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Abstract 
There are abundant examples of nanoclusters and inorganic microcrystals in biology. 

Their study under physiologically relevant conditions remains challenging due to their 

instability, the requirements of sample preparation and other intrinsic limitations of the 

techniques used. Advantages of using neutron diffraction and contrast matching to 

characterize biomaterials are highlighted in this article. We have applied these methods 

and complementary techniques to search for long-range order within nanoclusters of 

calcium phosphate sequestered by bovine phosphopeptides, derived from osteopontin or 

casein. Hydrated and dried samples with different nanocluster radii were analyzed and 

compared to samples of known calcium phosphate phases. The absence of a distinct 

diffraction pattern from the nanoclusters is consistent with the presence of amorphous 

calcium phosphate structure. 
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1. INTRODUCTION 

Loss of structural order can be caused by mechanical stress (Garcia et al. 1991), pressure 

effects (Hibi et al. 1993) or thermal treatment (Yang et al. 2003). Dehydration can also 

lead to an increase in disorder and can inhibit crystallization or recrystallization (Brindly et 

al. 1963). Loss of water within granular regions of starch, for example, was shown to be 

responsible for a loss of plasticity that precludes periodicity over larger scales (Perry and 

Donald 2000). Sample preparation requirements are a particular concern when studying 

biomaterials, which tend to be inhomogeneous on almost any length scale (for a review of 

structural hierarchies see Fratzl and Weinkamer 2007).  

 Electron (Egerton and Malac 2004) and synchrotron-based X-ray beams are often 

used to probe wide ranges of structural information. By combining, for instance, small and 

wide-angle X-ray scattering techniques it is possible to probe nm to µm length scales 

(Garcia et al. 1991, Paris 2008). High-energy irradiation is however known to induce 

damage to crystallinity (Kantoglu and Guven 2002), particularly when ordered water is 

present (Bursill et al. 1980). The non-destructive nature of neutron diffraction is extremely 

advantageous in this context. Dry or hydrated samples can be measured at room 

temperature so that the potential effects of drying, cryoprotectants and cryocooling can be 

eliminated. In addition, deuterium labelling can be used to decrease incoherent neutron 

scattering and to highlight specific parts of multicomponent macromolecular systems 

through contrast matching. An important caveat in the latter is the possibility that the 

structure can be perturbed by the use of D2O or isotope labeling (see for example Liu et al. 

2007), which underlines the need to use complementary techniques such as X-ray 

diffraction to test conclusions from neutron experiments. 
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 Calcium orthophosphates are an integral structural component of a range of 

biomaterials, present in different phases and particularly relevant to oral biology, dentistry 

and medicine (Cai and Tang 2008, Skrtic et al. 2003). Crystals of carbonated 

hydroxyapatite are found in bones and teeth. Biphasic calcium phosphates of 

hydroxyapatite (Ca/P = 1.67) and β-tricalcium phosphate (TCP, Ca3(PO4)2) show high 

bioactivity and osteoconductivity (Lee et al. 2013). Nanocrystalline apatites have 

biomineralisation and orthopaedic applications, yet the conditions of their formation and 

maturation remain poorly understood. Previous studies (Rey et al. 2007) showed the 

presence of a hydrated structured layer at the surface of nanocrystalline apatites, through 

which larger crystals can be formed. It was suggested this surface layer, which can be 

irreversibly altered by drying, confers unexpected properties in vivo and could be used to 

obtain bioactive coatings from nanocrystals. 

 Most vertebrate bodily fluids are supersaturated with respect to both hydroxyapatite 

and amorphous calcium phosphate (ACP), where some intrinsically disordered proteins 

such as caseins and osteopontin (OPN) form stable or metastable complexes with calcium 

phosphate (Holt et al. 2014, George and Veis 2008). The best characterised example is 

the casein micelle of milk, which contains hundreds of nanoclusters of calcium phosphate 

in a single colloidal casein micelle of ~100 nm radius (see also section 2.2). Clusters of 3 

or more phosphorylated residues (phosphate centers) in the phosphopeptide chains bind 

electrostatically to a core of calcium phosphate, while the flanking sequences form a shell 

or corona around it (Bruyn et al. 2013, Clegg and Holt 2009). At equilibrium, the resulting 

calcium phosphate nanoclusters (CPN) have well defined average diameters in aqueous 

solutions, depending upon the properties of the sequestering peptide. For instance, core 
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radii of gyration of ~17.5 nm were observed for CPN complex with OPN 1-149 (Holt et al. 

2014) and of ~1.85 nm for complexes with various casein phosphopeptides (Holt et al. 

1998). 

 Interactions between proteins and crystals, including OPN peptides (Grohe et al. 

2007), are central to many processes in biomineralisation. The inorganic core of 

dehydrated CPN samples has however been found to be amorphous, based on 

experimental results from a range of techniques including electron microscopy, X-ray 

diffraction, Fourier transform infrared spectroscopy (FTIR) and X-ray absorption 

spectroscopy (Cross et al. 2005; Holt et al. 1982, 1996 and 2009; Hunter et al. 1996; Holt 

and Hukins 1991). Drying or radiation damage could nonetheless destroy crystalline order 

in the CPN. It has been reported that biologically formed calcium phosphate precipitates 

form much smaller crystals than the naturally occurring geological counterparts: biological 

apatite crystals typically range from a few to hundreds of nanometers (Boskey 2003). 

Based on previous measurements of radii of gyration, the average diameter of a spherical 

CPN core sequestered by OPN 1-149 and β-casein 1-25 is ~45.2 nm and ~4.8 nm, 

respectively. Both core volumes are large enough to accommodate nanocrystallites of, for 

example, dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O), octacalcium phosphate 

(OCP, Ca8H2(PO4)6.5H2O) or hydroxyapatite (HA, Ca5(PO4)3OH).  

 ACP can be prepared with a range of different Ca/P ratios (Zhao et al. 2011). 

Amorphous TCP (Ca/P = 1.5) is formed in alkaline conditions with a structure built by 

agglomeration of the so-called Posner clusters (Betts and Posner 1974, Blumenthal and 

Posner 1973): Ca9(PO4)6 units of 0.8-1 nm diameter, where interstitial water can be 

removed irreversibly by drying (Kojima et al. 1994). This is an arrangement also present in 
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the unit cell of apatites, OCP and β-TCP. Hydrated ACP may mature into more crystalline 

forms through a process of solution and re-deposition (Blumenthal and Posner 1973, 

Kojima et al. 1994). It was reported that in vitro ACP maturation time is highly dependent 

on Ca/P ratio (Harries et al. 1987) as well as on pH. An acidic ACP that is prepared and 

kept under acidic conditions is unstable and tends to convert to crystalline DCPD (Combes 

and Rey 2010). The DCPD structure has water molecules sandwiched between 

corrugated sheets of calcium and hydrogen phosphate ions. It typically yields a 

characteristic diffraction spectrum with strong reflections arising from these sheets. 

 Previous studies have shown (Holt 2004, Holt et al. 1989) that the composition of 

micellar calcium phosphate is consistent with that of an acidic ACP. High-resolution 

electron microscopy (Lyster et al. 1984) of dried samples of micellar calcium phosphate 

showed that longer-range order did not extend over distances more than ~1.5 nm. This 

distance corresponds to the longest dimension of the DCPD crystalline unit cell. OCP has 

also been shown to hydrolyse into calcium-deficient apatites but it was shown that 

dehydration through a thermal treatment could cause a significant decrease in crystallite 

size (Neslon and McLean 1984). Both OCP (McGann et al. 1983) and DCPD can be in 

vitro precursors of HA (Nudelman et al. 2012, Addadi et al. 2012) but have only rarely 

been detected in mineralised tissue. They are, however, common in pathological 

calcifications such as dental calculi, urinary stones and chondrocalcinoses (Cheng 1991), 

formed at lower pH.  

 In summary, a range of factors can affect the formation and stability of calcium 

phosphate phases. Neutron diffraction is a powerful technique in the study of amorphous 

biomaterials or pharmaceuticals (Sarsfield et al., 2006). Here we used the q-range 
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available at the D16 neutron diffractometer of the Institut Laue-Langevin to study the 

structure of hydrated synthetic calcium phosphate, and CPN samples prepared in the 

laboratory and obtained from bovine milk. Our goal was to probe for periodic distributions 

of molecules in the calcium phosphates. Although insensitive to shorter-range order such 

as the Posner clusters, the D16 neutron diffractometer allows for long-range order (see for 

example Carriere et al. 2009) to be detected in wet pellets and at room temperature. 

Importantly, in the context of biological structures, the relatively long neutron wavelength 

allows for contrast matching studies, which can be used to exclude contributions to 

scattering and diffraction from phosphopeptide structures such as protein fibrils (Thorn et 

al. 2005). 

 

2. MATERIALS AND METHODS 

2.1. Preparation of calcium phosphate nanoclusters sequestered by osteopontin 

phosphopeptides 

In milk, OPN undergoes proteolytic processing by several different proteases, leading to a 

mixture (OPNmix) of different phosphopeptides (Holt and Hukins 1991, Holt et al. 1989). 

Naturally occurring OPNmix was isolated from bovine milk as previously described (Holt et 

al. 2009). The principal components are N-terminal peptides ending between residues 145 

and 153 of the mature protein sequence (Christensen and Sorensen 2014). Previously this 

group of N-terminal peptides (Holt et al. 2009) was considered equivalent to OPN 1-149. 

We have kept this nomenclature here for the sake of simplicity and continuity. 

 OPNmix CPN were prepared by the simple mixing method to give final 

concentrations of 22 mM calcium, 20 mM inorganic phosphate, an ionic strength of 63 mM 
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and pH 7.0 (Holt et al. 2009). At equilibrium, the solution has a free calcium ion 

concentration of 0.5 mM and, on average, each peptide is attached to the calcium 

phosphate nanoclusters core through only one of its three phosphate centers. Samples 

were allowed to equilibrate for at least 14 days prior to centrifugation.  

 The stability of OPNmix CPN even at high ratios of D2O (Holt et al. 2014) allowed 

for the use of samples prepared in 41% and 100% D2O solutions. The 41% D2O contrast 

was chosen to match out potential contributions from the phosphopeptide (Holt et al. 

1998), but this intermediate percentage of D2O is also useful in the assignment of peaks in 

the FTIR spectra. The 100% D2O solutions were used for maximum signal-to-noise ratio. 

Two hydrated samples were produced from solutions of 10 ml of 30 mg/ml OPNmix CPN 

using 41% D2O or 100% D2O. Both solutions were centrifuged at 85000 g for 16 h, 

yielding hydrated pellets that were stored at 8 °C.  

 The same protocol was used to produce a dried OPNmix CPN sample from an H2O 

solution for comparison, with an extra lyophilizing step. The sample was left overnight in a 

desiccator over silica gel, and stored at 4°C. 

 

2.2. Preparation of micellar calcium phosphate 

A concentrated form of the calcium phosphate, known as micellar calcium phosphate, can 

be recovered from a proteolytic digest of the casein micelles and has been shown to 

contain the most highly phosphorylated casein subsequences (Ono et al. 1994; Holt et al. 

1986). The preparation of a hydrated sample of micellar calcium phosphate was based on 

protocols previously described (Holt et al. 1986). The casein micelle substructure and size 

are however slightly changed when H2O is replaced by D2O (Nelson and McLean 1984, 
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McGann et al. 1983) and for this reason the pronase digested sample was only produced 

in H2O.  

 Casein micelles were pelleted in six tubes by centrifuging 240 ml of skim milk 

(1.5mM sodium azide were included in all milk solutions) at 60000 g for 1 h. The 

supernatants were discarded and the pellets redistributed into two tubes, refilled with more 

skim milk and redispersed by stirring for 24 h. 1 ml of a solution containing 200 µg of a 

broad specificity proteinase (Pronase, 81748 Fluka) was added after dispersion. The 

solution was placed in a Visking tube and dialysed at room temperature against 3 liters of 

skimmed milk, with stirring, for 24 h. During dialysis, the milky white solution clarified as 

the casein peptides were digested. A clear brown pellet was recovered from the optically 

clear digested solution by centrifugation  (85 000 g for 16 hours at 8°C). Previous work 

(Ono et al. 1994, Holt et al.1986) has shown that the pelleted micellar calcium phosphate 

comprises calcium phosphate nanoclusters and casein phosphopeptides resistant to 

proteolytic digestion. 

 

2.3. Preparation of calcium phosphate samples  

An ACP sample was prepared as described previously (Holt et al. 1986), by rapid mixing 

at room temperature, with stirring, of 500 ml of a phosphate solution with 500 ml of a 

calcium solution. The phosphate solution had the composition 100 mM NaH2PO4 and 100 

mM Na2HPO4, whereas the calcium solution had the composition 4 mM CaCl2, 135 mM 

NaCl, 14 mM MgCl2 and ~10 µg of a tryptic phosphopeptide mixture, prepared from whole 

casein and purified essentially as described previously (Reynolds et al. 1994). It was 

added to the calcium solution to inhibit the maturation of the ACP into crystalline phases. 
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At this low concentration of the casein phosphopeptide it cannot sequester any significant 

fraction of calcium phosphate in the form of CPN. The pH was adjusted to 7.0 and 

maintained at this value by adding 0.4M NaOH with rapid stirring. The precipitate formed 

was collected by filtration through a Sartorius membrane of 0.45µm porosity and freeze-

dried. The dried powder, which can still include 10-20% of tightly bound water molecules 

(Zahid et al. 1985), was kept over silica gel overnight, before storage at -20°C. 

 Flat, plate-like, monoclinic crystals of DCPD were prepared using a published 

protocol (Miller et al. 2012). 0.825 g of KH2PO4 and 3.013 g of Na2HPO4 were dissolved in 

700 ml of deionized water, followed by rapid addition, with stirring, of 200 ml of a solution 

containing 4.014 g of CaCl2·2H2O. The solution was stirred for 80 min at room 

temperature to allow for complete precipitation. The solid was recovered by filtration, 

washed with deionised water and dried overnight at 37°C in a desiccator over silica gel. 

The powder was stored at -20°C.  

 

2.4. Dynamic Light Scattering and Fourier transform Infrared spectroscopy 

Formation of OPNmix CPN was demonstrated by dynamic light scattering measurements 

using a Malvern Zetasizer Nano S (Malvern Instruments Ltd., UK) at a scattering angle of 

173°. The light source was a 4mW He-Ne laser operating at a wavelength of 633 nm. The 

sample was filtered through a Whatman filter with a 0.2 µm pore size and the correlation 

function recorded at 25°C, with at least 3 repeat measurements to check reproducibility. 

FTIR spectra of the hydrated and dried CPN samples and the dry calcium phosphate 

samples were recorded before and after neutron diffraction experiments (Figures S1 and 

S2) with a Bruker VERTEX 70 Fourier transform infrared spectrometer equipped with a 
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diamond ATR device. Each spectrum was the average of 64 scans with a spectral 

resolution of 2 cm-1. The spectra were recorded and stored using spectroscopic software 

(OPUS, Bruker Inc.). 

 

2.5. Neutron and X-ray diffraction 

Samples were analysed at room temperature over the q-range of 0.12-2.24 Å-1 using the 

small momentum transfer neutron diffractometer D16, at the Institut Laue-Langevin 

(Grenoble, France). Exposure times of 30 min were used per angular 2θ step of 18.5°. 

The scattering wave vector q is a function of the wavelength λ (4.767Å, beam bandwidth 

Δλ/λ = 1%) and the scattering angle (2θ), where q=(4π/λ).sinθ. A beam diameter of 3 mm 

was used (the divergence calculated directly from the image of an attenuated beam was 

0.33°). The average flux on the sample was 1x106 neutrons.cm-2.s-1. Data were recorded 

on a millimeter-resolution large area 3He detector (MILAND; 320x320 mm2). All samples 

were measured in spherically symmetric sealed sample containers of 5 mm diameter, for 

which the contribution was determined and subtracted from each of the sample diffraction 

scans.  

 Data collection was carried out for the OPNmix CPN samples (prepared in H2O, 

D2O and 41% D2O) and pelleted after 3 weeks of maturation to ensure that the 

nanoclusters had reached their equilibrium size. The diffraction measurements were 

repeated 4 weeks later: no changes were observed in the corresponding diffraction 

patterns. While the hydrated samples were pelleted to obtain as high a concentration of 

the nanoclusters in the beam, the powder samples were loaded into the sample container 

without compaction. As a final control the ACP dry sample was exposed to ambient 
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humidity by leaving the sample container open at room temperature for ~3 extra weeks. 

Neutron diffraction data were recorded‡ for comparison (Fig. I). Data reduction was carried 

out using the Large Array Manipulation Program (LAMP; Richard et al. 1996) provided by 

the Institut Laue-Langevin.  

 X-ray diffraction data were collected on the same samples at room temperature 

over the q-range 0.31-3 Å-1, using a GeniX Cu high flux generator. The average flux was 

~400x106 photons.s-1 for a beam size at focus ~200x200 µm2 with a divergence of 5 mrad. 

Data were recorded on a Mar345 detector with exposure times of 10 min per sample.  

 

2.6. Simulated neutron and X-ray diffraction patterns  

The minimum number, purity and size of crystallites needed for detection of their presence 

in the sample depend on a complex number of correlated sample and instrumental 

parameters. Recent studies (Fewster, 2014) have for example shown that dynamic and 

kinematic scattering must be taken into account to explain the high sensitivity of 

experimental powder diffraction data despite predictions of weak intensity measurements 

and low accuracies. Simulated neutron and X-ray diffraction patterns were obtained from 

the Institut Laue-Langevin’s PHP-MySQL Inorganic Crystal Structure Database (ICSD-for-

WWW; Supplementary material Fig. S3). These showed that the experimental 2θ ranges 

and wavelengths are appropriate to detect the various possible calcium phosphate crystal 

structures when large crystals are present.  

 Neutron diffraction powder patterns were also calculated using the FullProf suite 

(Rodriguez-Carvajal, 1993; Rodriguez-Carvajal, 2001) and high quality crystallographic 

information files for DCPD (ICSD-16132; Curry et al.,1971) and HA (ICSD-16742; Posner 
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et al., 1958). Simple single-line methods were used to account for size-strain broadening 

(Mittemeijer and Welzel, 2008). The need to avoid sample preparation bias precluded the 

addition of a known amount of an investigated standard to the samples. Taking this into 

consideration, as well as the relatively low resolution of the neutron data, an advanced 

analysis was not justified. Average spherical shapes were assumed for potential 

crystallites, defined by a diameter chosen to be compatible with the volumes of the 

inorganic core for OPNmix CPN and casein CPN. No super-cell calculations were used to 

include distortion effects. 

 

3. RESULTS AND DISCUSSION 

3.1. Dynamic light scattering 

After 14 days the formed OPNmix-CPN had an intensity-averaged hydrodynamic radius of 

~22.5 nm in solution (H2O, 41% D2O and 100% D2O), as calculated from light scattering 

measurements,in agreement with previous findings (Holt et al., 2014; Holt et al, 2009). 

Light scattering measured both before and after pelleting (ultracentrifuged samples were 

re-suspended in their respective buffers) showed no significant changes. 

 

3.2. Fourier Transform Infrared spectroscopy 

FTIR spectra for the dried ACP and DCPD control samples  are in close agreement with 

previously published results (Berry and Baddiel 1967, Trpkovska et al. 1999, Hirsch et al. 

2014), as are the spectra for the CPN samples (see Supplementary Material Fig. S1 and 

Fig.S2).  
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3.3. Neutron and X-ray diffraction  

ACP and DCPD neutron diffraction were directly measured as controls. The DCPD sample 

showed two clear diffraction peaks matching the expected pattern (Figure I). This is 

indicative of the sensitivity of the technique used, given peaks measured for DCPD have 

simulated intensities comparable to other calcium phosphate crystalline forms. For ACP 

no Bragg peaks were detected over the 2θ range measured (only peaks 15 times above 

the standard deviation were considered significant). ACP was however allowed to mature 

over a period of 3 weeks, exposed to humidity, and diffraction peaks were then detected in 

the angular ranges matching DCPD. 

 
Figure I. Neutron diffraction pattern of the DCPD sample: a sharp Bragg peak was observed at a 2θ of 36.3° 
(I/σ)=20.9) and a second peak at 67.8° (I/σ=16.8; a similar intensity would be expected for a HA peak at 2θ 
of ~76°), matching the simulated pattern as shown (simulation based on the previously published crystal 
structure of DCPD; Curry and Jones, 1971). The inset shows an overlay of ACP diffraction patterns before 
and after maturation. Only the 2 peaks shown were distinguishable above the background. 
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The pronase digested casein sample was chosen to provide a comparison between CPN 

produced with different peptides, namely casein and OPN. None of CPN samples 

analyzed showed clear neutron diffraction peaks (Fig. II). CPN samples were analyzed by 

X-ray diffraction covering a 2θ range of 4-45°. For the OPNmix CPN sample in 41% D2O, 

for which any protein contributions are matched out, the X-ray data provide a cross-

validation of the neutron diffraction result. Figure IIb shows the results obtained for the 

CPN samples: the patterns are featureless, in agreement with the neutron diffraction data. 

 

 
Figure II. The plot shows an overlay of the neutron diffraction patterns of the OPNmix and pronase digested 
CPN samples. Intensities are arbitrary. The patterns are similar to dry ACP, where no unambiguously 
identifiable diffraction rings are detected. The top insets show X-ray diffraction patterns for the CPN samples 
in the range of 2.07-20Å. 
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Figure III shows simulated neutron diffraction patterns of DCPD and HA for different 

possible sizes of crystallites, chosen to cover an illustrative range from a size equivalent to 

just one or two stacked unit cells, up to the full diameter of the core of CPN. DCPD and 

HA were chosen as representative potential structures that crystallise in small unit cells. If 

pure HA crystallites were present (Fig. IIIb), and given that the experiments carried out 

allowed for data to be collected up to a 2θ of 115°, the simulations suggest that crystallites 

of 18.9Å - large enough to include two or more unit cells stacked in the ‘b’ or ‘c’ unit cell 

edge directions - would cause a very broad peak centred at ~34°.  

 
Figure III. Simulations of neutron diffraction at D16 for samples containing crystallites at different sizes 
assuming (a) pure DCPD crystals and (b) pure HA crystals. The DCPD unit cell assumed: a, b, c = 5.812, 
15.18, 6.239 (Å), β = 116.43°; HA hexagonal unit cell: a, b = 9.432, c=6.881 (Å). The core of OPNmix CPN 
has a diameter of ~452Å (radius 226Å shown for comparison), while the core for casein CPN has a diameter 
of 48Å. The 2θ range shown includes data beyond the experimental angle measured on D16 but it is shown 
to highlight the peak tails that fall within the accessible range. 
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example. For DCPD, the simulations suggest that the experimental resolution would not 

allow detection of the presence of crystallites formed by up to 3 unit cells stacked in the ‘a’ 

direction, nor any made of a single monoclinic unit cell (as shown by the broad intensity 

profile for 5.8Å or 15.2Å). 

 

4. CONCLUSION 

A relatively dense packing of potential crystallites inside the CPN core is expected. The 

extra Gibbs free energy for nanocrystallite surfaces is significant and aggregation lowers 

the exposed interfacial surface area in an aqueous environment. The neutron diffraction 

patterns recorded did not however show any signs of homogeneous crystallites ≥18.9Å in 

the core of casein CPN or OPNmix CPN. The presence of heterogeneous mixtures of 

crystallites and mixtures of crystalline phases cannot however be excluded based solely 

on the results reported here. In particular as combined diffraction effects could flatten the 

diffraction signatures of the different crystal forms. The irreversible maturation of calcium 

phosphate to HA does occur through intermediates but given the consistency of the 

results at different times the presence of a mixture of crystalline forms in the inorganic 

core of CPN seems unlikely.  

 Compared to casein CPN, the larger OPNmix CPN core can be explained by higher 

levels of hydration at the central region, consistent for example with the presence of 

amorphous TCP. Previous studies (Heughebaert and Montel, 1982) have shown that 

hydrolysis of amorphous TCP can lead to the formation of HPO4
2-, OH- and a range of 

Ca9(PO4)(6-x)(HPO4)x(OH) compositions, an intermediate step before the formation of 

calcium deficient apatite. It is unclear if the CPN core traps such an intermediate state.  
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 The lack of higher order structure in the core may be required for sequestration by 

the peptide and favor calcium bioavailability through higher kinetic solubility and rate of 

solution (amorphous phases lack the lattice energy of calcium phosphate crystals; 

Mahamid et al., 2010). Cross et al (2005) proposed a model of the inorganic core in casein 

CPN, consisting of two amorphous calcium phosphate phases: a central phase (Ca/P = 

1.5), and a calcium-rich phase (Ca/P = 2) in direct contact with the peptide. It still however 

remains unclear how hydration affects the Ca/P ratios and the internal structure of the 

core.  

 It has previously been shown that the initial step of in vivo mineralization requires a 

highly amorphous precursor calcium phosphate that later matures into HA within the 

extracellular matrix (Mahamid et al. 2011), and a similar finding was observed in tooth 

enamel (Holt 1997). Collagen can be mineralized with HA by OPN CPN (Rodriguez et al., 

2014). OPN and a similar phosphopeptide, bone sialoprotein, are distributed in bone and 

cementum (Nudelman et al., 2012; Rodriguez et al., 2014) suggesting activity as process 

directing agents delivering calcium phosphate to collagen fibrils. The amorphous and 

highly hydrated nature of OPN CPN would be consistent with this role.   
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FOURIER TRANSFORM INFRARED SPECTROSCOPY 

Broad bands caused by the DCPD H-stretch of HPO4 anions (Hadzi, 1965) are 

centred ~2900 cm-1. DCPD shows a pair of doublets centered ~3480 cm-1 and 

~3200 cm-1, respectively, due to the O-H stretching modes of water. These are not 

visible for ACP or dry OPNmix CPN samples. The characteristic water bending 

mode (1649 cm-1) and subsidiary peak (1730 cm-1) are also clear in the DCPD 

spectrum but absent in the OPNmix CPN spectra (Figures S1 and S2).  

The FTIR spectrum for ACP is in close agreement with the literature (Combes and 

Rey 2010), with broad phosphate stretching and bending modes and no apparent 

effects from the presence of bovine β-casein. The expected presence of adsorbed 

water is confirmed by the H-O-H bending modes and broadening of the 2500-3650 

cm-1 band. The strong peak at 890 cm-1 was assigned to the P-O(H) stretch from 

protonated phosphate groups, absent in all CPN samples but presumably 

obscured by other absorption bands (in agreement with previously published 

results, see for example Miller 2012 or Holt et al. 1986). 
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This peak is consistent with the less stable ACP phase that converts to DCPD 

(Combes and Rey 2010), a result that is in agreement with the observed 

maturation of the ACP hydrated sample (see section 3.3 of main article) despite 

the presence of the crystallisation inhibitors.  

 
Figure S1. Overlay of FTIR spectra of dried samples: OPNmix CPN (dry CPN), DCPD and ACP. 
The inset shows the same spectra after Fourier self-deconvolution of the phosphate stretching 
region (850-1300 cm-1). The expected lifting of the degeneracy of the broad phosphate asymmetric 
stretch (inset) and the phosphate bending mode (550cm-1, data not shown) for crystalline calcium 
orthophosphates is clearly seen for DCPD but not for CPN or ACP samples. It should be noted that 
background peaks originating from the presence of atmospheric carbon dioxide (2350 cm-1) and 
from the diamond (2000- 2100 cm-1) anvils of the ATR-device are more obvious in the ACP 
spectrum due to the scale used. 

 

The OPN protein backbone amide I and II bands (Gericke et al. 2005; Arrondo and 

Goni 1999) are clear for all CPN (see Figure S2), including micellar calcium 

phosphate (Gebhardt et al. 2011). The hydrated CPN samples also show 

enhanced absorbance at ~1645 cm-1, where C=O group absorption in random coil, 

polyproline-II, or loop structures is expected, as well as water bending vibrations.  

A strong peak at 1020 cm-1 and a broad peak at 1100 cm-1 are visible in the 

hydrated OPNmix CPN spectra, but not the OPNmix CPN dry spectrum. Bands at 

the same wavenumbers have been previously shown to occur in non-stoichiometric 
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apatites (Nudelman et al. 2012, Mahamid et al. 2010) containing hydrogen 

phosphate ions. The D-O-D (1150-1250 cm-1) and D-O-H (1300-1550 cm-1) 

bending modes are observed, as expected in the hydrated OPNmix CPN spectra 

(clearer for the 100% D2O spectrum). 

 

Figure S2. Overlay of FTIR spectra of OPNmix CPN. The inset shows the same spectra after 
Fourier self-deconvolution for the phosphate stretching region (850-1350 cm-1). The intense broad 
bands at ~3400 cm-1 or 2500 cm-1 in the FTIR spectra of the hydrated samples are typical of 
structural OH and OD stretches, respectively, broadened by H/D bridging between water molecules.  

 

Neutron and X-ray diffraction simulations 

Diffraction patterns were simulated both for X-rays and neutrons using the Institut 

Laue-Langevin’s PHP-MySQL Inorganic Crystal Structure Database (ICSD-for-

WWW) using the Caglioti width parameters (Caglioti 1970, Hewat 1975): (0.05, -

0.06, 0.07) for the Genix X-ray source. For D16 neutrons the parameters used 

were (0.5365, -0.4121, 0.355), calculated using the FullProf software suite 

(Rodriguez-Carvajal1993). Figure S3 shows the simulated patterns for angular 

detection ranges used for X-ray (S3a) and neutron (S3b) experimental data 

collection, where representative forms often studied or observed in biomaterials 
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were chosen. The crystal size was not taken into account for the simulations 

shown.  

Figure S3 highlights the complementarity of the techniques, which allow for 

extended angular ranges to be covered while the respective technique sensitivities 

are fully explored. It is for example clear that even ignoring possible X-ray radiation 

damage effects, for OCP detection neutron diffraction can be more advantageous. 

The DCPD structure has water molecules sandwiched between corrugated sheets 

of calcium and hydrogen phosphate ions. It typically yields a characteristic X-ray 

diffraction spectrum with strong reflections arising from these sheets (Figure S3a).  
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Figure S3. Calculated diffraction patterns for several different forms of calcium phosphate, 
based on previously published crystal structures of: primitive monetite (dicalcium 
phosphate anhydrous; Catti et al. 1980), β-TCP (Yashima et al. 2003), hexagonal HA 

(Posner et al. 1958), DCPD (Sainz-Díaz et al. 2004), and OCP (Brown 1962). The patterns 
were simulated for (a) X-rays of λ = 1.54Å and (b) neutrons of λ = 4.76Å.  
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