

less classical approach, which is outlined in Cacho (1997) for example, and

presents a consensus of many models that are available in the literature.

The total number of salmon in all pens contributing to the salmon produc-

tion process is denoted with n(t). We assume that mortality m(t) follows

an adapted stochastic process on (Ω,P,F), and therefore at any time before

7



harvesting

dn(t) = −m(t) · n(t)dt. (14)

Note that salmon does not reproduce in the pens, and therefore the number

of salmon in each pen has to decrease over time. However, salmon gain in

weight and it is assumed that the average weight of one fish is assumed to

follow the dynamic

dw(t) = (Θ− β(t))w(t)dt+ σww(t)dB(t), (15)

where B(t) represents a standard Brownian motion on (Ω,P,F) and β(t) an

arbitrary adapted stochastic process, such that the dynamics (15) is well de-

fined. In fact β(t) represents the weight saturation, and should be positively

correlated with w(t), introducing a mean reversion feature in the weight dy-

namics towards the mean reversion level Θ, which is assumed to be constant.

We denote with

X(t) = n(t)w(t) (16)

the total biomass at time t. The dynamics of X(t) in the absence of harvest-

ing can be easily derived and follows

dX(t) = (Θ−m(t)− β(t))X(t)dt+ σwX(t)dB(t). (17)

An individual salmon farmer would now try to optimize the time of har-

vest, so as to achieve an optimal profit. The classical aquaculture literature

around Bjorndal (1988), Cacho (1997), Yu and Leung (2006), Guttormsen

(2008), Heaps (1995) and Arnason (1992) focuses on this and adopts the

methodology of optimal stopping and control. In the present context how-

ever, it is the aggregate farmed salmon production that matters. Assuming

that salmon farmers are heterogeneous and that because of limited market

demand it cannot be optimal for all salmon farmers to harvest at the same

time, no unique harvesting time can be identified.3 We assume that at each

instant of time t a proportion ν(t) of salmon farmers will harvest. Assum-

3The oligopolistic aquaculture harvesting problem does not seem to have been discussed
in the literature.
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ing that salmon farmers own equally sized portions of the total biomass, the

biomass will then evolve according to the equation

dX(t) = (Θ− (m(t) + ν(t))− β(t))X(t)dt+ σwX(t)dB(t). (18)

which is of the same type as (17). 4 The salmon supply in each infinitesimal

time interval dt will then be ν(t)X(t)dt.

Let us now look at the consumer side. We assume that a representative

consumer chooses between farmed salmon and an alternative consumption

good, and that the utility from consumption is of Cobb-Douglas type. The

consumer’s problem is at each time t to maximize utility

max
(
x(t)α(t)y(t)1−α(t)

)
(19)

subject to: P (t) · x(t) + y(t) = c(t), (20)

where x(t) denotes the amount of farmed salmon and y(t) the amount of the

alternative consumption good consumed. The total budget of the consumer

is limited to c(t) and can vary stochastically over time, while P (t) denotes

the price of farmed salmon and the price of the alternative consumption

good is normalized to one. The preference parameter α(t) is also assumed

to be stochastic at this point, taking into account changes in the consumer

preferences, which are known to effect the price of salmon significantly.

The solution of the consumer problem is then given by

x(t) =
α(t)c(t)

P (t)
. (21)

In equilibrium we must have x(t) = ν(t)X(t) and hence we obtain the inverse

demand function

P (t) =
ε(t)

X(t)
, (22)

4Note that while individual farmers still do complete harvests rather than continuously
harvesting a proportion of the biomass, in aggregation the affect is like continuous har-
vesting. Even for a single salmon farming unit consisting of multiple pens, it would be
unwise to harvest all pens at once.
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where

ε(t) =
α(t)c(t)

ν(t)
. (23)

This price functional will be used in the following, and interpreted as the Fish

Pool Index, which in turn corresponds to the salmon spot price.5 Without

further specifying the functional forms of α(t),c(t) and ν(t) it is however

impossible to obtain any explicit pricing formulas. However, rather than

looking at each factor individually, we assume that the various effects of

α(t),c(t) and ν(t) aggregate to

dε(t) = ε(t) (γ(t)dt+ ηdW (t)) (24)

where W (t) is a second Brownian motion, which is correlated with B(t)

according to the relationship

dB(t)dW (t) = ρDdt, (25)

and γ(t) is as yet unspecified.6

A simple application of the Ito-formula yields

dP (t) = P (t)
(
m(t) + ν(t) + σ2

w − ησwρD + (β(t) + γ(t))−Θ
)
dt

+P (t) (ηdW (t)− σwdB(t)) . (26)

Noticing that var (ηdW (t)− σwdB(t)) = (η2 + σ2
w − 2ησwρD) dt, this can be

rewritten as

dP (t) = P (t)
(
σ2
w − ησwρD −Θ− δ(t)

)
dt

+P (t)
(
η2 + σ2

w − 2ησwρD
)
dZ1(t), (27)

5The Fish Pool price index is based on a weighted weekly average of salmon categories
3-4 kg: 30 %, 4-5 kg: 40 %, 5-6 kg: 30 %, superior quality, head-on gutted. Further details
are available on http : //fishpool.asp.manamind.com/?page id = 65.

6As γ(t) at this point can be an arbitrary stochastic process, the only assumption
made here is that the volatility of ε(t) is proportional to its level, which is a simplifying
but intuitive assumption.
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where Z1(t) is a standard Brownian motion and

δ(t) = − (m(t) + ν(t) + β(t) + γ(t)) . (28)

Now, taking into account that δ(t) is an aggregation of four seemingly unre-

lated processes of which at least some feature mean-reversion, we are led to

assume that δ(t), at least in approximation, follows an Ornstein-Uhlenbeck

process, as described in (2). As for the dynamics of P (t), we see that it

exactly matches the dynamics (1), with the following choice of parameters

µ = σ2
w − ησwρD −Θ (29)

σ1 = η2 + σ2
w − 2ησwρD. (30)

With this parametrization it is worthwhile to keep in mind, what generates

the uncertainty here: σW takes account of volatility generated by the fluctu-

ations in weights of individual fish, due to sources such as nutrition, weather

and disease, while η takes account of volatility generated by fluctuations in

consumer income and preferences. At most times, it will be the case that

σW < η.

4 Empirical Estimates

The data used to test the model developed so far consist of daily observations

of futures prices in Fish Pool ASA from 12/06/2006 to 22/03/2012. For the

whole sample period, complete data on the first 29 futures contracts sorted by

different maturities are available. We use a similar notation as in Schwartz

(1997) and denote with F1 the contract closest to maturity (with average

maturity of 0.041 year) counting up to F29 which represents the contract

farthest to maturity (with average maturity of 2.427 years). We further

divide the whole sample period into three different regimes according to the

level of Norwegian interest rates as shown in Table 1 leading to sub-samples

Data1, Data2 and Data3.7 Under each regime, contracts in Panel A, Panel

7Average interest rate r over the whole sample time period is 2.13%.
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Time Period Interest Rate Observations Description
Data1 12/06/2006-1/11/2006 2.88% 103 Medium

interest
regime

Data2 2/11/2006-17/12/2008 4.00% 545 High
interest
regime

Data3 18/12/2008-22/03/2012 1.93% 849 Low
interest
regime

Table 1: Sub Data Sets

B and Panel C are chosen as proxies for short-term, medium-term and long-

term futures contracts respectively. In each test, five contracts (i.e., N=5)

are used for the estimation. More precisely, Panel A contains F1, F3, F5,

F7 and F9; Panel B contains F12, F14, F16, F18, F20 and Panel C contains

F24, F25, F26, F28 and F29. A summary statistics on the contracts being

used can be found in tables 7-9 in the appendix. In this paper we use an

approach based on Kalman filtering in order to estimate the parameters in

the model. To place our empirical results better into context we also include

a comparison involving live-cattle data.

4.1 Data

As shown in Table 1, Data1 ranges from 12/06/2006 to 1/11/2006 with aver-

age interest rate of 2.88%; Data2 ranges from 2/11/2006 to 17/12/2008 with

average interest rate of 4.00%; Data3 ranges from 18/12/2008 to 22/03/2012

with average interest rate of 1.93%. Contracts used for tests in each data set

are described in tables 7-9 respectively. Naturally, for each contract with a

fixed maturity, the time-to-maturity changes as time progresses.

12



Parameter+

Panel A Panel B Panel C
F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29

(Short Term) (Medium Term) (Long Term)

µ 0.299 (0.446) 0.567 (0.567) 0.832 (0.345)**

κ 2.348 (0.203)*** 1.009 (0.373)*** 1.035 (0.277)***

α 0.084 (1.106) 1.311 (0.976) 1.484 (0.562)***

σ1 0.236 (0.027)*** 0.135 (0.031)*** 0.128 (0.014)***

σ2 1.444 (0.136)*** 0.185 (0.095)** 0.162 (0.047)***

ρ 0.624 (0.103)*** 0.866 (0.050)*** 0.847 (0.030)***

λ 0.097 (2.615) 1.240 (1.364) 1.507 (0.809)*

Log-Likelihood -1238 -1914.3 -2600.5
+ Standard errors in parentheses
*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level

Table 2: Estimation Results for Data1, 12/06/2006-1/11/2006

4.2 Empirical Results for Data1, 12/06/2006-1/11/2006

Table 2 shows the results for the estimation of the two-factor model based

on Data1. It can be observed that the correlation coefficient ρ = ρ1 is

large8; the speed of mean-reversion of the convenience yield κ, the expected

return on the spot commodity µ, the mean-level of convenience yield α and

the market price of convenience yield risk λ are all positive and reasonable.

For Panel A and B however, the parameters µ, α and λ are not significant.

This changes for panel C, where all coefficients are significant, most at the

1% level. Besides, it is also worth to note that the expected return on the

spot commodity µ increases while the speed of mean-reversion κ decreases

as the term of contracts increases. The Kalman filter based estimation is

an iterative procedure. Figures 11 in the appendix shows the parameter

evolution for Panel A exemplary. The convergence is good in all cases.

Figure 1 shows the filtered state variables, i.e. the spot price and the instan-

taneous convenience yield along with a number of selected futures prices for

Panel A.9 Prices of futures contracts contained in Panel A are also included

in the figure. The figure seems to indicate strong correlation between state

variables as well as a strong relationship between futures prices and spot

8In the context of the two-factor model, where there is only one relevant correlation,
we omit sub-indices and denote ρ = ρ1.

9The figures for Panel B and C look similar, but are omitted due to space limitations.
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price. As one would expect the ability of futures contracts to proxy spot

prices becomes weaker when maturity increases. The futures prices deter-

mined by the model are at most times within 2% of the market prices, which

presents a good fit. Figures 2 represents the term structure, where the left

part shows the actual term structures and the right part shows the model

generated term structures. In general, the model makes a good prediction

for the short-term panel but finds it more difficult to capture the shapes of

longer-term panels, where the actual term structure appears to be rather

unconventional, see figures 12-13 in the appendix.10

Figure 1: State Variables for Panel A in Data1, 12/06/2006-1/11/2006

4.3 Empirical Results for Data2, 2/11/2006-17/12/2008

Table 3 shows the results for the two-factor model obtained from Data2. Sim-

ilar as before the correlation coefficient ρ is large; the expected return on the

spot commodity µ, the mean-reversion level of the convenience yield α and

the market price of convenience yield risk λ are all positive and reasonable.

10The slightly odd looking actual term structure for longer dated salmon future contracts
is likely to be caused by the rather low trading volume of these contracts.
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Figure 2: Term Structures for Panel A in Data1, 12/06/2006-1/11/2006

However, the speed of mean-reversion of the convenience yield κ for Panel A

is significantly larger than before, and volatilities σ1 and σ2 are significantly

lower. For Panel A, the parameters µ, α and λ are not significant. This

changes for panel B and C though, where all coefficients are highly signifi-

cant at the 1% level. Furthermore, it is worth mentioning that the expected

return on the spot commodity µ increases while the speed of mean-reversion

κ decreases as the terms of contracts increase. For all cases, the convergence

of the Kalman filter is very good.

Figures 3 shows the filtered state variables for Panel A, i.e. the spot price

and the instantaneous convenience yield, along with selected futures prices.

As before, we observe strong correlation between state variables as well as

a close relationship between futures price and spot price. The ability of fu-

tures contracts to proxy spot prices becomes weaker when maturity extends.

Again, the model presents a good fit, with model prices at most times being

within 2% of market prices. Figure 4 presents the term structures for Panel

15



Parameter+

Panel A Panel B Panel C
F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29

(Short Term) (Medium Term) (Long Term)

µ 0.214 (0.160) 0.747 (0.177)*** 0.854 (0.122)***

κ 5.776 (0.616)*** 1.387 (0.155)*** 0.660 (0.018)***

α 0.216 (0.257) 0.951 (0.216)*** 1.356 (0.069)***

σ1 0.109 (0.006)*** 0.141 (0.003)*** 0.159 (0.023)***

σ2 0.651 (0.059)*** 0.223 (0.018)*** 0.142 (0.022)***

ρ 0.580 (0.108)*** 0.811 (0.021)*** 0.895 (0.038)***

λ 0.818 (1.402) 1.290 (0.427)*** 0.865 (0.098)***

Log-Likelihood -8279.7 -9822.6 -12745
+ Standard errors in parentheses
*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level

Table 3: Estimation Results for Data2, 2/11/2006-17/12/2008

A contracts, where once more the left part shows the real term structures

while the right part shows the model generated term structures. In general,

the model makes a good prediction for the short-term panel but again finds

it difficult to capture the shapes of longer-term panels, which show the rather

odd looking actual term structure already observed in the first case, compare

figures 14-15 in the appendix.

Figure 3: State Variables for Panel A in Data2, 2/11/2006-17/12/2008
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Figure 4: Term Structures for Panel A in Data2, 2/11/2006-17/12/2008

4.4 Empirical Results for Data3, 18/12/2008-22/03/2012

Table 4 shows the results for the two-factor model obtained from Data3. As

in the other two cases, the correlation coefficient ρ is large; the expected

return on the spot commodity µ, the mean-reversion level of convenience

yield α and the market price of convenience yield risk λ are all positive and

reasonable. The speed of mean-reversion of the convenience yield κ for Panel

A is significantly larger than for the other two panels. However, α and λ

are insignificant for Panel’s A and B, and µ is insignificant for Panel B. As

before, all parameters are significant at 1% level for Panel C. Further, it is

worth to mention that the expected return on the spot commodity µ increases

while the speed of mean-reversion κ decreases as the terms of the contracts

increase. As in the previous cases, the convergence of the Kalman filter is

very good.

Figure 5 shows the filtered state variables for Panel A, i.e. the spot price

and the instantaneous convenience yield, along with selected futures prices.
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Parameter+

Panel A Panel B Panel C
F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29

(Short Term) (Medium Term) (Long Term)

µ 0.255 (0.113)** 0.398 (0.323) 0.917 (0.167)***

κ 3.554 (0.191)*** 0.347 (0.125)*** 0.232 (0.032)***

α 0.181 (0.134) 1.000 (1.066) 1.821 (0.261)***

σ1 0.182 (0.020)*** 0.188 (0.040)*** 0.189 (0.004)***

σ2 0.698 (0.099)*** 0.161 (0.020)*** 0.104 (0.004)***

ρ 0.740 (0.156)*** 0.905 (0.065)*** 0.908 (0.007)***

λ 0.297 (0.476) 0.351 (0.251) 0.418 (0.101)***

Log-Likelihood -9341.1 -11804 -12870
+ Standard errors in parentheses
*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level

Table 4: Estimation Results of Data3, 18/12/2008-22/03/2012

As before, we observe strong correlation between the state variables as well

as a close relationship between futures price and spot price, which however

becomes weaker as maturities extends. Model prices are still within 2% of

market prices at most times, however, in particular for panel A, fall out of

the 2% range more frequently, than for Data1 and Data2. Figure 6 shows

the actual and model generated term structures as before. Similar as in the

previous two cases the model makes a good prediction for the short-term

panel but cannot capture the shapes of longer-term panels which as in the

previous cases show odd looking actual term structures, most likely to be

caused by the illiquidity of these contracts, compare figures 16-17 in the

appendix.

4.5 Three-Factor Model

Accounting for stochastic interest rates and their term structure is of par-

ticular importance for longer term contracts. The longest maturity contract

included in our study has a 2 1/2 year time to maturity. The longest matu-

rities currently traded at Fish Pool are 5 years. In both cases it makes sense

to consider stochastic rates and to assess in how far this effects the results

obtained in the previous sections. We therefore consider the full three fac-

tor model represented as in equations (1)-(3) under P and (7)-(9) under the

pricing measure Q.
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Figure 5: State Variables for Panel A in Data3, 18/12/2008-22/03/2012

Figure 6: Term Structures for Panel A in Data3, 18/12/2008-22/03/2012
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Once the three-factor model has been cast in state space form, the Kalman

Filter can be applied to estimate model parameters. Although ideally pa-

rameters in all three processes should be estimated simultaneously, here we

will follow Schwartz (1997) by first estimating the interest rate process by

fitting to the term structure of interests and then using the full three-factor

model in order to determine the other two processes.

In this paper, Norwegian Treasury Bill yields are used to estimate the interest

rate process over the whole sample period. The Euler discretion of equation

(9) can be expressed as

r(tn+1, ψ) = r(tn, ψ) + a(m∗ − r(tn, ψ))∆t+ σ3∆Z̃3(tn), (31)

where ψ stands for Norwegian Treasury Bill with different maturities. We

can estimate parameters by rewriting (31) and solving the equation below

(â, m̂∗) = arg min
a,m∗

T−1∑
n=1

(r(tn+1, ψ)− r(tn, ψ)− am∗∆t+ ar(tn, ψ)∆t)2 (32)

Once we have solved (32), σ̂3 can also be obtained by σε√
∆t

, where σε is the

standard deviation of residuals. Since (9) is only capable of describing the

short-term behavior, the 3-month, 6-month, 9-month and 12-month Norwe-

gian Treasury Bills yields during the sample period are selected to estimate

the interest rate process, accordingly only short-term futures contracts, i.e.,

Panel A consisting of F1, F3, F5, F7, and F9 in each data-set, are used to test

the three-factor model. Moreover, ρ2 and ρ3 are approximated by the corre-

lations between the 3-month Norwegian Treasury Bill yields and the filtered

state variables, i.e. spot price and convenience yield, obtained from the cor-

responding two-factor model. The estimation results are displayed in Table 5.

As shown in Table 5, the estimated coefficients for the three-factor model

are very close to those obtained from using the two-factor approach. How-

ever some of the estimates, which had been insignificant with the two-factor

approach, now appear as significant. Specifically, the coefficients µ, α and
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Parameter+ Data1 Data2 Data3

µ 0.102 (0.466) 0.294 (0.109)***0.647 (0.143)***

κ 2.520 (0.200)***5.950 (0.209)***3.429 (0.142)***

α 1.884 (1.181) 0.402 (0.121)***0.681 (0.164)***

σ1 0.280 (0.032)***0.143 (0.008)***0.228 (0.012)***

σ2 1.792 (0.171)***0.935 (0.069)***0.878 (0.061)***

ρ 0.843 (0.038)***0.857 (0.023)***0.901 (0.016)***

λ 4.646 (2.95) 1.978 (0.748)***2.046 (0.551)***

Log-Likelihood -1241.7 -8357.7 -9381.7
a 0.543 0.543 0.543
m∗ 0.027 0.027 0.027
ρ2 -0.926 0.560 0.127
ρ3 -0.961 0.031 0.277
σ3 0.017 0.017 0.017

+ Standard errors in parentheses
*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level

Table 5: Estimation Results of Three Factor Model: Panel A

λ for Panel A Data2 now become highly significant at the 1% level, while

being insignificant before, compare Table 3. Some problems however remain

within the analysis of Data1. Besides insignificant µ, α and λ, the absolute

values of ρ2 and ρ3 in Data1 are close to 1, which suggests that the three

factor model used might be inappropriate to deal with this particular data-

set. Most likely, the fact that the data-set Data1 contains much fewer data

points than the other two is to blame for this. By and large, the three factor

approach confirms the results from the two-factor approach.

5 Comparison between Cattle and Salmon

How do the salmon futures compare to futures traded on other related com-

modities? Live-cattle seems to reflect some of the properties of farmed salmon

as a commodity and futures on live-cattle are traded in high volume on the

Chicago Mercantile Exchange. Based on data availability for both the Fish

Pool market and the live-cattle futures market, we have chosen 6 live-cattle
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Parameter+ Data1 Data2 Data3

Cattle Salmon Cattle Salmon Cattle Salmon

µ 0.224 (0.250) 0.241 (0.608) 0.108 (0.108) 0.195 (0.085)** 0.103 (0.106) 0.570 (0.121)***

κ 0.770 (0.179)*** 2.844 (0.059)*** 0.975 (0.082)*** 1.139 (0.133)*** 0.444 (0.180)*** 4.257 (0.135)***

α 1.488 (0.934) 0.209 (0.667) 0.191 (0.143) 0.289 (0.120)** 0.060 (0.232) 0.233 (0.099)**

σ1 0.145 (0.019)*** 0.292 (0.023)*** 0.149 (0.010)*** 0.116 (0.006)*** 0.136 (0.009)*** 0.152 (0.007)***

σ2 0.426 (0.054)*** 1.595 (0.085)*** 0.188 (0.018)*** 0.174 (0.017)*** 0.130 (0.018)*** 0.527 (0.032)***

ρ 0.505 (0.107)*** 0.636 (0.172)*** 0.797 (0.034)*** 0.884 (0.019)*** 0.889 (0.021)*** 0.864 (0.030)***

λ 0.819 (0.793) 0.368 (1.782) 0.113 (0.139) 0.247 (0.127)** 0.056 (0.102) 0.787 (0.419)*

Log-Likelihood -1574.8 -1806 -8112.1 -10098 -6670.9 -6642
+ Standard errors in parentheses
*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level

Table 6: Estimation Results: Comparison between Cattle and Salmon

contracts covering the period from 12/06/2006 to 07/09/2010. In analogy to

our previous analysis, we divide the whole sample period into three different

regimes as described in Table 1, but cut off at 07/09/2010. We continue to use

Norwegian interest rates for the salmon contracts, but use the corresponding

3-month U.S treasury bill rates for each of the periods, i.e., 4.9%, 3.07% and

0.14%, for cattle contracts, which are traded in the US. Further, we select

6 salmon contracts F2, F5, F7, F10, F13 and F16 which have similar ma-

turities as the live-cattle contracts. The average maturity of these contracts

is 0.126 years, 0.383 years, 0.554 years, 0.810 years, 1.065 years and 1.321

years respectively. The empirical results of our analysis are shown in Table 6.

We observe that in general, there are no significant differences between the

expected returns on the spot commodity µ of salmon and cattle contracts.

More interesting perhaps is that salmon contracts show significantly higher

mean-reversion speeds κ and mean-reversion level of the convenience yield

α as compared to cattle contracts.11 In addition, the market price of conve-

nience yield risk in the case of salmon is notably higher, at least for the time

periods corresponding to Data2 and Data3.

As before Convergence of the Kalman filter is very good in all cases. Figures

7 and 8 show the filtered state variables, i.e. the spot price and the instan-

taneous convenience yield, along with selected futures prices. The model fit

11Note that for Data1 the α’s for both cattle and salmon are insignificant.
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is about the same, slightly better for salmon than for live-cattle where the

relative error remains within 3% for most times. Figures 9 and 10 plot the

term structures for both cattle and salmon.

We observe from Figures 7 and 8 that the convenience yields are notably

different in cattle than in salmon. While the convenience yield for cattle

is negative almost all of the time, the convenience yield for salmon changes

signs relatively frequently and is relatively equally balanced between positive

and negative. This maybe attributed to storage issues and costs reflecting

that fresh salmon is a highly perishable good, more so than cattle. It may

also point towards liquidity issues and the fact that salmon farming is still far

less developed than cattle farming, which may affect supply. In this case, the

benefits for holding salmon in storage in the short term and hence being able

to provide liquidity are higher than for cattle. Looking at the term structures

in figures 9 and 10 it appears that the model captures the salmon contracts

much better than the cattle contracts. This fact is confirmed numerically

by tables 10 and 11 in the appendix, which show the residual mean square

errors and MAE.

6 Conclusions

In this paper we established a link between the popular Schwartz (1997)

multi-factor models used for the pricing of commodity derivatives and classi-

cal models originating from the aquaculture/fish farming literature. Specif-

ically we looked at future contracts written on fresh farmed salmon, which

have been actively traded at the Fish Pool Market in Norway since 2006.

The link with the fish farming literature, has been established following first

principles, starting by modeling the aggregate salmon farming production as

well as modeling salmon demand using a Cobb-Douglas utility function for

a representative consumer. We estimated our model using a rich data set

of futures contracts with different maturities traded at Fish Pool between

12/06/2006 and 22/03/2012 by means of Kalman filtering. Our results show

that the framework presented is able to produce an excellent fit to the ac-

tual term structure of salmon futures. A comparison with live cattle futures
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(a) Panel A

(b) Panel B

(c) Panel C

Figure 7: State Variable in Cattle Contracts
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(a) Panel A

(b) Panel B

(c) Panel C

Figure 8: State Variable in Salmon Contracts
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(a) Panel A

(b) Panel B

(c) Panel C

Figure 9: Term Structures in Cattle Contracts
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(a) Panel A

(b) Panel B

34

(c) Panel C

Figure 10: Term Structures in Salmon Contracts
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traded within the same period reveals subtle difference, for example within

the level of the convenience yield, the speed of mean reversion of the conve-

nience yield and the convenience yield risk premium. Overall, the Schwartz

(1997) multi factor approach appears to fit the salmon data better than the

live cattle data.
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Appendix

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Panel A: From 12/06/2006 to 1/11/2006: 103 Daily Observations

F1 33.86 (5.32) NOK 0.040 (0.025) years

F3 31.68 (4.02) 0.212 (0.025)

F5 30.53 (2.68) 0.382 (0.025)

F7 29.82 (2.03) 0.551 (0.025)

F9 29.45 (1.51) 0.717 (0.025)

Panel B: From 12/06/2006 to 1/11/2006: 103 Daily Observations

F12 29.20 (1.25) NOK 0.968 (0.025) years

F14 29.05 (1.05) 1.141 (0.025)

F16 28.91 (0.98) 1.315 (0.025)

F18 28.74 (0.89) 1.485 (0.025)

F20 28.57 (0.79) 1.650 (0.025)

Panel C: From 12/06/2006 to 1/11/2006: 103 Daily Observations

F24 28.53 (0.80) NOK 1.984 (0.025) years

F25 28.53 (0.78) 2.072 (0.025)

F26 28.53 (0.78) 2.158 (0.025)

F28 28.53 (0.78) 2.327 (0.025)

F29 28.53 (0.78) 2.410 (0.025)

Table 7: Contracts in Data1, 12/06/2006-1/11/2006
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Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Panel A: From 2/11/2006 to 17/12/2008: 545 Daily Observations

F1 25.96 (1.59) NOK 0.041 (0.025) year

F3 25.92 (1.42) 0.210 (0.025)

F5 25.85 (1.39) 0.378 (0.026)

F7 25.71 (1.33) 0.547 (0.026)

F9 25.53 (1.28) 0.717 (0.025)

Panel B: From 2/11/2006 to 17/12/2008: 545 Daily Observations

F12 25.30 (1.24) NOK 0.973 (0.025) years

F14 25.12 (1.18) 1.143 (0.026)

F16 25.04 (1.18) 1.312 (0.026)

F18 24.94 (1.12) 1.483 (0.026)

F20 24.90 (1.10) 1.654 (0.027)

Panel C: From 2/11/2006 to 17/12/2008: 545 Daily Observations

F24 24.89 (1.12) NOK 1.997 (0.027) years

F25 24.89 (1.12) 2.083 (0.028)

F26 24.88 (1.13) 2.169 (0.028)

F28 24.86 (1.14) 2.341 (0.029)

F29 24.86 (1.14) 2.427 (0.028)

Table 8: Contracts in Data2, 2/11/2006-17/12/2008

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Panel A: From 18/12/2008 to 22/03/2012: 849 Daily Observations

F1 32.93 (6.28) NOK 0.041 (0.025) year

F3 32.47 (5.53) 0.213 (0.025)

F5 32.01 (4.99) 0.386 (0.025)

F7 31.51 (4.66) 0.558 (0.026)

F9 31.07 (4.31) 0.729 (0.026)

Panel B: From 18/12/2008 to 22/03/2012: 849 Daily Observations

F12 30.77 (3.91) NOK 0.986 (0.026) years

F14 30.45 (3.59) 1.157 (0.027)

F16 30.15 (3.16) 1.328 (0.028)

F18 30.12 (2.97) 1.498 (0.029)

F20 30.00 (2.81) 1.668 (0.031)

Panel C: From 18/12/2008 to 22/03/2012: 849 Daily Observations

F24 29.29 (2.38) NOK 2.007 (0.033) years

F25 29.17 (2.26) 2.092 (0.034)

F26 29.08 (2.15) 2.176 (0.035)

F28 28.99 (1.90) 2.345 (0.036)

F29 28.89 (1.82) 2.430 (0.037)

Table 9: Contracts in Data3, 18/12/2008-22/03/2012
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Figure 11: Parameter Evolution for Panel A in Data1, 12/06/2006-1/11/2006

Figure 12: Term Structures for Panel B in Data1
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Figure 13: Term Structures for Panel C in Data1, 12/06/2006-1/11/2006

Figure 14: Term Structures for Panel B in Data2, 2/11/2006-17/12/2008
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Figure 15: Term Structures for Panel C in Data2, 2/11/2006-17/12/2008

Figure 16: Term Structures for Panel B in Data3, 18/12/2008-22/03/2012
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Figure 17: Term Structures for Panel C in Data3, 18/12/2008-22/03/2012

Contracts
Data1 Data2 Data3

RMSE MAE RMSE MAE RMSE MAE

F2 0.0124 0.0102 0.0150 0.0128 0.0175 0.0141

F5 0.0144 0.0123 0.0149 0.0123 0.0169 0.0141

F7 0.0054 0.0042 0.0208 0.0181 0.0196 0.0165

F10 0.0133 0.0114 0.0170 0.0139 0.0149 0.0119

F13 0.0140 0.0129 0.0144 0.0123 0.0126 0.0110

F16 0.0164 0.0134 0.0191 0.0164 0.0164 0.0137

ALL 0.0131 0.0107 0.0170 0.0143 0.0165 0.0136

Table 10: RMSE and MAE of Log Price: Cattle
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Contracts
Data1 Data2 Data3

RMSE MAE RMSE MAE RMSE MAE

F2 0.0043 0.0033 0.0107 0.0087 0.0174 0.0131

F5 0.0059 0.0048 0.0095 0.0073 0.0231 0.0187

F7 0.0134 0.0106 0.0104 0.0083 0.0166 0.0129

F10 0.0047 0.0036 0.0085 0.0068 0.0190 0.0135

F13 0.0051 0.0044 0.0078 0.0056 0.0177 0.0132

F16 0.0078 0.0060 0.0090 0.0072 0.0144 0.0110

ALL 0.0075 0.0054 0.0094 0.0073 0.0182 0.0137

Table 11: RMSE and MAE of Log Price: Salmon
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